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Abstract: The Integrated Gasification Combined Cycle (IGCC) possesses a number of advantages
over traditional power generation plants, including increased efficiency, flex-fuel, and carbon capture.
A lesser-known advantage of the IGCC system is the ability to coordinate with the smart grid. The idea
is that process modifications can enable dispatch capabilities in the sense of shifting power production
away from periods of low electricity price to periods of high price and thus generate greater revenue.
The work begins with a demonstration of Economic Model Predictive Control (EMPC) as a strategy
to determine the dispatch policy by directly pursuing the objective of maximizing plant revenue.
However, the numeric nature of EMPC creates an inherent limitation when it comes to process
design. Thus, Economic Linear Optimal Control (ELOC) is proposed as a surrogate for EMPC in
the formulation of the integrated design and control problem for IGCC power plants with smart
grid coordination.

Keywords: Integrated Gasification Combined Cycle (IGCC); economic model predictive control;
economic linear optimal control; process design; process control

1. Introduction

Compared to traditional power plants, Integrated Gasification Combined Cycle (IGCC) based
power plants have many advantages including increased efficiency, flex-fuel, and carbon capture
opportunities. A conventional IGCC power plant can be described by Figure 1, if the methanol
plant and storage units are removed. In the gasification block, coal and oxygen are converted into
synthesis gas, which is subsequently cleaned and decarbonized to produce a stream of nearly pure
hydrogen. This stream of hydrogen is then sent into the power block to generate electricity. A portion
of the generated electricity is consumed by the compressors for air separation and carbon dioxide
sequestration operations.

The IGCC plant can be modified to achieve smart grid coordination [1] through power output
dispatch. The modified IGCC plant can adjust its electricity output to track grid demand and thus
take advantage of electricity price fluctuations. The ability to change electricity output from an IGCC
plant can be obtained by a variety of hardware configurations. The most common cited configuration
is poly generation, in which a portion of the hydrogen stream generated from the gasification block is
diverted elsewhere during periods of low electricity price. This diverted hydrogen could be chemically
converted to a liquid fuel (possible methanol) or sold directly [2]. The hydrogen can also be put
into storage during periods of low electricity price and then drawn from the storage during peak
electricity demands (high electricity price periods). Similarly, regarding the Air Separation Unit
(ASU), a compressed air storage unit can be placed between the air compressor and the cryogenic
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distillation units. This configuration would maintain a constant flow of compressed air to the cryogenic
distillation, while allowing the power consumed by the air compressors to be anti-related with the
electricity price, which would increase the net power output of the IGCC plant during high price
periods. By the same token, a carbon dioxide storage unit can be added, so that part of the captured
carbon dioxide can be stored at an intermediate pressure during periods of high electricity price
and eventually pressurized during low-price periods. It should be noted that an unmodified IGCC
plant also has dispatch capabilities, owing to the fact that the gasification block can change hydrogen
production rates. However, due to the slow response time of the cryogenic distillation portion of the
ASU, the ramp rate of the gasification block is quite slow [3].
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Figure 1. Simplified diagram of an IGCC power plant with equipment upgrades for power dispatch.
ASU, Air Separation Unit.

A fundamental question for smart grid coordination is the development of a control structure
capable of employing information from the smart grid. The first issue is about regulatory control,
i.e., set-point tracking abilities and ramping capabilities. Several efforts have investigated this issue for
a variety of IGCC configurations, as well as specific unit operations [2–5]. While regulatory controller
design is important, such efforts typically lack sufficient motivation, because the performance objectives
of the desired set-point ranges and achievable ramp rates are set somewhat arbitrarily. Thus, to arrive
at sufficient motivation, one must consider supervisory control, which will determine the set-points
for the regulatory control.

One approach to define a supervisory controller is to set the goal to be maximization of average
revenue, which equals the integral of the product of electricity price and net power produced.
The electricity price signal would be an input to the controller. However, unlike a disturbance,
the objective is not to minimize its impact on the output. This supervisory control problem can be
addressed using Economic Model Predictive Control (EMPC) [6]. Specifically, the typical quadratic
objective function in MPC [7] will be replaced by an expression directly reflecting the revenue. Similar
approaches have been applied to the area of Heating, Ventilation, and Air Conditioning (HVAC)
control [8–11], the area of process operations scheduling [12–20], as well as the area of electric power
system operations [21–24]. As mentioned above, the power dispatch capability of an IGCC plant can
be achieved by a variety of hardware configurations. While EMPC works well for process control,
it has limitations when it comes to system design. Specifically, it cannot handle binary variables,
which indicate the attendance of specific hardware units. To overcome this limitation, Economic
Linear Optimal Control (ELOC) based process design is proposed. ELOC is a recently established
control strategy that combines process control and process economics [25–28], and its control policy
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has been shown to yield an economic performance similar to a large horizon EMPC policy for HVAC
system [29], as well as for a simplified IGCC power dispatch system [16]. ELOC based process design
has been proposed for building HVAC systems [30] and electric power networks [31,32]. In addition,
a preliminary version of ELOC based process design for IGCC plants was provided in [33]. However,
the approach provided in [33] cannot handle binary variables in the design problem.

The structure of the paper is as follows. Section 2 introduces the model of electricity price and
the model of the IGCC plant with power dispatch and illustrates the ability of EMPC to maximize
revenue on a variety of hardware configurations. Section 3 introduces ELOC and shows that ELOC
results in a control policy similar to EMPC. In Section 4, ELOC will be extended to the integrated
control and design problem.

2. IGCC Power Dispatch System Model and EMPC

Electricity price fluctuations are fundamental to this study and are the primary motivation
to develop the IGCC power dispatch system. Subsequent to the establishment of the electricity
price model and the dispatch capable IGCC system model, EMPC will be introduced, and its
ability to maximize the revenue will be illustrated through examples of the IGCC system with
different configurations.

2.1. The Model of Electricity Price

The price of electricity (Ce) is known to have an oscillatory characteristic of a period of one day.
It can be simply modeled as a sinusoidal function for rough analysis. Meanwhile, it can also be
modeled as a third order shaping filter to achieve a much more realistic representation. In the latter
case, the electricity price can be modeled by the following third order shaping filter [33]:

φ̇1 = φ2 (1)

φ̇2 = ω2
c (αw− φ3)−ω2

c φ1 − 2χωcφ2 (2)

φ̇3 = (αw− φ3)/τh (3)

Ce =
φ1

α
+ Ce (4)

where ωc = 2π/τc, τc = 24 h, χ = 0.1, τh = 1 h, α is a (to be determined) design parameter, w is a
Gaussian, zero-mean white noise process with spectral density:

Sw =

(
4χ

ωc

)(
ω2

c τ2
h + 2χωcτh + 1

ω2
c τ2

h

)
ΣCe (5)

and ΣCe is the variance of the electricity price.
The reason for the use of this third order shaping filter is that we know electricity price Ce

possesses an oscillatory characteristic of one day, and thus, it can be modeled as the output of an
underdamped second order system driven by white noise. However, such a model may allow too much
of the low-frequency energy contained in the white noise to pass through to Ce. Thus, a high pass filter
is added to the white noise to remove its low frequency components, which results in the above third
order shaping filter. In addition, an important idea about this shaping filter is that, for all parameter
values (τc, χ, τh, Ce, and α), the calculated variance of Ce through a stochastic covariance analysis of
Equation (4) is always equal to ΣCe . If we set α = 1 MW2 h/$, Ce = 90 $/(MW h), and ΣCe = 102

$/(MW h)2, a realization of Ce generated from (4) is given in Figure 2.
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Figure 2. A realization of the stochastic process used to model electricity prices.

2.2. The Model of the IGCC Power Dispatch System

The process diagram of Figure 1 illustrates the proposed process modifications. The compressed
air storage unit (added between the air compressor and the ASU in the gasification block) allows for
independent manipulation of vAC and vASU (mass flows of compressed air from the air compressor
and to the ASU, respectively) by setting the difference equal to vs,A (the mass flow to the storage unit).
The amount of mass in the air storage unit, MA, is simply the time integral of vs,A = vAC − vASU .
The hydrogen storage unit and methanol synthesis reactor system (added between the gasification
and power generation block) allow for independent manipulation of vH2 , vL, and vG (mass flows of
hydrogen from the gasification block, to the methanol synthesis reactor system, and to the power block,
respectively). By setting vs,H2 = vH2 − vL − vG (the mass flow to the storage unit), the amount of mass
in the hydrogen storage, MH2 , is simply the time integral of vs,H2 . The carbon dioxide storage added
between the gasification block and carbon dioxide compressor allows for independent manipulation
of vCO2 and vCC (mass flows of carbon dioxide from the gasification block and to the carbon dioxide
compressor, respectively). By setting the difference equal to vs,C (the mass flow to the storage unit),
the amount of mass in the carbon dioxide storage unit, MCO2 , is simply the time integral of vs,C.
The relation between power and mass flow to the air compressor is assumed to be linear vAC = β1PAC;
the relation between mass flows of compressed air and coal to the gasification block is assumed to
be vASU = β2vcoal ; the relation between mass flows of coal to the gasification block and hydrogen
production is assumed to vH2 = β3vcoal ; the relation between hydrogen mass flow to power block
and generated power is assumed to be vG = β4PG; the relation between hydrogen mass flow to the
methanol synthesis reactor system and methanol production is assumed to be vL = β5vM; the relation
between carbon dioxide production and the mass flow of coal to gasification block is assumed to be
vCO2 = β6vcoal ; the relation between the mass flow of compressed carbon dioxide and power to the
carbon dioxide compressor is assumed to be vCC = β7PCC. Finally, the net power generated for the
grid is calculated as a simple power balance: PN = PG − PAC − PCC. Converting the above model
description into a state-space model yields:

ṀA = β1PAC − β2vcoal

ṀH2 = β3vcoal − β4PG − β5vM (6)

ṀCO2 = β6vcoal − β7PCC

The operating constraints that reflect physical realities and capacity limitations of assumed equipment
are as follows:

Mmin
A ≤ MA ≤ Mmax

A Mmin
H2
≤ MH2 ≤ Mmax

H2
Mmin

CO2
≤ MCO2 ≤ Mmax

CO2

vmin
coal ≤ vcoal ≤ vmax

coal vmin
M ≤ vM ≤ vmax

M Pmin
G ≤ PG ≤ Pmax

G (7)

Pmin
AC ≤ PAC ≤ Pmax

AC Pmin
CC ≤ PCC ≤ Pmax

CC

The following relations can be obtained through a time-average analysis of (6): PAC = β2vcoal/β1, PG =

(β3vcoal − β5vM)/β4, and PCC = β6vcoal/β7, where PAC, PG, PCC, vcoal , and vM are the time-averaged
values of PAC, PG, PCC, vcoal , and vM, respectively. There is no limitations imposed by time-average
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analysis of (6) on the average mass within the storage. Therefore, we select MA = Mmax
A /2, MH2 =

Mmax
H2

/2, and MCO2 = Mmax
CO2

/2.
By defining the process state, manipulated, and performance variables as s = [MA MH2 MCO2 ]

T ,
m = [vcoal vM PG PAC PCC]

T and q = [MA MH2 MCO2 vcoal vM PG PAC PCC]
T , respectively,

the system (6) and (7) can be written in the following form:

ṡ = As + Bm, q = Dss + Dmm, qmin ≤ q ≤ qmax (8)

where:

A =

0 0 0
0 0 0
0 0 0

 B =

−β2 0 0 β1 0
β3 −β5 −β4 0
β6 0 0 0 −β7

 (9)

Ds =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


Dm =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(10)

qmin =
[

Mmin
A Mmin

H2
Mmin

CO2
vmin

coal vmin
M Pmin

G Pmin
AC Pmin

CC

]T
(11)

qmax =
[

Mmax
A Mmax

H2
Mmax

CO2
vmax

coal vmax
M Pmax

G Pmax
AC Pmax

CC

]T
(12)

If the data of Case B1B: Shell IGCC Power Plant with CO2 Capture from the NETLBaseline Report [34]
are used (see Tables 1 and 2), the model parameters βi, i = 1, 2, 3, 4, 6, 7 can be determined, and their
values are shown in Table 3. The parameter β5 is obtained based on a methanol synthesis reaction
using carbon dioxide and hydrogen as reactants.

Table 1. Case B1B stream table.

Air Coal Hydrogen Carbon Dioxide
(ton/h) (ton/h) (ton/h) (ton/h)

Mass Flow Rate 700.548 211.040 112.786 442.270

Table 2. Case B1B plant performance.

Air Compressor CO2 Compressor Total Gross Power
(MWe) (MWe) (MWe)

Value 59.74 30.21 673.0

Table 3. The values of parameter β.

β1 β2 β3 β4 β5 β6 β7
( ton Air

MWAC h ) ( ton Air
ton Coal ) ( ton H2

ton Coal ) ( ton H2
MWG h ) ( ton H2

ton MeOH ) ( ton CO2
ton Coal ) ( ton CO2

MWCC h )

Value 11.7266 3.3195 0.5344 0.1676 0.1875 2.0957 14.6399

Regarding the bounds on q, qmin will be treated as a vector of parameters throughout the paper;
qmax will be treated differently depending on the type of optimization problem. In an optimal control
problem (Sections 2.3 and 3), qmax will be treated as a parameter vector with fixed values. In contrast,
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in the integrated design and control problem (Section 4), qmax will become a vector of variables except
for its element vmax

coal . The element vmax
coal will always have a fixed value, since we assume that the

maximum coal flow rate to the gasification block cannot be increased. With qmax being a vector of
variables, its value changes represent the changes to equipment size.

2.3. Economic Model Predictive Control

Consider a process model: ṡ = f (s, m, p), q = h(s, m, p), where s, m, p, and q are state manipulated,
disturbance, and performance output vectors, respectively. The process constraints on the performance
outputs are qmin ≤ q ≤ qmax. To implement Model Predictive Control (MPC), the continuous-time
model must be converted into discrete-time form. Then, combined with the notion of a predictive time
index and economic objective function, the MPC problem is obtained as:

min
s(k|i),m(k|i)

{
i+N−1

∑
k=i

g (s(k|i), m(k|i), p̂(k|i)) + gN (s(i + N|i))
}

(13)

s.t. s(k + 1|i) = fd(s(k|i), m(k|i), p̂(k|i)), k = 1 . . . i + N − 1 (14)

q(k|i) = hd(s(k|i), m(k|i), p̂(k|i)), k = 1 . . . i + N − 1 (15)

qmin ≤ q(k|i) ≤ qmax, k = 1 . . . i + N − 1 (16)

s(i|i) = ŝ(i) (17)

where the index i represents the actual time of the process and index k is the predictive time. The idea
of MPC is that given an estimate of initial condition, ŝ(i), at a time i, and the forecast of disturbances
p̂(k|i), a sequence of control actions, m∗(k|i), k = 1 . . . i + N − 1, can be determined by solving the
problem (13). However, only the first control action is used as the input, m(i) = m∗(i|i), to the process
s(i + 1) = fd(s(i), m∗(i|i), p(i)). Then, at the next time step, the new initial condition ŝ(i + 1) and new
disturbance p̂(k|i + 1) are estimated based on new measurements. For additional information on MPC,
please see [7].

The only difference between Economic MPC (EMPC) and traditional MPC is the objective function.
In traditional MPC, a quadratic objective function is used to track a pre-determined setpoint for process
operation, whereas in EMPC, the quadratic objective function is replaced by the operating cost of the
process, g(·). In many cases, the function g(·) is a simple linear function, which has no minimum.
Thus, the constraints qmin ≤ q(k|i) ≤ qmax are crucial in order to generate a meaningful controller.
For additional information on EMPC, please see [6,17,18].

In the EMPC implementation, forecasts of electricity price will be needed. However, to focus on
the fundamental issues, this paper will assume the forecast to be perfect, in the sense that they are
error free and do not change with time. As such, the “hat” notation in the EMPC formulation will
be dropped. This assumption has been shown to be not critical in the evaluation of EMPC in [16],
which investigated EMPC for a simple IGCC power dispatch system with both perfect and imperfect
forecasts. For additional information on forecasting, see [11]. The IGCC plant model developed
in Section 2.2 will be converted to discrete-time form for EMPC implementation, using the sample and
hold method (Ad = eA∆t, Bd =

∫ ∆t
0 eAτ Bdτ and Gd =

∫ ∆t
0 eAτGdτ) [35] with a sample time of ∆t = 1 h.

Regarding the objective function, Ce(i) denotes electricity price during period i; CM is the price of
methanol; Ccoal is the cost of coal; the revenue during period i is Ce(i)PN(i)∆t. Thus, the formulation
of the EMPC problem for IGCC dispatch is:
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max
MA(k|i),MH2 (k|i),MCO2 (k|i)

vcoal(k|i),vM(k|i),PG(k|i),
PAC(k|i),PCC(k|i)

{
1
N

i+N−1

∑
k=1

Ce(k|i)(PG(k|i)− PAC(k|i)− PCC(k|i)) + CMvM(k|i)− Ccoalvcoal(k|i)
}

(18)

s.t. s(k|i) = [MA(k|i) MH2 (k|i) MCO2 (k|i)]
T (19)

m(k|i) = [vcoal(k|i) vM(k|i) PG(k|i) PAC(k|i) PCC(k|i)]T (20)

q(k|i) = [s(k|i)T m(k|i)T ]T (21)

s(k + 1|i) = Ads(k|i) + Bdm(k|i) (22)

q(k|i) = Dss(k|i) + Dmm(k|i) (23)

qmin ≤ q(k|i) ≤ qmax, k = i . . . i + N − 1 (24)

s(i|i) = s(i) (25)

where the objective function denotes the average revenue per period ∆t. Clearly, the problem (18)
can be solved using a standard linear programming solver. It should be noted that the final cost term
gN(s(i + N|i)) is not included in the problem (18). This term is essential to guarantee stability for short
horizon EMPC (see [6,18]). However, for the current application and with the given horizon, this term
plays a less important role and is omitted due to space constraints.

Five examples will be provided to illustrate the ability of EMPC to maximize the revenue for
an IGCC power plant with dispatch. For the sake of clarity, the first four examples with increasing
complexity of upgrades will use a sinusoidal function to represent the electricity price, whereas the
fifth example with fully developed upgrades will employ the shaping filter introduced in Section 2.1 as
the model of electricity price. The corresponding process model for each example can be obtained by
proper modification of the IGCC model proposed in Section 2.2. In addition, the EMPC implemented
in all the examples will have a prediction horizon of 24 h with a sample time of 1 h.

Example 1. IGCC plant with only hydrogen storage: The operating conditions of Case B1B of the NETL
Baseline Report [34] serve as the basis of all examples. Specifically, the conditions for the IGCC power plant
without dispatch are: Pnom

G = 673 MW, Pnom
AC = 59.7 MW, Pnom

CC = 30.2 MW, vnom
coal = 211 tons coal/h,

vnom
H2

= 112 tons H2/h, vnom
AC = 700 tons compressed air/h, vnom

CO2
= 442 tons CO2/h, and ccoal = $33/ton coal.

For the current example, assume only two upgrades are performed. The first is to add a hydrogen storage unit
with a capacity of 600 tons H2; the second is to increase the size of power block, so that its maximum output
is 1000 MW. Moreover, assume that only these two units are capable of dynamic operation and all other units
remain at nominal operating conditions. In this case, the state variable is the mass of hydrogen in the storage,
MH2 , and the manipulated variable is the power generated, PG. The bounds on the process variables are assumed
to be Mmin

H2
= 1 ton H2, Mmax

H2
= 600 tons H2, Pmin

G = 403.8 MW (60% of Pnom
G ), and Pmax

G = 1000 MW.
In this scenario, the results of the EMPC using a 24 h prediction horizon are shown in Figure 3. As expected,

the manipulated variable, PG, is at its maximum when the electricity price is high and at its minimum when
electricity price is low. The hydrogen storage is filled up during the low electricity value periods and gets
discharged during high electricity value intervals.
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Figure 3. Cont.
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Figure 3. Closed-loop simulation of Economic Model Predictive Control (EMPC) using a 24 h prediction
horizon for Example 1.

Example 2. IGCC plant with hydrogen storage and compressed air storage: Reconsider the IGCC system of
Example 1. Now, in addition to hydrogen storage and power block expansion, two additional upgrades are
performed. The first is to add a compressed air storage unit with a capacity of 3000 tons of compressed air;
the second is to upgrade the power capacity of the air compressor to 200 MW. In this case, five units are capable
of dynamic operations: hydrogen storage, the power block, the air compressor, compressed air storage, and the
gasification block (vcoal now assumed to be adjustable). The state variables are s = [MA MH2 ]

T , and the
manipulated variables are m = [vcoal PG PAC]

T . Regarding the process constraints, Mmin
A = 1 ton compressed

air, Mmax
A = 3000 tons compressed air, Pmin

AC = 0 MW, Pmax
AC = 200 MW, vmin

coal = 127 tons coal/h (60% of
vnom

coal ), and vmax
coal = vnom

coal = 211 tons coal/h.
The results of the EMPC using a 24 h prediction horizon are shown in Figure 4. It is observed that the

plots of generated power PG and hydrogen in storage MH2 are quite similar to Example 1. However, the behavior
of air compressor is opposite to the power generator. This is because unlike the power generator, which produces
electricity, the air compressor consumes electricity. Thus, the electricity consumed by the air compressor increases
to its maximum when the electricity price is low and is at its minimum when electricity price is high. The periods
at which PAC is at the nominal value (PAC = 59.7 MW) correspond to intervals in which the compressed air
storage is full and the energy value is increasing or the compressed air storage is at its minimum and the energy
value is decreasing. This behavior is due to the fact that the controller has no other reasonable option under these
conditions, since the production of hydrogen is maintained at its maximum all the time.
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Figure 4. Cont.
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Figure 4. Closed-loop simulation of EMPC using a 24 h prediction horizon for Example 2.

Example 3. IGCC plant with hydrogen, compressed air and carbon dioxide storages: Assume another two new
upgrades are made on the IGCC system of Example 2. The first is to add a carbon dioxide storage unit with a
capacity of 2000 tons carbon dioxide; the second is to upgrade the power capacity of carbon dioxide compressor
to 100 MW. Then, the state variables become s = [MA MH2 MCO2 ]

T , and the manipulated variables are
m = [vcoal PG PAC PCC]

T . In addition to the bounds of Example 2, we also require Mmin
CO2

= 1 ton CO2,
Mmax

CO2
= 2000 tons CO2, Pmin

CC = 0 MW, and Pmin
CC = 100 MW.

The results of the EMPC using a 24 h prediction horizon are shown in Figure 5. The plots for compressed
air storage MA, hydrogen storage MH2 , power consumed by air compressor PAC, generated power PG, and coal
flow rate vcoal are omitted, since all of them remain the same as Example 2.

Although the carbon dioxide compressor operates at its nominal value (PCC = 30.2 MW) during the
majority of the time, when the electricity price is high, the power consumed by the carbon dioxide compressor
will drop to and stay at zero, which means the compressor will be turned off. When the electricity price is low,
the carbon dioxide compressor will increase its power consumption to compress more carbon dioxide from the
CO2 storage. As a result, the storage of carbon dioxide will be fully discharged. This behavior is quite opposite to
the compressed air storage. The reason is that unlike the compressed air storage (placed after the air compressor),
the carbon dioxide storage is placed before the compressor. During high electricity price periods, the carbon
dioxide compressor is turned off, and the carbon dioxide generated from the gasification block will be sent into
storage. Then, when electricity price becomes low, and the carbon dioxide coming from both the gasification block
and carbon dioxide storage will be compressed.
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Figure 5. Closed-loop simulation of EMPC using a 24 h prediction horizon for Example 3.

Example 4. IGCC plant with hydrogen, compressed air, and carbon dioxide storages, as well as a methanol
plant: Reconsider the IGCC system of Example 3. Now assume there is another option for the hydrogen stream
produced from the gasification block: it can be sent to a methanol synthesis reactor system. The bounds on the
methanol production rate are assumed to be vmin

M = 0 ton MeOH/h and vmax
M = 400 tons MeOH/h. Obviously,

the price of methanol will directly determine whether it is worth sending the hydrogen to the methanol synthesis
reactor. Thus, three cases with different methanol prices are investigated. In all cases, only the plots of methanol
flow rate vM, generated power PG, and hydrogen in storage MH2 will be presented, since the production of
hydrogen is always maintained at its maximum, and thus adding the option of methanol production will not affect
the optimal operation of other components of IGCC plant, except for power generation and hydrogen storage.

If the selling price of methanol is 100 $/ton, it turns out that no hydrogen is sent to the methanol synthesis
reactor system. The reason is that for this price, less revenue will be obtained by selling methanol than
selling electricity.

If the price of methanol is increased to 150 $/ton, it is found that now, most of hydrogen is sent to the
methanol synthesis reactor, and the power generation stays at its minimum value. This behavior indicates that
with this methanol price, it apparently generates more revenue by producing methanol than producing electricity.

Finally, if the selling price of methanol is 110 $/ton, both plants take part in production, as shown in
Figure 6. It can be observed that the generated power PG possesses a behavior similar to previous examples,
working at its maximum capacity when the electricity price is high and at its minimum when the electricity
price is low. The methanol production reaches a high level when the electricity price is low and drops to zero
when the electricity price is high.
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Figure 6. Closed-loop simulation of EMPC using a 24 h prediction horizon for the case of
cM = 110 $/ton MeOH for Example 4.

Example 5. IGCC plant with full upgrades and electricity modeled with the shaping filter: Reconsider the IGCC
system of Example 4. Now, assume the electricity price is modeled by the third order shaping filter introduced in
Section 2.1 with α = 1 MW2 h/$, Ce = 90 $/(MW h), and ΣCe = 102 $/(MW h)2. The methanol price is set to
110 $/ton.

The results of the EMPC are illustrated in Figure 7. It is observed that the electricity price no longer evolves
uniformly, and a more realistic performance of the system variables is obtained.
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Figure 7. Cont.
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Figure 7. Closed-loop simulation of EMPC using a 24 h prediction horizon for Example 5.

2.4. The Impact of Storage Size

Naturally, it is expected that different storage sizes will result in different optimal control policy.
In this subsection, the impact of compressed air storage size, carbon dioxide storage size, and hydrogen
storage size will be illustrated through three examples, respectively. All examples use a prediction
horizon of 24 h when implementing the EMPC.

Example 6. Reconsider the IGCC system of Example 2. Three cases are studied, each assuming the size of the
compressed air storage to be 1000 tons, 5000 tons, and 10,000 tons, respectively. All the other information about
the IGCC system remains the same as Example 2.

Comparison of these three cases is illustrated in Figure 8. In all cases, the plots for generated power PG,
hydrogen in storage MH2 , and coal flow rate vcoal are the same as Example 2 and thus omitted for simplicity.
From Figure 8, it is observed that as the compressed air storage size increases, the air compressor will be kept
turned off for a longer time when the electricity price is high and will be at its maximum capacity for a longer
time when the electricity price is low. Thus, overall, larger compressed air storage will result in better economic
performance. This conclusion is supported by the following data: the 10 day revenue obtained from EMPC for
these three cases (compressed air storage size being 1000 tons, 5000 tons, and 10000 tons) is $1.122× 107,
$1.127× 107, and $1.130× 107, respectively.
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Figure 8. Closed-loop simulation of EMPC using a 24 h prediction horizon for Example 6.

Example 7. Reconsider the IGCC system of Example 3, but assume the size of the carbon dioxide storage to
be 1000 tons, 5000 tons, and 10,000 tons, respectively. All the other information about the hardware of IGCC
systems remains unchanged.

In all cases, the plots for generated power PG, power consumed by air compressor PAC, hydrogen in storage
MH2 , compressed air in storage MA, and coal flow rate vcoal are the same as Example 3. From Figure 9, a similar
behavior is observed: as the carbon dioxide storage increases, the carbon dioxide compressor will be kept turned
off for a longer time when the electricity price is high and will be at its maximum capacity for a longer time
when the electricity price is low. The 10 day revenue obtained from EMPC for these three cases (carbon dioxide
storage size being 1000 tons, 5000 tons, and 10,000 tons) are $1.126× 107, $1.129× 107, and $1.130× 107,
respectively.

It should be noted that in the 10,000 ton case, the storage is not being fully utilized. Specifically, the storage
is never completely emptied, suggesting that the exact same revenue could be achieved with a smaller storage,
say 6000 tons. We will see a similar result in the next example.
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Figure 9. Closed-loop simulation of EMPC using a 24 h prediction horizon for Example 7.
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Example 8. Reconsider the IGCC system of Example 4 with methanol price cM = 110 $/ton MeOH. Now,
reduce the hydrogen storage size to 100 tons. All the other information about the IGCC system remains
unchanged. From Figure 10, it can be seen that when the hydrogen storage size is reduced to 100 tons,
the generated power will stay at its maximum for a much shorter time during the high electricity price periods.
Meanwhile, the methanol production will maintain at a high level for a much longer time, and more methanol
will be produced. The 10 day revenue obtained from EMPC optimization for these two cases (hydrogen storage
size being 100 tons and 600 tons) is $1.157× 107 and $1.164× 107, respectively.
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Figure 10. Closed-loop simulation of EMPC using a 24 h prediction horizon for Example 8.

It should be noted that despite the fact that the H2 storage size is 600 tons, the optimal operating
policy never utilizes all of that storage. In fact, for that case, the exact same revenue would be
generated with a storage of about 300 tons. However, if the price of MeOH was reduced to 100 $/ton,
then Example 4 indicates all 600 tons of H2 would be utilized.

Thus, it is clear that the equipment size can directly affect the optimal operation of the IGCC
system, and larger upgrades will yield to large revenue. However, the capital cost for larger equipment
will be larger as well, which naturally leads to the following question: What are the optimal sizes of
the hardware units? To answer this question, it requires a net present value assessment that weighs
revenue gain against the capital cost of equipment upgrades. Unfortunately, the numeric basis of
EMPC indicates that it is ill equipped for use within such an optimization scheme. This is due to the
fact that black box numeric simulations are required to estimate revenue as a function of hardware
configuration/size. While such an approach can be used within a local search scheme, it is far from
sufficient to find global solutions to the non-convex problems that will result from the envisioned IGCC
hardware design problem. Therefore, Economic Linear Optimal Control (ELOC) will be proposed as a
surrogate for EMPC to perform the net present value analysis. Before diving into the IGCC design
problem, first we must prove that ELOC is a appropriate surrogate for EMPC.
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3. Comparison of EMPC and ELOC

We now introduce the ELOC, which can generate a linear controller capable of mimicking the
EMPC policy. Reconsider the EMPC objective function, and take the limit with respect to N:

lim
N→∞

{
1
N

i+N−1

∑
k=1

Ce(k|i)(PG(k|i)− PAC(k|i)− PCC(k|i)) + CMvM(k|i)− Ccoalvcoal(k|i)
}

= E[CePN ] + CME[vM]− CcoalE[vcoal ] (26)

The objective function becomes the long-term average revenue per period ∆t. One approach to
determine the optimal control policy for this objective is to assume PN has the following form:

P̃N = αC̃e (27)

where P̃N = PN − PN , C̃e = Ce − Ce, PN = E[PN ] and Ce = E[Ce]. Additionally, vM = E[vM],
vcoal = E[vcoal ]. Equation (27) indicates the basic notion that the net power production should be large
when the electricity price is high and low when electricity price is low. The coefficient α, yet to be
determined, will indicate the magnitude of this relationship. With all these definitions, Equation (26)
can be evaluated as:

E[CePN ] + cME[vM]− CcoalE[vcoal ] = E[(C̃e + Ce)(P̃N + PN)] + CMvM − Ccoalvcoal

= E[C̃e P̃N ] + CePN + CMvM − Ccoalvcoal

= αΣCe + CePN ++CMvM − Ccoalvcoal (28)

where ΣCe is the variance of the electricity price. Specifically, E[C̃e P̃N ] = E[C̃e(αC̃e)] = αE[C̃2
e ] =

αΣCe . Furthermore, PN = PG − PAC − PCC, where PG = E[PG], PAC = E[PAC], and PCC = E[PCC].
Thus, for a given characterization of Ce, one could optimize over α, PG, PAC, PCC, vM, and vcoal .
The characterization of Ce is achieved by the third order shaping filter proposed in Section 2.1.

From (4), it can be seen that φ1 = αC̃e. Thus, to enforce an approximation of condition (27),
one could require:

E[(P̃N − φ1)
2] < ε (29)

where ε is a sufficiently small parameter, but not so small that numerical infeasibility occurs (ε is set to
0.01 MW2 for all cases).

The next step is to recast the compound system into deviation variable form:

x = [MA −MA MH2 −MH2 MCO2 −MCO2 φ1 φ2 φ3]
T (30)

u = [vcoal − vcoal vM − vM PG − PG PAC − PAC PCC − PCC]
T (31)

w = [w] (32)

z = [MA −MA MH2 −MH2 MCO2 −MCO2 vcoal − vcoal vM − vM PG − PG PAC − PAC

PCC − PCC (PG − PAC − PCC)− (PG − PAC − PCC)− φ1]
T (33)

Then, the compound process model (augmented with shaping filter) can be written as:

ẋ = A(c)x + B(c)u + αG(c)w (34)

z = D(c)
x x + D(c)

u u (35)

zmin ≤ z ≤ zmax (36)
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where

A(c) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 −ω2

c −2χωc −ω2
c

0 0 0 0 0 − 1
τh


B(c) =



−β2 0 0 β1 0
β2 −β5 β4 0 0
β6 0 0 0 −β7

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


G(c) =



0
0
0
0

ω2
c

1
τh


(37)

D(c)
x =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0


D(c)

u =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 −1 −1


(38)

zmin = [Mmin
A −MA Mmin

H2
−MH2 Mmin

CO2
−MCO2 vmin

coal − vcoal vmin
M − vM Pmin

G − PG

Pmin
AC − PAC Pmin

CC − PCC − ε]T (39)

zmax = [Mmax
A −MA Mmax

H2
−MH2 Mmax

CO2
−MCO2 vmax

coal − vcoal vmax
M − vM Pmax

G − PG

Pmax
AC − PAC Pmax

CC − PCC ε]T (40)

The continuous-time model can be converted to a discrete form using the sample and hold method
(Ad = eA∆t, Bd =

∫ ∆t
0 eAτ Bdτ, Gd =

∫ ∆t
0 eAτGdτ, and Σw = Sw/∆t) [35]:

x(i + 1) = A(c)
d x(i) + B(c)

d u(i) + αG(c)
d w(i) (41)

z(i) = D(c)
x x(i) + D(c)

u u(i) (42)

zmin ≤ z(i) ≤ zmax (43)

The ELOC controller is assumed to be a linear feedback of the state: u(i) = Lx(i) (Actually the
controller should be u(i) = Lx̂(i) where x̂(i) is the estimated state. The development of this partial
state information case is a simple extension of the full state information case presented here; see [29]
for details.). Given a candidate controller, L, the variance of the jth performance variable, ζ j, is
calculated as:

ζ j = ρjΣzρT
j (44)

Σz =
(

D(c)
x + D(c)

u L
)

Σx

(
D(c)

x + D(c)
u L

)T
(45)

Σx =
(

A(c)
d + B(c)

d L
)

Σx

(
A(c)

d + B(c)
d L

)T
+ α2G(c)

d Σw

(
G(c)

d

)T
(46)

where the vector ρj is the jth row of an 9× 9 identity matrix and Σx is the positive definite solution
to (46). Rather than enforce the point-wise-in-time constraints, zmin

j ≤ zj(i) ≤ zmax
j , the ELOC method

follows a pseudo- (or chance-)constrained approach by enforcing the following statistical constraints:

ζ j < (zmax
j )2 and ζ j < (−zmin

j )2 (47)
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The next step is to find a feedback controller, L, to maximize the average revenue defined by
Equation (28). This controller can be determined by the following nonlinear optimization problem:

max
α,vcoal ,vM
Σx�0,ζ j ,L

{
αΣCe + CePN + CMvM − Ccoalvcoal

}
s.t. (48)

PG = (β3vcoal − β5vM)/β4, PAC = β2vcoal/β1, PCC = β6vcoal/β7 (49)

PN = PG − PAC − PCC (50)

Σx =
(

A(c)
d + B(c)

d L
)

Σx

(
A(c)

d + B(c)
d L

)T
+ α2G(c)

d Σw

(
G(c)

d

)T
(51)

ζ j = ρj

(
D(c)

x + D(c)
u L

)
Σx

(
D(c)

x + D(c)
u L

)T
ρT

j < z2
j (52)

zj = min{zmax
j ,−zmin

j }, j = 1 . . . 9 (53)

Problem (48) can be converted to a convex form by using the following theorem (a slight generalization
of Theorem 6.1 from [25]).

Theorem 1. There exists stabilizing controller L, Σx � 0, and ζ j, j = 1 . . . nz such that:

Σx = (Ad + BdL)Σx(Ad + BdL)T + α2GdΣwGT
d (54)

ζ j = ρj(Dx + DuL)Σx(Dx + DuL)TρT
j , j = 1 . . . nz (55)

ζ j < z2
j , j = 1 . . . nz (56)

if and only if there exists X � 0, Y, and µj, j = 1 . . . nz such that: X (AdX + BdY) αGd
(AdX + BdY)T X 0

αGT
d 0 Σ−1

w

 � 0 (57)

[
µj ρj(DxX + DuY)

(DxX + DuY)TρT
j X

]
� 0, j = 1 . . . nz (58)

and:

µj < z2
j , j = 1 . . . nz (59)

It should be pointed out that the only difference between Theorem 1 and Theorem 6.1 in [25] is
the adding of variable α in (54) and (57). Using the Schur complementary theorem, LMI(57) can be
easily converted to the format similar to its counterpart in Theorem 6.1 in Theorem 1. If the variable α

is set to one, then Theorem 1 will be reduced to Theorem 6.1 in [25].
Application of Theorem 1 to the problem (48) results in the following convex optimization problem:
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max
α,vcoal ,vM
X�0,Y,µj

{
αΣCe + CePN + CMvM − Ccoalvcoal

}
s.t. (60)

PG = (β3vcoal − β5vM)/β4, PAC = β2vcoal/β1, PCC = β6vcoal/β7 (61)

PN = PG − PAC − PCC (62)
X

(
A(c)

d X + B(c)
d Y

)
αG(c)

d(
A(c)

d X + B(c)
d Y

)T
X 0

α
(

G(c)
d

)T
0 Σ−1

w

 � 0 (63)

 µj ρj

(
D(c)

x X + D(c)
u Y

)
(

D(c)
x X + D(c)

u Y
)T

ρT
j X

 � 0, j = 1 . . . 9 (64)

µj < z2
j , j = 1 . . . 9 (65)

zj = min{zmax
j ,−zmin

j }, j = 1 . . . 9 (66)

Problem (60) possesses a structure similar to the ELOC problem proposed in [28] and thus can be solved
globally using the same generalized Benders decomposition approach. Specifically, the complicating
variables should be selected as vcoal , vM, and the constraint set for complicating variables consists of
(61), (62), and (66). The non-complicating variables are selected as α, X, Y, µj, and the corresponding
constraint set consists of (63) and (64). Finally, the connecting constraints must be (65). Clearly,
the connecting constraints are convex in the non-complicating variables. In addition, both the
objective function and the connecting constraints are convex in the non-complicating variables. Thus,
the GBDapproach is guaranteed to arrive at a global solution. See [36,37] for more details on GBD
theory and implementation.

If X∗ and Y∗ are from the solution to Problem (60), then L∗ = Y∗(X∗)−1 is the solution to
Problem (48), within the accuracy of the inequality constraints of Problem (60). To obtain the ELOC
policy, the solution L∗ must be scaled with respect to α∗. Specifically, the columns of L∗ corresponding
to the shaping filter states must be multiplied by α∗. This rescaling will make the control policy proper
for an electricity price described by (4) with α set equal to one.

Example 9. Reconsider the IGCC system of Example 5 with electricity price modeled by the same third order
shaping filter. The methanol price remains unchanged. Now, we can recast the optimal control problem into the
form of Problem (60) and solve it globally. The comparison of optimal control policy between ELOC and EMPC
is provide in Figures 11–13.

It is observed that some constraint violations (power and storage levels drop below zero or go beyond upper
bounds) happen in the ELOC simulation. The reason for this behavior is that the ELOC only enforces statistical
constraints. Specifically, µj < z2

j only requires that one standard deviation (68%) of the outputs will be within
the lower and upper bounds. However, generally speaking, the ELOC policy controls the process variables in
response to the price fluctuation in a way that is quite similar to the EMPC policy. For a quantitative comparison
of EMPC and a constrained version of ELOC, please see [16,29]. Thus, ELOC is proposed as a surrogate for
EMPC. In the following section, the ELOC will be used to perform net present value assessment for the IGCC
dispatch system.
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Figure 11. Comparison of EMPC and Economic Linear Optimal Control (ELOC) policy for Example 9:
generated power and hydrogen storage.
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Figure 12. Comparison of EMPC and ELOC policy for Example 9: air compressor power consumption
and compressed air storage.
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Figure 13. Comparison of EMPC and ELOC policy for Example 9: carbon dioxide compressor power
consumption and carbon dioxide storage.

4. ELOC Based Integrated Design and Control of IGCC Power Dispatch System

The economic framework of the integrated design and control problem for the IGCC power
dispatch system is studied in this section. We assume the existence of a steady-state based plant
and consider the question of adding hardware to allow for dispatch capabilities. That is, assume
the existing design specifies steady-state operating conditions as follows: PG = Pnom

G , PAC = Pnom
AC ,

PCC = Pnom
CC , and vcoal = vnom

coal . Furthermore, assume these operating conditions also specify the
maximum capacity of equipment: Pmax,0

G = Pnom
G , Pmax,0

AC = Pnom
AC , Pmax,0

CC = Pnom
CC . Then, the capital

costs of changing the maximum capacity to Pmax
G = Pmax,0

G + Pnew
G , Pmax

AC = Pmax,0
AC + Pnew

AC , and Pmax
CC =

Pmax,0
CC + Pnew

CC by adding new equipment are assumed to follow the six-tenths rule c0
GδG + c1

G(Pnew
G )0.6,

c0
ACδAC + c1

AC(Pnew
AC )0.6, and c0

CCδCC + c1
CC(Pnew

CC )0.6, where the first term with the binary variable δ

indicates the initial cost and the second term denotes the sizing cost. It is assumed that the capacity to
process coal cannot be increased, which gives vmax

coal = vnom
coal . Regarding material storage, it is assumed

that the existing design does not include storage devices (Mnom
A = 0, Mnom

H2
= 0, andMnom

CO2
= 0).

Thus, the cost of storage equipment is assumed to be c0
AδA + c1

A(Mmax
A )0.6, c0

H2
δH2 + c1

H2
(Mmax

H2
)0.6,

and c0
CO2

δCO2 + c1
CO2

(Mmax
CO2

)0.6. Additionally, it is assumed that the existing design does not include
the methanol synthesis system (vnom

M = 0). Similarly, the cost of the methanol synthesis system is
assumed to be c0

MδM + c1
M(vmax

M )0.6.
If no dispatch, the average revenue per time period (∆t) is defined as Rnom = CePnom

N − Ccoalvnom
coal .

From the analysis in Section 3, we know that the average revenue per time period with dispatch is
R = αΣCe + CePN + CMvM − Ccoalvcoal . Thus, the increase in average revenue is given by

∆R = R− Rnom

= αΣCe + Ce(PN − Pnom
N ) + CMvM − Ccoal(vcoal − vnom

coal ) (67)

In this study, the time period ∆t is 1 h. Therefore, the present value of the increase in revenue is
∆RPV = PVf ∆R where:

PVf = 326× 24
1
ri

(
1− 1

(1− ri)n

)
(68)
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ri is the annual interest rate and n is the project horizon [38]. Here, the IGCC power dispatch system is
assumed to work for 326 days per year, since there is some maintenance time required each year.

Using the above analysis, we can finally state the net present value of a candidate process
upgrade as:

NPV = PVf ∆R− CapCosts

= c1α + c2(PN − Pnom
N ) + c3vM − c4(vcoal − vnom

coal )− c0
AδA − c1

A(Mmax
A )0.6 − c0

H2
δH2

− c1
H2
(Mmax

H2
)0.6 − c0

CO2
δCO2 − c1

CO2
(Mmax

CO2
)0.6 − c0

MδM − c1
M(vmax

M )0.6 − c0
GδG − c1

G(Pnew
G )0.6

− c0
ACδAC − c1

AC(Pnew
AC )0.6 − c0

CCδCC − c1
CC(Pnew

CC )0.6 (69)

where c1 = PVf ΣCe , c2 = PVf Ce, c3 = PVf CM, and c4 = PVf Ccoal . The objective of the IGCC power
dispatch system design is to maximize NPV, Thus, the integrated design and control problem for
the IGCC power dispatch system can be formulated by replacing the objective function in (60) with
(69) and changing Mmax

A , Mmax
H2

, Mmax
CO2

, vmax
M , Pmax

G , Pmax
AC , and Pmax

CC from fixed parameters to decision
variables. The result problem formulations is as follows:

max
α,vcoal ,vM ,δA ,δH2 ,δCO2 ,δM ,δG
δAC ,δCC ,Mmax

A ,Mmax
H2

,Mmax
CO2

vmax
M ,Pnew

G ,Pnew
AC ,Pnew

CC
X�0,Y,µj



c1α + c2(PN − Pnom
N ) + c3vM − c4(vcoal − vnom

coal )− c0
AδA

−c1
A(Mmax

A )0.6 − c0
H2

δH2 − c1
H2
(Mmax

H2
)0.6 − c0

CO2
δCO2

−c1
CO2

(Mmax
CO2

)0.6 − c0
MδM − c1

M(vmax
M )0.6 − c0

GδG

−c1
G(Pnew

G )0.6 − c0
ACδAC − c1

AC(Pnew
AC )0.6 − c0

CCδCC
−c1

CC(Pnew
CC )0.6


(70)

s.t. (61), (62), (63), (64)

µj < (zj/2)2, j = 1 . . . 9 (71)

(66), (39), (40)

Pmax
G = Pmax,0

G + Pnew
G , Pmax

AC = Pmax,0
AC + Pnew

AC , Pmax
CC = Pmax,0

CC + Pnew
CC (72)

δA ∈ {0, 1} δH2 ∈ {0, 1} δCO2 ∈ {0, 1} δM ∈ {0, 1} δG ∈ {0, 1} δAC ∈ {0, 1} δCC ∈ {0, 1} (73)

0 ≤ Mmax
A ≤ δA Mmax,ub

A 0 ≤ Mmax
H2
≤ δH2 Mmax,ub

H2
0 ≤ Mmax

CO2
≤ δCO2 Mmax,ub

CO2
(74)

0 ≤ vmax
M ≤ δMvmax,ub

M 0 ≤ Pnew
G ≤ δGPnew,ub

G 0 ≤ Pnew
AC ≤ δACPnew,ub

AC (75)

0 ≤ Pnew
CC ≤ δCCPnew,ub

CC (76)

where the parameter with superscript appendix “ub” denotes the upper bound for the corresponding
hardware. Problem (70) possesses a structure similar to the ELOC problem proposed in [28] and thus
can be solved globally using the generalized Benders decomposition. Specifically, the complicating
variables should be selected as vcoal , vM, δA, δH2 , δCO2 , δM, δG, δAC, δCC, Mmax

A , Mmax
H2

, Mmax
CO2

, vmax
M ,

Pnew
G , Pnew

AC , Pnew
CC , and the constraint set for complicating variables consists of (61), (62), (66), (39),

(40), (72), (73), (74), (75), (76). The non-complicating variables are selected as α, X, Y, µj, and the
corresponding constraint set consists of (63) and (64). Finally, the connecting constraints must be (71).
Clearly, the connecting constraints are convex in the non-complicating variables. In addition, both the
objective function and the connecting constraints are convex in the non-complicating variables. Thus,
the GBD approach is guaranteed to arrive at a global solution. It should be pointed out that in Problem
(70), statistical constraints are tightened into µj < (zj/2)2, j = 1 . . . 9, which indicate that the controller
obtained from Problem (70) will guarantee two standard deviations (95%) of the outputs to be within
the lower and upper bounds.

Example 10. From Case B1B of [34], it is found that the cost of the power generation block (combustion turbine,
HRSG, and steam turbine) is $300,000,000; the cost of the air compressor is $125,000,000 (assumed to be half
of the ASU cost); the cost of the carbon dioxide compressor is $82,000,000. Assume capital costs of the forms
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CostG = c0
GδG + c1

G(Pmax
G )0.6, CostAC = c0

ACδAC + c1
AC(Pmax

AC )0.6, and CostCC = c0
CCδCC + c1

CC(Pmax
CC )0.6,

with initial cost coefficients of c0
G = $1× 108, c0

AC = $5× 107, c0
CC = $5× 107. Then, matching these cost

expressions with the actual costs, the coefficients are found as in Table 4.

Table 4. Coefficients of capital costs for the compressors and power generator.

c0
G c0

AC c0
CC c1

G c1
AC c1

CC
($) ($) ($) ($/MW0.6) ($/MW0.6) ($/MW0.6)

Value 100×106 50×106 50×106 4.02×106 6.45×106 4.21×106

The gas storage facilities are assumed to be underground geologic formations. The costs of storages are
assumed to be in the following form CostA = c0

AδA + c1
A(Mmax

A )0.6, CostH2 = c0
H2

δH2 + c1
H2
(Mmax

H2
)0.6,

CostCO2 = c0
CO2

δCO2 + c1
CO2

(Mmax
CO2

)0.6, with coefficients shown in Table 5. These values are based on the
storage size and costs provided in [33].

Table 5. Coefficients of capital costs for storage units.

c0
A c0

H2
c0

CO2
c1

A c1
H2

c1
CO2

($) ($) ($) ($/(ton air)0.6) ($/(ton H2)0.6) ($/(ton CO2)0.6)

Value 1×105 1×105 1×105 627 1610 1420

Regarding the methanol synthesis reactor system, the cost function is assumed to be c0
MδM + c1

M(vmax
M )0.6

where c0
M = $1× 106 and c1

M = 7.2× 103 $/(ton MeOH/h)0.6. The upper bounds of the possible hardware
augmentations are assumed to be: Mmax,ub

A = 10,000 tons compressed air, Mmax,ub
H2

= 10,000 tons H2,

Mmax,ub
CO2

= 10,000 tons CO2, vmax,ub
M = 400 tons MeOH/h, Pmax,ub

G = 4038 MW, Pmax,ub
AC = 358 MW,

Pmax,ub
CC = 181 MW. Additional parametric assumptions include: ri = 7%, n = 30 y and Ce = $90/MW h.

The variance of electricity price ΣCe and the methanol price CM are two key factors affecting the design of
the IGCC power dispatch system, and their impact on the optimal design is investigated separately.

Given a methanol price of CM = 100 $/ton MeOH, Table 6 illustrates the solution to Problem (70) for
different values of ΣCe . In the cases of ΣCe = ($5/MW h)2 and ΣCe = ($10/MW h)2, the solution indicates
that only the methanol synthesis reactor system with a production capacity of 242.2 tons MeOH/h is required.
This result is probably due to the relatively less expensive capital cost of the methanol synthesis reactor compared
to power block expansion and compressor augmentations. As the ΣCe is increased to ($20/MW h)2, the solution
requires a hydrogen storage size of 255.6 tons to be installed to enable the power block to better take advantage
of the electricity price fluctuations, although the maximum value of PG remains the same. Meanwhile, due to
the existence of hydrogen storage, the redundant hydrogen during low electricity price periods does not need
to be sent to the methanol synthesis reactor system when the generated power PG is way below its nominal
value. As a result, the optimal production capacity of methanol synthesis reactor is reduced to 120.3 tons/h.
However, when ΣCe is increased to ($40/MW h)2, the solution indicates the methanol synthesis reactor system
is no longer needed, since the electricity price can be better exploited by adding a new power generation unit
(Pnew∗

G = 269.2 MW) and expanding the hydrogen storage size to 1074 tons. It is worth noting that in all
cases, no new air compressor, carbon dioxide compressor, compressed air storage, or carbon dioxide storage is
needed; this result is probably because the saving on the power consumed by compressors cannot compensate for
the capital cost of the related hardware augmentation. Regarding the process simulations using the controller
generated from Problem (70), the cases of ΣCe = ($5/MW h)2 and ΣCe = ($20/MW h)2 are provided in
Figures 14 and 15.
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Table 6. Optimal design results as a function of electricity price variance.

ΣCe v∗
coal v∗

M vmax∗
M Pnew∗

G Pnew∗
AC Pnew∗

CC Mmax∗
A Mmax∗

H2
Mmax∗

CO2
Objective

( $
MW h )

2 (tons/h) (tons/h) (tons/h) (MW) (MW) (MW) (tons) (tons) (tons) Function ($)

52 211.04 120.3 242.2 0 0 0 0 0 0 2.362× 107

102 211.04 120.3 242.2 0 0 0 0 0 0 5.644× 107

202 211.04 120.3 120.3 0 0 0 0 255.6 0 1.221× 108

402 211.04 0 0 269.2 0 0 0 1074 0 3.095× 108
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Figure 14. Value of electricity and the resulting power generation dispatch for the case of ΣCe =

($5/MW h)2 and CM = 100 $/ton MeOH.

Now, set the value of ΣCe to ($20/MW h)2, and investigate the impact of different methanol prices (CM).
For this case, the solution to Problem (70) is provided in Table 7. When the methanol price CM equals $90/ton
MeOH, the solution indicates that no methanol synthesis reactor system is needed. However, in order to take
advantage of the electricity price fluctuations, a hydrogen storage unit with a capacity of 355.2 tons H2 and
a new power generation unit with a capacity of 269.2 MW are required. When CM is increased to 100$/ton
MeOH, we have the same case as in Table 6. When CM is increased to 200 $/ton MeOH, a larger methanol
reactor synthesis system is required (vmax∗

M = 240.6 tons MeOH/h), and the generated power PG stays at its
minimum (P∗G = (β3v∗coal − β5v∗M)/β4 = 403.7 MW). No hydrogen storage is needed, which indicates all the
extra hydrogen flows into the methanol synthesis reactor system to generate methanol. Regarding the process
simulations using the controller generated from Problem (70), the case of CM=$90/ton MeOH is illustrated
in Figure 16.

Table 7. Optimal design results as a function of methanol price.

CM v∗
coal v∗

M vmax∗
M Pnew∗

G Pnew∗
AC Pnew∗

CC Mmax∗
A Mmax∗

H2
Mmax∗

CO2
Objective

($/ton MeOH) (tons/h) (tons/h) (tons/h) (MW) (MW) (MW) (tons) (tons) (tons) Function ($)

90 211.04 0 0 269.2 0 0 0 355.2 0 4.71× 107

100 211.04 120.3 120.3 0 0 0 0 255.6 0 1.22× 108

200 211.04 240.6 240.6 0 0 0 0 0 0 2.32× 109
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Figure 15. Value of electricity and the resulting power generation dispatch for the case of ΣCe =

($20/MW h)2 and CM = 100 $/ton MeOH.
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Figure 16. Value of electricity and the resulting power generation dispatch for the case of ΣCe =

($20/MW h)2 and CM = 90 $/ton MeOH.
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Finally, let us consider the impact of equipment cost on the optimal design. Specifically, assume that the
values of compressor cost coefficients are reduce to c0

AC = $1× 107, c0
CC = $1× 107, c1

AC = 1× 106 $/MW0.6,
c1

CC = 1 × 106 $/MW0.6. Furthermore, assume the methanol price (CM) to be 100 $/ton MeOH. Then,
the solution to Problem (70) for different values of ΣCe is given in Table 8. The process simulations for the case of
ΣCe = ($20/MW h)2 are illustrated in Figures 17–19.

Table 8. Optimal design results as a function of electricity price variance with reduced capital costs
of compressors.

ΣCe v∗
coal v∗

M vmax∗
M Pnew∗

G Pnew∗
AC Pnew∗

CC Mmax∗
A Mmax∗

H2
Mmax∗

CO2
Objective

( $
MW h )

2 (tons/h) (tons/h) (tons/h) (MW) (MW) (MW) (tons) (tons) (tons) Function ($)

102 211.04 120.3 242.2 0 0 0 0 0 0 0.564× 108

202 211.04 120.3 120.3 0 59.74 30.21 5231 181.4 3163 1.663× 108

402 211.04 0 0 269.2 59.74 30.21 6580 355.4 3346 4.454× 108
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Figure 17. Value of electricity and the resulting power generation dispatch for the case of ΣCe =

($20/MW h)2 and CM = 100 $/ton MeOH with reduced compressors costs.
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Figure 18. Value of electricity and the resulting air compressor power consumption dispatch for the
case of ΣCe = ($20/MW h)2 and CM = 100 $/ton MeOH with reduced compressors costs.
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Figure 19. Value of electricity and the resulting CO2 compressor power consumption dispatch for the
case of ΣCe = ($20/MW h)2 and CM = 100 $/ton MeOH with reduced compressors costs.

5. Conclusions

This work presented the integrated design and control of an IGCC power dispatch system using
economic linear optimal control. The upgrade scenarios included compressed air storage, hydrogen
storage, carbon dioxide storage, power generation block expansion, air compressor, carbon dioxide
compressor, and the methanol synthesis reactor system. For the assumed set of economic parameters,
it was found that hydrogen storage, power generation block expansion, and the methanol synthesis
reactor system were the preferable options, whereas the compressed air storage, carbon dioxide storage,
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additional air compressor, and carbon dioxide compressor were not desired. However, if the capital
costs of air compressor and carbon dioxide compressor were reduced, the optimal design of the IGCC
power dispatch system would prefer to add these equipment and corresponding storage units when
the variance of electricity price is large. The approach provided in this paper overcomes the limitation
of economic MPC in the design problem through use of ELOC as a surrogate control policy.
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