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Abstract: The dockless bike sharing system (DBSS) has been globally adopted as a sustainable
transportation system. Due to the robustness and tractability of the closed queuing network (CQN),
it is a well-behaved method to model DBSSs. In this paper, we view DBSSs as CQNs and use the
mean value analysis (MVA) algorithm to calculate a small size DBSS and the flow equivalent server
(FES) algorithm to calculate the larger size DBSS. This is the first time that the FES algorithm is used
to study the DBSS, by which the CQN can be divided into different subnetworks. A parking region
and its downlink roads are viewed as a subnetwork, so the computation of CQN is reduced greatly.
Based on the computation results of the two algorithms, we propose two optimization functions for
determining the optimal fleet size and repositioning flow, respectively. At last, we provide numerical
experiments to verify the two algorithms and illustrate the optimal fleet size and repositioning flow.
This computation framework can also be used to analyze other on-demand transportation networks.

Keywords: sustainable transportation; dockless bike sharing system; mean value analysis; closed
queuing network; flow equivalent server algorithm; optimization strategy

1. Introduction

Bike sharing systems (BSSs) are a type of smart transportation. Nowadays, there are primarily
two types of BSSs. The first one, the station-based bike sharing system (SBBSS), consists of stations
distributed across the city. The capacity of a station is limited. An arriving user rents a bike from
a station and returns it to a destination station if there is a vacant dock. Otherwise, the user must
find another station to return the bike. SBBSSs have been carried out in over 2900 cities around the
world ([1]). Another type of BSS, with no fixed stations for parking bikes, is the dockless bike sharing
system (DBSS). Bikes can be parked everywhere allowable without capacity limit (refer to Shi et al. [2]).
The DBSSs first arose in 2014 and now they have been deployed in over 250 cities in the world. Since
the difference of capacity and parking positions, the modeling and computation of the SBBSS and
DBSS are their distinguishing features. In this paper, we provide research for the DBSS.

Since the BSS is large scale and dynamic, it is vital to determine an optimal fleet size. The optimal
fleet size is a tradeoff between the earnings from users and maintaining cost of the BSS. Bike availability
is defined to be the probability that the parking region is not empty. It is an essential task to understand
the relationship between the bike availability of each parking region and the fleet size. If the fleet
is in surplus, it is a waste of resource and many bikes will pile up at the roadside and cause traffic
congestion. It is a severe problem in China, notably for Mobike and ofo (two popular dockless
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bike sharing companies), who launched many bikes to compete for market share, which results in
a tremendous waste of resources ([3]). Thus, in this paper we provide an optimization function to
determine the optimal fleet size.

Bikes are scattered in the system asymmetrically, so repositioning is a necessary measure to
preserve the sustainability of DBSS. There are two classes of repositioning strategies: static repositioning
and dynamic repositioning. Static repositioning does not take into consideration the movements of
bikes during the repositioning period, while dynamic repositioning considers the fluctuation of bikes
during the repositioning process. This paper proposes a repositioning flow to rebalance the DBSS,
which is a novel dynamic repositioning process.

Among the model technologies, the closed queuing network (CQN) is an appropriate method to
study DBSSs, which can give sufficient consideration to the stochasticity of the system. CQN is well
known as a suitable tool for studying complex systems. However there is a profound difficulty in
theory to compute a large scale system because of the normalization constant. The mean value analysis
(MVA) algorithm is a common algorithm to calculate the CQN without the normalization constant.
Since there are plenty of road nodes, the number of nodes in the DBSS is huge. Based on the special
construction of DBSS, we use the flow equivalent server (FES) algorithm to partition a parking region
and its downlink road node into a subnetwork, which lessens the number of nodes significantly.

The contributions found in this paper are threefold: The first one is to use the CQN to describe a
DBSS and propose an optimization function to find the optimal fleet size. The second one is to propose
an optimization function to determine the repositioning flow. The third one is to use the FES algorithm
to study the DBSS, which is the first time this algorithm is applied to analyze the DBSS by dividing a
parking region and its downlink roads into a subnetwork to reduce the computation greatly.

The remainder of this paper is organized as follows. Section 2 provides the literature review.
Section 3 sets system parameters and model description of the DBSS. Section 4 establishes a CQN to
express the DBSS and gives the product form solution. Section 5 provides the MVA algorithm to solve
the CQN. Section 6 proposes the FES algorithm to simplify the computation of the DBSS. Section 7
provides optimization functions for determining the optimal fleet size and repositioning flow. Section
8 gives numerical experiments. The conclusion is given in Section 9.

2. Literature Review

The research of fleet sizing is a vital topic of BSS. Some work has provided different ideas to
determine the optimal fleet size. Kőchel et al. [4] provided a joint simulation optimization idea of
fleet size and bike repositioning strategy and proposed an iterative means to obtain the fleet size.
Fanti et al. [5] viewed an electric car sharing system as a CQN to determine the optimal fleet size and
developed an optimization problem to maximize the system revenue aiming to find the optimal fleet
size. Zhai et al. [6] proposed a sparse matrix construction solution method for determining the fleet
size of the DBSS. Bazan et al. [7] studied mobility-on-demand networks, which are similar to BSS.
They presented a simulation model combined with optimization function and queuing network and
computed the optimal fleet size. These papers provide different methods to find the optimal fleet
size. However, in order to consider the stochasticity fully, we choose the CQN to model the DBSS.
We determine the optimal fleet size based on an optimization function, in which the parameters are
obtained by computing the CQN.

Another important measure of BSS is repositioning management. For the static repositioning,
Liu et al. [8] studied a DBSS with multiple heterogeneous vehicles, depots, and visits. Their conclusion
was that the enhanced chemical reaction optimization (CRO) had better solutions than the preliminary
CRO. Schuijbroek et al. [9] proposed a mixed-integer programming based on decomposing the
multi-vehicle repositioning matters into single-vehicle problems. They also provided a heuristic
of cluster-first route-second to mitigate its running time. For other static repositioning research, readers
can refer to Szeto et al. [10], Bulhões et al. [11], Jia et al. [12], and Tang et al. [13]. Static repositioning
typically can not adequately capture the surges in user demand. Thus dynamic repositioning needs to
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be studied sufficiently. For the dynamic repositioning, Shu et al. [14] found that repositioning execution
can get an additional 15–20% trips. Caggiani et al. [15] carried out dynamic bike repositioning
at a constant gap time. The aim is to get a high user satisfaction and a low repositioning cost.
Legros et al. [16] developed an implementation decision-support tool to decide the number of bikes
and which station to carry out the repositioning. They also proved that there is an optimal inventory
level. Mellou and Jaillet [17] proposed a novel mixed-integer programming formulation to solve the
dynamic repositioning problem and provided a linear programming model to capture the bike flows
from all trips. The authors of these studies computed the repositioning flows requiring a huge number
of trucks, but in this paper we relax this requirement by setting the availability of parking regions to a
certain level. We also provide a probabilistic guarantee for meeting any given service level.

CQN is an appropriate method to model BSS. George et al. [18] modeled a vehicle rental system
with fixed stations as a CQN. They analyzed the asymptotic behavior of vehicle availability and
provided an optimization function for determining the optimal fleet size. Li et al. [19] analyzed an
SBBSS as a virtual CQN, in which parking regions and roads were considered as “virtual nodes”.
This was the first time that road nodes were analyzed in detail in the CQN. Li et al. [20] extended
the CQN model of Li et al. [19] from three points: (i) from strong connections between stations to
an irreducible graph of stations; (ii) from Poisson arrival of users to Markovian arrival processes;
(iii) from exponential distributions of ridding-bike times on the roads to phase-type distributions.
Furthermore, Li et al. [21] developed a fluid and diffusion approximation of a multiclass CQN to
analyze the SBBSS. In this paper, we extend the computation of CQN by applying the MVA and FES
algorithms. Further, some other important examples include Zhang et al. [22], Fricker et al. [23],
Mizuno et al. [24], Calafiore et al. [25], Samet et al. [26], Iglesias et al. [27], and Vishkaei et al. [28].

3. Model Description

In this section, we give a detailed model description for the DBSS.
(1) Parking regions: In the DBSS, parking regions are viewed as nodes. Since the geographical

locations and surrounding traffic environment may be different, we determine that the parking regions
are different. We assume that the parking space of each parking region is sufficient so that bikes can
always be parked upon arrival at a parking region immediately, that is, having no blocking effects. We
assume that there are N parking regions distributed in the DBSS and denote the set of parking region
nodes by S = {1, 2, . . . , N}.

(2) Roads: Parking regions are connected by roads. We express the set of roads as I. Since there
are origin-direction links of parking regions, we view the roads between parking regions are directed.
Road i → j and Road j → i are different roads for 1 ≤ i, j ≤ N. We view Road i → j as a node with
finite servers and assume that the travel time from Parking region i to Parking region j is exponential
with mean random variable 1/µij.

We denote the set of downlink parking regions of Parking region i by Θi. Similarly, we denote the
set of uplink parking regions of Parking region i by ∆i.

To express the set of parking regions starting from Parking region i for 1 ≤ i ≤ N, we write

R (i) = {Road i→ j : j ∈ Θi} .

The number of directed roads in the set R (i) at most is N − 1. The number of elements in the set
R (i) is |R (i)|. We let M = ∑N

i=1 |R (i)|, thus M ≤ N (N − 1).
We assume that there is an irreducible path in the DBSS. The irreducibility is guaranteed by

a suitable road construction with R (i) for 1 ≤ i ≤ N. The set of road nodes is denoted by I =

{N + 1, N + 2, . . . , M}. For the detailed expression of irreducible path, readers can refer to Li et al. [20].
(3) User arrival processes: We assume that the arrivals of users at Parking region i is a Poisson

process and set the mean arrival rate as λi > 0 for 1 ≤ i ≤ N.
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(4) Bike using processes: When a user arrives at Parking region i with at least one bike, he
rents a bike and rides it on the Road i → j with probability pij for j ∈ Θi and ∑j∈Θi

pij = 1 for each
i = 1, 2, . . . , N. The service times on the Road i→ j are i.i.d. and exponential with mean rate µij > 0.

(5) The departure discipline: The users will leave the system with two cases: (i) when a user
arrives at a parking region that has no bikes, he will leave the system directly. (b) When a user finishes
his trip and returns the bike to a parking region successfully, he leaves the system immediately.

All the random variables above are independent of each other.
At each parking region, bikes form a queue while waiting for users to rent. Thus, from the

perspective of bikes, we consider the parking regions as single-server (SS) nodes and the roads as
finite-server (FS) nodes (the number of the servers on the road is less than or equal to the total number
of bikes in the DBSS). Parking region i can be viewed as a server with service rate λi and follows First
Come First Served (FCFS) scheduling for 1 ≤ i ≤ N. The service time of a parking region is the interval
time of customer arrival. A bike leaves an SS node and moves to an FS node. Parking region nodes
are viewed as M/M/1 queuing systems, while road nodes are modeled as M/M/n queuing systems.
Figure 1 illustrates a DBSS with three parking regions.

Nod
e 1

2
®

Node 2

Node 3 2®

Node 1
3®

Node 2
1

®

Node 1

Node 2 3®

Node 3

Node 3
1®

Figure 1. The structure of a dockless bike sharing system (DBSS) with three parking regions.

4. Closed Queuing Network

All the bikes are just circulating among parking regions and roads in the DBSS, and the number
of bikes in a DBSS is fixed. From bikes’ perspective, we model the DBSS as a closed queuing network.

First, we let ni (t) denote the number of bikes in Node i at time t and Q (t) =

(n1 (t) , n2 (t) , · · · , nN+M (t)). Thus {Q (t) : t ≥ 0} is a Markov process. When a user rents a bike
at Parking region i, he selects a destination of Parking region j with probability pij, where pij > 0,
pii = 0, and ∑j∈Θi

pij = 1. For each i ∈ I, we define u (i) and d (i) to be the uplink and downlink
nodes of i, which denote the origin and destination nodes of i, respectively. The elements of routing
matrix P are written as

fij =


pij, i ∈ S, j ∈ I, i = u (j) ,
1, i ∈ I, j ∈ S, i = d (j) ,
0, otherwise.

The service time of each node is exponential. For i ∈ S, µi = λi. For Node i → j, µij = nijµij
where nij is the number of bikes on Node i→ j.



Processes 2020, 8, 345 5 of 13

We set ni as the number of bikes in Node i. To study the CQN, the service rates, the routing matrix
and relative arrival rates are needed to be determined first. For a given fleet size K, the state space of the
CQN is Ω =

{
n : ∑N+M

i=1 ni (t) = K, 0 ≤ ni ≤ K
}

, where n = (n1, n2, . . . nN , nN+1, nN+2, . . . , nN+M).
The relative arrival rate ei is written as

ej =
N+M

∑
i=1

ei fij. (1)

Our network consists of finite-server nodes and single-server nodes with exponential service
time, so this model is a BCMP network, which has a product form solution (See Baskett et al. [29]).
The product form solution is given by

ß (n) =
1
G

N+M

∏
i=1

ßi (ni) , (2)

in which

ßi (ni) =


(

ei
λi

)ni
, i ∈ S,(

ei
µi

)ni
1

ni !
, i ∈ I.

Note that n ∈ Ω and

G = ∑
n∈Ω

N+M

∏
i=1

ßi (ni) .

For the detailed proof of the product form solution, readers can refer to Baskett et al. [29]. For the
DBSS, there are two vital performance measures:

(1) Expected revenue E charged by the bikes on roads

E = K−∑
i∈S

ni.

(2) Service level Ai measured by the mean bike availability

Ai = 1− p (ni = 0) , i ∈ S.

Expected revenue E is the utmost concern of operators. The value Ai is an acknowledged measure
of the quality of service. Incentive measures can be implemented based the results of Ai. For example,
measures include guiding customers to rent bikes at parking regions with high relative utilization and
return bikes to parking regions with lower utilization.

5. MVA Algorithm of the Closed Queuing Network

Since the computation of normalization constant G is expensive, we apply the MVA algorithm
(see Reiser and Lavenberg [30]) to compute the CQN by avoiding the calculating of the normalization
constant. Through the MVA algorithm, we can calculate the mean waiting times Ti (k) and the mean
queue lengths Ki (k) at each Node i of a CQN, where k = 1, . . . , K.

Based on the the MVA algorithm, we can get the mean response time at the ith node

Ti (k) =

{
1
µi

[
1 + Ki (k− 1)

]
, i ∈ S,

1
µi

, i ∈ I.
(3)

Based on Ti (k), the overall throughput is given by
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λ (k) =
k

N+M
∑

i=1
eiTi (k)

, (4)

and the throughput of each node can be written as

λi (k) = λ (k) ei, for i = 1, 2, . . . , N + M, (5)

in which ei is determined by Equation (1).
Based on Ti (k) and λi (k), the mean number of bikes at the ith node is written as

Ki (k) = λi (k) Ti (k) . (6)

We provide the detailed computation by MVA in Algorithm 1.

Algorithm 1 Mean value analysis (MVA) algorithm for closed queuing network.

Step 1. Initialization

Ki (k) = 0, for i = 1, 2, . . . , N + M. G (0) = 1.
Step 2. Computation for the relative arrival rates

Let e1 = 1. Compute relative arrival rates ej for j = 2, 3, . . . , N + M, based on equation

ej = ∑N+M
i=1 ei pij for i = 1, 2, . . . , N + M.

Step 3. Iteration over the number of bikes in the network starting with k = 1:
Step 3.1 Compute mean response time based on equation Ti (1) = 1

µi

[
1 + Ki (0)

]
for i = 1, 2, . . . , N,

and Ti (1) = 1
µi

for i = N + 1, . . . , N + M.
Step 3.2 Compute the throughput based on equation λ (1) = 1

∑N+M
i=1 eiTi(1)

.

Get the normalization constant based on equation G (1) = G(0)
λ(1) .

Step 3.3 Compute the mean number of bikes at each node based on equation Ki (1) = eiλ (1) Ti (1).
Step 4. Iteration over the number of bikes in the network for k = 2, . . . , K.
Step 4.1 Compute mean response time based on equation Ti (k) = 1

µi

[
1 + Ki (k− 1)

]
for i =

1, 2, . . . , N + M, and Ti (k) = 1
µi

for i = N + 1, . . . , N + M.
Step 4.2 Compute the throughput based on equation λ (k) = k

∑N
i=1 eiTi(k)

.

Get the normalization constant based on equation G (k) = G(k−1)
λ(k) .

Step 4.3 Compute the mean number of bikes at each node based on equation Ki (k) = eiλ (k) Ti (k).
Step 4.4 Get Ti (K) and Ki (K) for i = 1, 2, . . . , N + M.
Step 5. Computation for performance measures Ei and Ai in the closed queuing network.

We are interested in the availability of bikes at each parking region (i.e., the probability that there
is at least one bike at the parking region). Set Ti (0) = Ki (0) = 0. By iteration, we can get

Ei = Ki (K) , i = 1, 2, . . . , N,

and

Ai =
Ei

1 + Ei
, i = 1, 2, . . . , N.

For small networks, this algorithm provides a method to obtain the optimal fleet size straightly.
However, for a larger network, the computation is too expensive. Thus, we need to find another
approach to reduce the computation.
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6. FES Algorithm of the Closed Queuing Network

MVA algorithm can be computed directly without calculating the normalizing constant, but it
needs high storage requirement and expensive computation. So we try to find another approach to
reduce the computation. We use the FES algorithm to compute the DBSS.

In the closed queuing network of DBSS, since bikes are served in parking regions as well as
on roads, we divide the nodes into SS nodes and FS nodes. However, when we consider the two
performance measures: expected revenue Ei and available rate Ai, we only consider the results of
SS nodes. Since the difference between parking region nodes and road nodes, we try to simplify the
computation by partitioning them.

FES method is based on Norton’s theorem, refer to Chandy et al. [31] and Akyildiz et al. [32].
Based on the FES method, we partition the closed queuing network into N disjoint subnetworks, in
which Node i and node i→ j are a subnetwork for i = 1, . . . , N, j ∈ Θi. We write the subnetwork as
SN1, SN2, . . . , SNN . Analyzing one of the subnetworks, we need to short-circuit all the other nodes
that do not belong to the subnetwork.

First, we need to determine the throughput λSNj (k) and the normalization constant Gj (k) for
1 ≤ j ≤ N and 1 ≤ k ≤ K. The arrival rates of nodes in the subnetwork are the same as the original
network. Consider each subnetwork as an FES node and construct an equivalent reduced network. The
dependent service rates µej of the FES Node j are identical with the throughputs in the corresponding
jth subnetwork, which is written as

µej (k) = λSNj (k) , for j = 1, . . . , N and k = 1, . . . , K.

We provide the detailed FES in Algorithm 2. In Algorithm 2, the time and storage requirement
are reduced considerably.

Algorithm 2 Flow equivalent server (FES) algorithm for closed queuing network.

Step 1. Partition the network into N subnetworks.

Partition the network into subnetworks SN1, SN2, . . . , SNN , in which Node i and Node i → j

constitute SNi subnetwork for i = 1, . . . , N, j ∈ Θi.
Step 2. Analyze each subnetwork and construct the reduced network

For subnetwork 1. Shot-circuit all the other subnetworks. Use the MVA algorithm

to compute throughputs and the normalization constants of the subnetwork. Then we get

λSN1 (1) , λSN1 (2) , . . . , λSN1 (K) and G1 (1) , G1 (2) , . . . , G1 (K).

Analogously, analyze subnetworks 2 to N, and obtain λSNj (1) , λSNj (2) , . . . , λSNj (K) and

Gj (1) , Gj (2) , . . . , Gj (K), for j = 2, 3, . . . , N. We get µei (k) = λSNi (k) for k = 1, 2, . . . , K, and

i = 2, 3, · · · , M.
Step 3. Compute the normalization constants.

Compute the normalization constant of the reduced network by convoluting the N normalizing

vectors, based on the equation G = G1 ⊗ G2 ⊗ . . .⊗ GM.
Step 4. Computation for performance measures in the CQN.

Compute the mean number of bikes in Node i by Ki (K) =
K
∑

k=1

(
ei
µi

)k G(K−k)
G(K) for i = 1, 2, . . . N.

The utilization of Node i by ρi (K) =
ei
µi

G(K−1)
G(K) for i = 1, 2, . . . N.

The mean response time of Node i by Ti (K) =
K
∑

k=1

(
ei
µi

)k G(K−k)
eiG(K−1) for i = 1, 2, . . . N.
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7. Performance Analysis

In this section, we provide the results of a performance analysis of DBSSs. Based on the MVA
and FES algorithms, we get the results of the expected number of bikes and the availability for each
parking region. Then, we propose two optimization functions to determine the optimal fleet size and
the repositioning flow based on the results.

7.1. Optimal Fleet Size

Since the optimal fleet size is a tradeoff between the earnings got from users and maintaining
cost of the fleet, we present an optimization function to determine the optimal fleet size. Let ri be
the revenue obtained from a bike being in use at road nodes per-unit-time. The BSS will cause an
unavailability cost cj whenever bikes park at parking regions idly. Then the objective is to maximize
the profit

F (K) = max
{Xi}

∑
i∈I

Ei(K)ri −∑
j∈S

cjλj
(
1− Aj(K)

)
, (7)

in which Ei is the expected queue length at Node i for i ∈ I and Aj is bike availability at Node j for
j ∈ S in steady state.

Based on Shanthikumar and Yao [33] and George et al. [18], we get that for a single-class CQN
with FCFS exponential servers, both the throughput at each parking region and the system throughput
are non-decreasing concave functions of fleet size. The values {Aj(K), j ∈ S} and {Ei(K), i ∈ I} are all
non-decreasing concave functions, therefore F (K) is concave.

To solve Equation (7), we can calculate the MVA algorithm iteratively for each K ∈ {1, 2, ...} and
compute the associated profit. Since the concavity of F (K), the method will terminate once profit
decreases from K to K + 1.

7.2. Repositioning Flow

Since bikes will inevitably accumulate at one or more parking regions in the DBSS. To ease this
problem, we introduce a set of repositioning flow to rebalance the system, i.e., moving bikes to parking
regions that lack bikes. We use yij to denote the rate of bikes repositioning flow from Parking region i
to Parking region j. We discuss how to achieve a target service level with different bike resources.

We assume that Yi = ∑j∈Θi
yij. The availability of Parking region i is given by

Ai =
ei

λi + Yi
.

If we set the availability Ai of Parking region i equal to 1, it needs a huge number of bikes idly
waiting at each parking region to meet the availability (refer to Li et al. [34]). Thus, we set the objective
as a service level min{Ai} ≥ σ ∈ (0, 1). Therefore, we can realize the certain level of availability and
release stressful demand of the fleet size. Then the repositioning cost minimization problem can be
written by

min
{Xi}

∑
i∈S

biYi Ai

s.t. Ai ≥ σ, i ∈ S,

where bj is the cost of maintaining bikes and bj = ∑
j∈Θi

bij pij.

We set ξi = ei/λi, ξ i = max {ei/λi}, γi = ei/ (λi + Xi), and γi = max {ei/ (λi + Xi)} for i ∈ S.
Since Ai = γi/γi, the optimal equation can be rewritten as

min
{Xi}

∑
i∈S

biYi
ei

γi (λi + Yi)
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s.t.
ei

γi (λi + Yi)
≥ σ, i ∈ S.

The optimal solution is

Yi = max
{

0,
σei

ξ i
− λi

}
, i ∈ S.

8. Numerical Experiments

For the closed queuing network, the MVA algorithm can be used to compute a small size DBSS
and the FES algorithm can be used to calculate larger size DBSS. We used a small size system to
verify the computational accuracy of the MVA and FES algorithms. Then we provide the results of
the computation of optimal fleet size and repositioning flow. For all the numerical experiments, we
implemented the computation in Matlab on a laptop.

8.1. Comparison of Algorithm 1 and Algorithm 2

We studied a small size DBSS with three parking regions and the three parking regions are
connected to each other and so there are six road nodes. We describe the DBSS as a CQN and set the
fleet size as 45. The physical structure of the DBSS is depicted in Figure 2.

Nod
e 4

Node 2
Node 9

Node 6
Nod

e 5

Node 1

Node 8

Node 3

Node 7
14p

51p

25p

42p

63p

71p

92p

83p
28p

39p

37p

16p

Figure 2. The physical structure of the three parking region dockless bike sharing system (DBSS).

The routing matrix P is given by

P =



0.4 0.6
0.3 0.7

0.6 0.4
1

1
1

1
1

1


.

Based on the routing matrix P and Equation (1), we can obtain relative arrival rates. We list the
service rates and the relative arrival rates in Table 1.
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Table 1. The service rates and the relative arrival rates.

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9
10 8 6 1 3 2 4 2 6
e1 e2 e3 e4 e5 e5 e7 e8 e9
1 0.8889 1.2222 0.4000 0.2667 0.6000 0.7333 0.6222 0.4889

Using the FES algorithm, we divided the nine nodes into three subnetworks. i.e., Node 1, Node 4
and Node 6 are subnetwork 1; Node 2, Node 5, and Node 8 are subnetwork 2; Node 3, Node 7, and
Node 9 are subnetwork 3. We computed the DBSS by Algorithm 1 and 2 respectively and verified that
the results are consistent. We provide the results in Table 2.

Table 2. The expected number obtained by MVA and FES algorithms.

K1 K2 K3 K4 K5 K6 K7 K8 K9

8.3333 15.3846 12.0376 1.3625 0.2857 2.9981 0.8461 3.4963 0.2558

8.2. Optimal Fleet Size and Repositioning Flow

(1) The three parking region DBSS
Let the hourly rental fee ri for i ∈ I be $2 and the maintenance cost ci per-bike per-hour for i ∈ S

be $0.20. By Algorithm 2 and Equation (7), we compute the three parking region DBSS depicted in
Figure 2. The variation of profits corresponding to fleet size is shown in Figure 3. We can find that
the optimal fleet size is 60. This method considers the differences between parking regions and loose
structures of the routing matrix. We can find that the profit first increases and then decreases as the
fleet size K increases. This result offers operators quantitative basis of the fleet size design.
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Figure 3. The profit vs. fleet size for a three parking region DBSS.

When setting mini∈S {Ai} ≥ 0.9, we get the optimal repositioning strategy to add rebalancing
flows 1 → 4 with a rate of 0.0641, 1 → 6 with a rate of 0.0547, and 3 → 8 with a rate of 0.1431. The
mini∈S {Ai} ≥ 0.9. The computation of repositioning flow considers the dynamics of DBSS, which is
close to the actual operation.

(2) A 50 parking region DBSS
By Algorithm 2, we computed a DBSS with 50 parking regions. We partitioned the DBSS into

50 subnetworks and depict the optimal fleet size in Figure 4. The optimal repositioning flows are
listed in Table 3, in which yi,j is the flow from Parking region i to Road i→ j. Algorithm 2 extends the
computation of CQN of DBSS greatly. Since there are actual service processes on the road in the DBSS,
when we analyze the system we must study the service rates on the road nodes. It is well known that
the number of road nodes is enormous in a DBSS, which will cause the state space explosion and lead to
the computation of normalization constant too expensive. By partitioning the system into subnetworks,
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the number of nodes is reduced significantly, which realizes the performance computation of larger
size DBSS. Thus the result provides operators with valuable quantitative reference.
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Figure 4. The profit vs. fleet size for a 50 parking region DBSS.

Table 3. The expected number obtained by MVA and FES algorithms.

y1,2 y4,5 y8,7 y10,9 y11,10 y13,14 y17,18 y24,23 y25,26 y28,27

1.3513 2.3468 2.0276 0.3215 1.8527 1.9812 0.4621 2.9613 0.0358 1.7852

y29,30 y31,32 y35,36 y37,36 y39,40 y41,40 y43,42 y44,45 y47,48 y50,1

1.4562 0.1383 1.8246 1.0037 1.6125 0.2471 2.8132 0.8160 3.2613 1.8421

9. Conclusions

In this paper, we provide a closed queuing network of dockless bike sharing systems. To avoid
the expensive computation of the normalization constant, we use the MVA algorithm and the FES
algorithm to analyze the small size and larger size DBSS, respectively. The FES algorithm is proposed
to compute the DBSS for the first time. We let a parking region and its downlink roads as a subnetwork
and partition the DBSS into different subnetworks. The FES algorithm reduces the number of nodes
greatly, and thus the computation of the CQN is lessened significantly. This paper opens a new avenue
to study the CQN of DBSS. Based on the computation results of the CQN, we determine the optimal
fleet size and repositioning flow by two optimization functions. The computation of repositioning
flow adequately considers the dynamics of bikes during the repositioning process, which is close to
the actual DBSS. According to our analysis, the method can be used as guidelines for designing and
controlling the fleet and arrange the repositioning flow to achieve a high level of service.

For future work, the CQN model presented in this paper can be used to analyze other on-demand
transportation networks. Another upcoming issue is that we can consider the unusable bikes in the
DBSS. Since the failure rates of bikes are high, unusable bikes account for a large proportion in the
DBSS. Therefore when determining the optimal fleet and the repositioning flow, the failure rate of
bikes can be introduced in.
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Abbreviations

The following abbreviations are used in this manuscript:

BBS bike sharing system
DBSS dockless bike sharing system
SBBSS station-based bike sharing system
MVA mean field analysis
FES flow equivalent server
FCFS first-come-first-service
SS single-server
FS finite-server
CRO chemical reaction optimization
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