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Abstract: Recently, nanoparticles have supplied diverse challenges in the area of science. The 

nanoparticles suspended in several conventional fluids can convert the fluids flow and heat 

transmission features. In this investigation, the mathematical approach is utilized to explore the 

magnetohydrodynamics micropolar-nanofluid flow through a truncated porous cone. In this 

mathematical model, non-linear radiation and suction/injection phenomena are also scrutinized 

with the Tiwari-Das nanoliquid pattern. The designed system of the mathematical model of the 

boundary value problem is converted to a set of dimensionless non-similar equations applying 

convenient transformations. In this study, kerosene oil is selected as the base fluid, while the 

nanoparticles of Fe3O4 are utilized to promote the heat transmission rate. The problem is solved 

numerically using the Runge-Kutta-Fehlberg method (RKF45). It is demonstrated that an 

enhancement in the pertinent parameters improves the heat transmission rate. 

Keywords: natural convection; magnetic field; thermal radiation; micropolar-nanofluid 

 

1. Introduction 

Transport of heat in several industrial and natural and operations is a fundamental and severe 

mechanism. Various mechanisms include several forms for the transfer of heat. However, transport 

of heat in the processes happening in fluid flow regimes occurs in three ways; radiation, convection, 

and conduction. Various strategies have been presented by scientists for the augmentation of heat 

transfer [1–4]. These involve surfaces being exposed to cooling, and sources, as in the case of heat 

exchangers, using fluids which are good conductors of heat and a blend of fluids such that the 

transport of heat in the blend of nanoparticles and base fluid can be promoted. Besides these classical 

methods, researchers working in the design of thermal systems have presented the style for the 

augmentation of heat by the dispersal of nanoparticles in fluids. This dispersal of nanoparticles 

inspires an increment in the ability to transfer of heat in the medley fluid (a medley of nanoparticles 

and essential fluid). Due to which, a thermal framework employing a mixture of nanoparticles and 

traditional fluid works as an effective technique. Due to the significance of the nanofluids in thermal 

frames, several studies, including numerical, experimental, and theoretical, have been performed. A 

pioneering study on nanofluid was undertaken by Choi [5]. It was demonstrated that the addition of 

a small volume fraction of nanoparticles to base fluids can increase the thermal conductivity of the 

fluid by up to approximately two times. Kuznetsov and Neild [6] construed natural convective 

flowing through an orthogonal surface saturated in nanofluid porous media. They found that the 
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reduced Nusselt number decreases with the controlling parameters. Gorla and Chamkha [7] found 

that an increase in the Nr and Nt reduces the friction factor and enhances the heat and mass transfer 

rates. Sameh and Mahdy [8] reviewed the natural convective flowing through a cone filled in 

nanofluid in the presence of a magnetic domain. They concluded that Ag-nanoparticles provide a 

higher heat transfer rate than TiO2 nanoparticles. Oztop and Nada [9] investigated the natural 

convective in rectangular hot containers of a nanofluid flow and found that the volume fraction of 

nanoparticles, as well as the height of the heater, enhance the heat transfer rate. Reddy and Chamkha 

[10] studied the natural convective flowing of a magnetic field for a nanofluid past an orthogonal 

cone and noticed significant enhancement in the natural convection heat transfer when the size of 

nanoparticles decreases. Noghrehabadi et al. [11] noticed an increase in the dimensionless wall 

temperature with an increase in the Brownian motion parameter. Rashad et al. [12] investigated the 

boundary layer natural convective flowing through a vertical surface under the impact of the 

difference in sinusoidal temperature for a nanofluid. On the other side, the fluids that have precise 

construction are essential because of their entry into many industries and engineering 

implementations. The micropolar fluids were defined by Erignen [13,14]. Micropolar fluids belong to 

a category of fluids that have a non-symmetric strain sensor. These fluids consist of solid particles 

with random orientation that are suspended in viscous media since the distortion of the particles of 

fluids can be ignored. There are many implementations of micropolar fluids. Chamkha et al. [15] 

explained the mass and heat transport of a natural convective for micropolar fluids flow about the 

radiated cone. Chamkha et al. [16] investigated the magneto-natural convection flow of a micropolar 

fluid across an orthogonal radiated plate. Their results indicate that an increase in the micropolar 

fluid vortex viscosity parameter reduces the fluid linear velocity, local wall couple stress and the local 

Nusselt number. Bourantas and Loukopoulos [17] construed a numerical investigation of the natural 

convective flow past sloping canister with a square shape for a micropolar-nanofluid. They 

discovered that the intensity and positioning of the magnetic field substantially affect the flow and 

temperature fields.  Khan et al. [18,19] demonstrated that all the quantities of physical interest 

increase along the surface of a truncated cone in  Newtonian-nanofluids. Raju et al. [20] noticed that 

an increase in the volume fraction of ferroparticles grows the friction factor and heat transport rate. 

Alamgir [21] applied an integral technique to determine the overall heat transfer from vertical cones 

and produced a general expression for the average Nusselt number in terms of governing parameters. 

The target of the current study is to discuss the influence of the magnetic field on the dispersion 

of nanoparticles in the micropolar fluid by natural convective flow past a porous truncated cone. 

Current research is a novel extension in the open literature. The simulations for 

Magnetohydrodynamics (MHD) micropolar-nanofluid modeled boundary value problems are 

carried out by employing the Runge-Kutta-Fehlberg method (RKF45) using MAPLE-19 and 

explorations are elucidated graphically.  

2. Governing equations 

Suppose the steady laminar motion of MHD micropolar-nanofluid with natural convective 

through a truncated porous radiate cone with half-angle A. The cone surface is elastic and exposed 

to non-linear radiation and magnetic field phenomena. The origin of the coordinate system is located 

at the apex of the full cone, where x appears the distance over the cone, and y appears the distance 

perpendicular to the cone surface, as displayed in Figure 1. A continuous magnetic strength B0 is 

utilized in orthogonal to the flow trend. The temperature of the cone is constant  �� and away from 

the cone is considered by ��  such that  ��  > �� . Based on these conventions, the governing 

boundary layer equations are stated as, 

( ) ( )ru rv
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The following imposed conditions of the model are (see [22]); 

00, , 0, : 0wu v v N T T y      , (5) 

0, 0, 0, :u T N T T y     , (6) 

where 0 0v   symbolizes the wall suction velocity; 0 0v  is the wall suction velocity 

injection; 0 0v   signifies that the cone surface is impermeable. 

The following of dimensionless variables are used to obtain the dimensionless governing equations: 
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Implementation of Rosseland approximation gives 
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In the present work, the following thermophysical relations are utilized [22]; 
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Here  is nanoparticles volume fraction. The effective thermophysical properties of kerosene-

based ferrofluid have been registered in Table 1. Using Equations (7)–(9), the governing equations in 

dimensionless form can be written as 
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where the constants and the dimensionless variables are defined as 
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The spin-gradient nanofluid viscid ��� is defined as 

2 2
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, (15) 

where, �� ; the dynamic viscosity of the base fluid, and / fK   is the micropolar (material) 

parameter. In the limiting case, it allows the governing equations to envisage the appropriate conduct 

when the microstructure impacts are insignificant, and the total spin lowers to the angular velocity. 

Finally, the expression of local skin friction Cf and local Nusselt number (Nux) are written as: 
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It is important to note that Equations (10)–(12) are still partial differential equations as they 

contain the derivatives with respect to  . This is the foremost hurdle to the solution of these 

equations.  

Table 1. Thermophysical properties of base fluids and nanoparticles. 

Physical Properties Kerosene Fe3O4 

pC [J/kgK] 2090 670 

 [kg/m3] 780 5180 

k [W/mK] 0.149 80 

 [Ns/m2] 0.00164 - 
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 [1/K] 99×10−5 20.6×10−5 

 [W/mK] 6×10−10 0.112×106 

Pr  23.0114 - 

 

 

Figure 1. Problem Schematics and Coordinate System. 

3. Local Similarity 

Following References [23,24], Equations (10)–(12) are solved from the perspective of the local 

similarity model. In this approach, the first derivatives with respect to   are neglected in Equations 

(10)–(12) and in boundary conditions (13) to obtain the following local similarity model:  
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Equations (17)–(19) are Ordinary differential equations (ODEs) and can be solved numerically 

with boundary conditions (20) applying the Runge-Kutta-Fehlberg method (RKF7 45). 

4. Local Non-similarity Solution Method 

Following [23,24], we retain all the terms by assuming the new auxiliary functions ( , ),F    

( , ), ( , )G      which are defined by 
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Equations (22)–(24) with boundary conditions (25) exemplify a local nonsimilarity model for the 

current problem. To obtain a local similarity model, Equations (21)–(24) are differentiated w.r.t. , 

simplified, and the first-order derivatives w.r.t.   are neglected again. These equations are given by 
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with the boundary conditions 
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Equations (22)–(24) and (26)–(28) with boundary conditions (25) and (29) were solved 

numerically by employing the Runge-Kutta-Fehlberg method (RKF45) using MAPLE-19 software. 

RKF 45 is a technique of order O(h4) with a fault estimator of order O(h5). This method is generally 

known as one of the "best methods" available for solving a system of nonlinear differential equations 
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and supply the most effective data. Step size 0.001   and a convergence criterion of 
610

 were 

selected in the numerical computations. The asymptotic boundary conditions, given in Equations (25) 

and (29), were replaced by using a value of 12 for the similarity variable max  as follows:  

(12) 0, (12) 0, (12) 0, (12) 0, (12) 0, (12) 0f g F G        . (30) 

The selection of max 12   ensures that all numerical solutions approached the asymptotic 

values properly. The other details of this method can be found in Reference [25].  

5. Discussions 

The set of nonlinear coupled ordinary differential Equations (22)–(24) and (26)–(28) subjected to 

boundary conditions (25) and (29) are solved numerically using the RKF 45 method. The influence of 

pertinent parameters on the dimensionless velocities and temperature, along with the friction factor 

coefficient and local Nusselt numbers, are analyzed and explored graphically.  

The effects of the micropolar parameter on dimensionless velocity are depicted in Figures 2(a) 

for suction, 2(b) for impermeable, and 2(c) for injection of kerosene oil-based magnetite nanofluid 

over a truncated cone. In this case, the micropolar parameter boosts from K=0 (Newtonian fluid) 

to K=2 (micropolar fluid). In each case, the velocity is plotted at different stations along the truncated 

cone. With the cone wall, the dimensionless velocity shoots up and then declines in the 

hydrodynamic boundary layer. It is noted that the velocity is the maximum for a Newtonian fluid 

(K=0) and lowers for the micropolar fluid (K=2) in each situation. The comparison shows that the 

maximum velocity is lowest in the case of suction (f0 > 0) and is highest for the injection case (f0 < 0), 

see Figure 2(c). The difference of the temperature with the micropolar parameter K for the three cases 

is depicted in Figures 3(a)–(c) inside the thermal boundary-layer. For the suction, no appreciable 

effect could be observed in the temperature distribution of both Newtonian (K=0) and micropolar 

fluids (K=2). However, when the cone surface is impermeable or solid, the thermal boundary layer is 

found to be thinner for the Newtonian fluid than the micropolar fluid, see Figure 3(b). Into the 

thermal boundary-layer, the dimensionless temperature of both fluids increases through the surface. 

When the fluids are injected into the cone surface, the dimensionless temperature remains the same 

across the surface and then decreases exponentially up to the ambient temperature. Again, the 

dimensionless temperature converges quickly for the Newtonian fluid, see Figure 3(c). Figures 4(a)–

(c) present the impacts of micropolar parameter on the dimensionless rotating velocity along the cone 

surface for the three selected cases. As expected, there is no rotating velocity of the Newtonian fluid 

(K=0) in any case. However, for the micropolar fluid (K=2), the behavior of rotating fluid can be 

witnessed in each case, see Figures 4(a)–(c). This is due to the rotation of the rigid particles present in 

the micropolar fluids. These fluids not only support body couples but also explain micro-rotational 

impacts. The comparison shows the lowest value of the maximum rotational velocity for the suction 

case and the highest value for the injection of micropolar fluid.  
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Figure 2. Effects of micropolar parameter on dimensionless velocity along truncated cone for (a) 

suction, (b) impermeable, and (c) injection of kerosene-based magnetite nanofluid. 

 

Figure 3. Effects of micropolar parameter on dimensionless temperature along truncated cone for (a) 

suction, (b) impermeable, and (c) injection of kerosene-based magnetite nanofluid. 
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Figure 4. Effects of micropolar parameter on dimensionless rotating velocity along truncated cone for 
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case of injection.  

 

Figure 5. Effects of magnetic parameter and solid volume fraction of nanoparticles on dimensionless 
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Figure 6. Effects of magnetic parameter and solid volume fraction of nanoparticles on dimensionless 

temperature along truncated cone for (a) suction, (b) impermeable, and (c) injection of kerosene-based 

magnetite nanofluid. 
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shows the oscillatory nature. The comparison shows that the maximum amplitude increases from 

suction to injection. 

The variation in the skin friction along the cone surface is depicted in Figures 8(a)–(c) for 

different values of micropolar and magnetic parameters. In each case, the skin friction decreases 

along the cone surface with the magnetic parameter but increases with the micropolar parameter. It 

is well known that the magnetic field creates Lorentz forces, which tend to reduce the velocity of both 

fluids. In the case of micropolar fluids, this effect is more pronounced due to the translational and 

rotational motion of the particles. 

Consequently, the skin friction of micropolar fluids is found to be higher in each case. The 

comparison shows that the skin friction of both fluids is less in suction than in injection. Figures 9(a)–

(c) display the difference in skin friction of micropolar fluids with the solid volume fraction for 

different values of radiation and wall temperature parameters with the magnetic impact. Due to local 

structure, micromotion, and higher density of the nanoparticles, the dimensionless velocity decreases 

and, as a result, the skin friction decreases with  in all cases. However, radiation and wall 

temperature parameters help in increasing the skin friction in each case. It is demonstrated that the 

skin friction is always lowest in the case of suction and highest in case of injection. 

Due to local structure and micromotion of the fluid particles, micropolar fluids demonstrate 

specific microscopic effects on the heat transfer. These effects are compared in Figures 10(a)–(c) for 

Newtonian and micropolar fluids with the magnetic impact. The Nusselt numbers of Newtonian 

fluids are found to be higher than the Nusselt numbers of micropolar fluids in each case. In the 

suction and injection cases, the Nusselt numbers increase along the cone surface as shown in Figure 

10(a) and 10(b). However, an increase in the magnetic strength declines the Nusselt number in each 

case. The variation of the Nusselt number of micropolar fluid with  is portrayed in Figure 11(a) for 

suction, in Figure 11(b) for injection, and in Figure 11(c) for the impermeable surface of the cone. This 

variation is shown for several values of radiation and wall temperature parameters. It is seen that the 

Nusselt number enhances with the increment in the solid volume fraction and the radiation 

parameter in each case. However, the difference in the Nusselt number with wall temperature 

depends upon the properties of the micropolar fluids. 

 

Figure 8. Effects of magnetic and micropolar parameters on skin friction along truncated cone for (a) 

suction, (b) injection, and (c) impermeable of kerosene-based magnetite nanofluid. 
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Figure 9. Variation of skin friction with solid volume fraction of nanoparticles, radiation, and wall 

temperature parameters along truncated cone for (a) suction, (b) injection, and (c) impermeable of 

kerosene-based magnetite nanofluid. 

 

Figure 10. Effects of magnetic and micropolar parameters on Nusselt number along truncated cone 

for (a) suction, (b) injection, and (c) impermeable of kerosene-based magnetite nanofluid. 


C

f
G

r x1
/4

0 0.02 0.04 0.06 0.08 0.1
0.74

0.75

0.76

0.77

0.78

0.1
0.3

(b)

w
B=1, f0=-0.1

=0.01

Rd=1, 2, 3

Ha=2, K=2



C
f
G

r x1
/4

0 0.02 0.04 0.06 0.08 0.1
0.65

0.68

0.71

0.74
0.1
0.3

(c)

w
B=1, f0=0

=0.01

Ha=2, K=2
Rd=1, 2, 3



C
f
G

r x1
/4

0 0.02 0.04 0.06 0.08 0.1
0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.1
0.3

(a)

Rd=1, 2, 3

B=1, f0=0.1

=0.01

w

Ha=2, K=2



N
u

G
r x1

/4

0 0.3 0.6 0.9 1.2 1.5
1

1.5

2

2.5

3

3.5

4

(a)

K=2

K=0

Ha=1, 3, 5

=0.05, B=1, Rd=1,

w=0.5, f0=0.1



N
u

G
r x1

/4

0 0.3 0.6 0.9 1.2 1.5
0.8

1

1.2

1.4

1.6

1.8

2

(c)

=0.05, B=1

Rd=1


w
=0.5, f

0
=0 Ha=1, 3, 5

K=2

K=0



N
u

G
r x1

/4

0 0.3 0.6 0.9 1.2 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

=0.05, B=1, Rd=1,


w
=0.5, f

0
=-0.1

Ha=1, 3, 5
K=0

K=2



Processes 2020, 8, 379 13 of 16 

 

 

Figure 11. Variation of Nusselt number with solid volume fraction of nanoparticles, radiation, and 

wall temperature parameters along truncated cone for (a) suction, (b) injection, and (c) impermeable 

of kerosene-based magnetite nanofluid. 

6. Conclusions 

This study investigates the effects of the governing parameters on the dimensionless velocities, 

temperature, local skin friction, and Nusselt numbers in MHD natural convection. The dimensionless 

local non-similar equations were solved numerically using the Runge-Kutta-Fehlberg method 

(RKF45). The following conclusions were drawn from this investigation: 

 Increasing the solid volume fraction of nanoparticles, micropolar, and magnetic parameters 

raise the dimensionless temperature in injection and impermeable surfaces. 

 Increasing solid volume fraction, micropolar and magnetic parameters reduce the 

dimensionless velocity in each case. 

 Increasing micropolar and radiation parameters increase local skin friction, whereas 

increasing the magnetic field and solid volume fraction reduce the local skin friction. 

Increasing the solid volume fraction of nanoparticles, radiation, micropolar, and magnetic 

parameters enhance the Nusselt number. 
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Nomenclature 

A half angle of the truncated cone 

 a� Rosseland mean extinction coefficient 

B  spin gradient viscosity parameter 

B� Magnetic inducement 

C� Specific heat at constant pressure [Jkg-1·K-1] 

c� Local skin-friction coefficient 

f dimensionless stream function 
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f� Wall mass transfer coefficient 

g Dimensionless angular velocity 

�∗ Gravitational acceleration [ms-2] 

Gr��  Local Grashof number 

Ha Hartmann number 

j microinertia density  

k Thermal conductivity [Wm-1K-1] 

K Dimensionless material parameter 

N angular velocity 

Nu Local Nusselt number 

Pr Prandtl number 

�  local radius of the truncated cone [m] 

R� radiation-conduction parameter 

T Temperature of the fluid in the boundary layer [K] 

T Temperature of the ambient fluid [K] 

u velocity component along x-direction [ms-1]   

Ur reference velocity [ms-1] 

v velocity component along y-direction [ms-1] 

�� wall suction or injection velocity [ms-1] 

x stream wise coordinate [m] 

x� distance of the leading edge of truncated cone measured from the origin[m] 

�̅ distance measured from the leading edge of the truncated cone, � − �� [m] 

y  transverse coordinate [m] 

Greek symbols 

α thermal diffusivity [m2s-1] 

β thermal expansion coefficient 

η pseudo similarity variable 

γ spin gradient viscid 

 nanoparticles volume fraction 

µ dynamic viscosity (Pa.s) 

ν kinematic viscosity (m2s-1)  

 
dimensionless temperature 

� 
surface temperature parameter 

 
density (kg m-3) 

 
electrical conductivity (S m-1) 

� 
Stefan-Boltzmann constant 

� 
scattering coefficient 

 
stream function  
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ξ 
dimensionless distance 

Subscripts 

f Base fluid 

ff Ferrofluid 

s Solid nanoparticle 
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