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Abstract: From the perspective of resource recovery and environmental protection, coal gangue-fly
ash cemented backfill coal mining has become an important direction for the green development of coal
mines in recent years. Analysis of the rheological parameters of backfill slurry is the basic principle to
design a backfill pipeline system. Coal gangue-fly ash backfill slurry has a mass concentration of 76%
to 79% and a maximum particle size 20 mm. Therefore, it is difficult to use conventional rheometers
for experimental analyses of the rheological parameters of such fluids. We developed a rheometer for
high-concentration coal gangue backfill slurry (HCGS rheometer) based on the coal gangue-fly ash
backfill practice of Gonggeying Mine, and analyzed the rheological properties of the backfill slurry.
The experimental results showed that the Reynolds number of the coal gangue-fly ash backfill slurry
was much smaller than the critical Reynolds number, indicating the flow state in the pipeline was
laminar. Based on these results, it may be more appropriate to control the mass concentration to 77%
to 78%, and the suggested fly ash content is 25%. This work provides a scientific basis to optimize the
backfill parameters and pipeline system in coal mines.
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1. Introduction

China’s “three unders” (i.e., under buildings, water bodies, and roads) are estimated to host
approximately 14 billion tons of coal. With the rapid development of China’s coal industry, the “three
unders’” coal pressure has been steadily rising. Therefore, to safely and efficiently mine “three under”
coal while preserving the environment has become a major issue that needs to be solved [1–3]. The
backfill mining method is an effective approach to control mining subsidence and improve the resource
recovery rate while extracting coal from the “three unders.” This approach has become an important
direction to support green coal mining in recent years [4–8].

The Laoha River crosses Gonggeying mine field to the east. The topsoil layer is 4–6 m thick;
the lower layer is the alluvial sand layer, which is a strong aquifer with a thickness of 20–23 m. The
mine primarily extracts No. 6 coal, with an inclination of 5–14◦, an average thickness of 15 m, and a
buried depth of 120–150 m. To avoid flooding accidents, the original design is the conventional roof
fall management method that leaves approximately 12 million tons of waterproof coal pillars; this
is extremely detrimental to the utilization of resources and service life of the mine [9,10]. To extract
coal found under water, the Gonggeying Coal Mine used coal gangue-fly ash cemented backfill for
the pillars.

The coal gangue-fly ash cemented backfill mining method uses cement, coal gangue, and fly ash
to prepare a high-concentration backfill slurry that is transported underground through pipelines.
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This approach can effectively control mining subsidence and improve the resource recovery rate while
more fully utilizing the coal gangue and fly ash resources [11–13]. In practice, the mass concentration
of the backfill slurry reaches 76% to 79%, of which the proportion of coal gangue in the solid material
is 60% to 80% and the maximum particle size approaches 20 mm. As a result, the pipelines are prone
to blockage [14–16]. Therefore, the backfill parameters and the optimization of the pipeline system
require improvements to the fluidity of the coal gangue-fly ash backfill slurry to increase the stability
of pipeline transportation. To date, several types of viscometers, such as parallel plate, coaxial cylinder,
and capillary, are only suitable to measure the rheological parameters of suspensions or fine-grained
slurries. There is no special testing instrumentation for coarse aggregate slurry, and the pipeline
experimental test method has a large workload at high costs, which is inconvenient for the rheological
parameter tests with high-concentration coal gangue backfill slurry [17–19]. Therefore, this paper
explores and develops a high-concentration coal gangue backfill slurry rheometer (HCGS rheometer)
and the corresponding rheological parameter testing methods.

2. Structural Composition and Testing Principle of the HCGS Rheometer

2.1. Structural Composition of the HCGS Rheometer

Traditional rotary viscometers have weak stirring and a relatively small capacity. For example,
the NXS-11A rotary viscometer has a maximum stirring power of 20 W and a slurry volume of 60 mL.
Thus, these sensors are only suitable for testing the viscosity parameters of fine particle slurries, such as
cement and fine tail slurries [19,20]. This study used the theory of slurry rheology to develop an
HCGS rheometer that could measure the characteristics of coarse aggregates and the viscosity of the
slurry [21–24]. Thus, the rheological parameters of high-concentration filler-infused slurries with a
maximum solid particle size of 20 mm could be tested. The coarse aggregate slurry was well-stirred
and rotated during the test and the inner diameter of the stirring cylinder could not be fewer than
four times the maximum particle size [21,25]. The maximum particle diameter of the coal gangue was
20 mm, and the inner diameter of the HCGS rheometer stirring cylinder was five times the maximum
particle diameter, i.e., 100 mm.

The developed HCGS rheometer used a high-power system and a large-capacity stirring system.
The structure is shown in Figure 1. It mainly included the following six subsystems:
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Figure 1. (a) Schematic and (b) photograph of a rheometer for high-concentration coal gangue backfill
slurry (HCGS rheometer) structure.

(1) Power system: DC velocity-regulating motor, rated power 185 W, maximum velocity 1000 r/min.
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(2) Sensing system: Torque sensor that simultaneously measured the torque and rotating velocity
of the stirring shaft; torque range was 0–0.2 N·m and the velocity range was 0–2000 r/min.

(3) Stirring system: Paddle-type stirring rotor with radius R1 = 2 cm and height h = 3 cm; stirring
cylinder with radius R2 = 5 cm, height H = 12 cm, and testing volume V = 650 mL.

(4) Control system: Stepless velocity governor.
(5) Digital display unit: Digital display for real-time torque and velocity. When necessary,

the digital display instrument can be connected to the computer for automatic collection and analysis
of testing data.

(6) Auxiliary unit: Elastic coupling, base, bracket, and photoelectric signal isolator.

2.2. Test Principle of the HCGS Rheometer

The basic principle of the HCGS rheometer to determine the rheological parameters was that the
paddle-type stirring rotor drove the slurry in the stirring cylinder to create circular motion under the
drive of a motor. The measured fluid between the stirring rotor and the stirring cylinder was subjected
to shear. When the rotor rotated at a certain angular velocity, the torque and rotor velocity on the shaft
could be measured using the torque sensor and converted into a number for display. Therefore, the
corresponding relationship between the torque and rotating velocity in the slurry experiment could be
obtained through testing, and the rheological parameters of the slurry could be calculated from the
associated relationship.

A schematic diagram of the rotor rotation is shown in Figure 2 where R1 is the radius of the rotor,
m; R2 is the radius of the stirring cylinder, m; h is the height of the stirring rotor, m; r is the distance
from any point on the inner space of the stirring cylinder to the central axis of the rotor, m; and ω is the
rotational angular velocity of the slurry at r, rad/s.
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While stirring the slurry, for any point in the annular space between the stirring rotor and the
wall of the stirring cylinder, we have

M = 2πr2
·hτ (1)

where M is the stirring torque, N·m and τ is slurry shear stress, Pa. Several studies and practices have
shown that the rheological properties of a highly concentrated filler slurry can be expressed using a
Bingham model. The associated rheological equation can be expressed as [26,27]

τ = τ0 + η
.
γ = τ0 + η

du
dr

(2)

where τ is the shear stress, Pa; τ0 is the slurry yield stress, Pa; η is the plastic viscosity of the slurry,
Pa·s;

.
γ is the shear rate, s−1; and u is the rotational linear velocity of the slurry, m/s.
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Due to the velocity of u = rω at any point, Equation (2) can be changed to:

τ = τ0 + η
rdω
dr

(3)

Equation (3) is substituted into Equation (1) to obtain:

M = 2πhr2
(
τ0 + ηr

dω
dr

)
(4)

The above formula can be transformed into:

dω =
(
M/

(
2πhr3

)
− τ0/(ηr)

)
dr (5)

Definite integration is performed on the above formula to arrive at:

Ω∫
0

dω =

R2∫
R1

(
M/

(
2πhηr3

)
− τ0/(ηr)

)
dr (6)

where Ω is the angular velocity of the rotor, rad/s.
After integration, the following relationship exists between the stirring torque M, the rotor angular

velocity Ω, and the rheological parameter τ0, η:

Ω = (M/4πhη)
(
1/R2

1 − 1/R2
2

)
− (τ0/η) ln(R2/R1) (7)

In Equation (7), the radius R1 of the stirring rotor, the radius R2 of the stirring drum, and the
height h of the rotor are known constant values, which give

k1 = (1/4πh)
(
1/R2

1 − 1/R2
2

)
, k2 = ln(R2/R1) (8)

It is seen from Equation (8) that k1 and k2 are constant parameters related to the rheometer testing
system. Therefore, Equation (7) can be simplified to:

M = (ηΩ + k2τ0)/k1 (9)

For a slurry to be measured, its rheological parameters η and τ0 should be set to specific values,
so the relationship between the torque and rotor angular velocity can be expressed as:

M = aΩ + b (10)

From Equations (9) and (10), we have:

η = k1a, τ0 = (k1/k2)b (11)

Based on the above analysis, the rheological parameters of the coal gangue-fly ash backfill slurry
could be obtained through the following test analysis process. First, the stirring torque M was measured
at different stirring velocities Ω with the HCGS rheometer used to obtain the slurry stirring curve
M−Ω. Second, the a and b values were obtained from the M−Ω relational formula. Third, the η and
τ0 values of the slurry were calculated from Equation (11). This process is shown in Figure 3.
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3. Experimental Analysis of Rheological Properties for Backfill Slurry

3.1. Experimental Scheme

The primary influencing factors to the rheological parameters for the coal gangue-fly ash backfill
slurry are as follows:

(1) Slurry concentration. If the slurry concentration is too low, the amount of dewatering
underground will be high and its strength will be low. If the slurry concentration is too high,
its transportation will be difficult.

(2) Particle size of solid material, which is primarily fly ash and coal gangue. If the proportion
of fly ash is low, the content of fine particles will be small, the slurry homogeneity will be poor,
the particles will settle significantly, and the fluidity will be poor. If the proportion of fly ash is too
high, the content of fine particles will be large, the slurry will be thick, and the pipe transportation
resistance will be large.

Therefore, this paper considers the rheological parameters of the slurry under different slurry
concentrations and fly ash contents.

The coal gangue used in the experiment was taken from the gangue crushing workshop of
Gonggeying Mine, and the particle size was ≤20 mm. The test grain composition after testing is
shown in Table 1. Fly ash was taken from a coal-fired power plant near the mine, and the particle size
distribution test was performed on the fly ash using a laser particle size analyzer. The test results are
shown in Figure 4.

Table 1. Granular composition of coal gangue.

Particle Size (mm) 20–10 10–5 5–2.5 2.5–1.25 1.25–0.63 0.63–0.31 0.31–0.16 <0.16

Content (%) 18 23 17 12.5 9 5.5 5.5 9.5
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The experiments were divided into the following two groups:
(A) The mass ratio of each raw material in the backfill solid remained unchanged at a cement:fly

ash:coal gangue ratio of 5:25:70. The slurry mass concentration varied from 76% to 79% in integer values.
(B) The mass concentration of the slurry remained unchanged at 78%. The amount of cement in

the backfill solids was 5%, and the mass ratio of fly ash and coal gangue was varied. The proportions
of fly ash and coal gangue in the solid were 15:80, 20:75, 25:70, and 30:65.

3.2. Test Analysis

The rheometer was used to test the two slurry groups (both A and B) using the experimental
scheme. The experiments showed that the test process was unstable when the angular velocity of the
stirring rotor was lower than 20 rad/s. Therefore, the relationship between the torque and velocity
obtained when the angular velocity of the stirring rotor was higher than 20 rad/s are shown in Figures 5
and 6. The curves for the relationship between the torque and angular velocity are linearly fit, as
shown in Figures 5 and 6, and the obtained relational formulas for M−Ω are shown in Table 2. The
rotor radius of the HCGS rheometer was R1 = 2 cm, the radius of the stirring cylinder was R2 = 5 cm,
and the rotor height was h = 3 cm. From the values of a and b in Table 2, the rheological parameters of
each sample slurry could be calculated using Equations (8)–(11), as shown in Table 3.
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Table 2. M−Ω relationship.

Groups Variable M−Ω Fitted Formulas a b

A. Mass concentration (%)

76 M = 4.25 × 10−4 Ω
+ 8.88 × 10−3 4.25 × 10−4 8.88 × 10−3

77 M = 4.48 × 10−4 Ω
+ 9.50 × 10−3 4.48 × 10−4 9.50 × 10−3

78 M = 4.75 × 10−4 Ω
+ 1.15 × 10−3 4.75 × 10−4 1.15 × 10−3

79 M = 5.07 × 10−4 Ω
+ 1.64 × 10−3 5.07 × 10−4 1.64× 10−3

B. Fly ash content (%)

15 M = 4.32 × 10−4 Ω
+ 1.49 × 10−3 4.32 × 10−4 1.49 × 10−3

20 M = 4.53 × 10−4 Ω
+ 1.31 × 10−3 4.53 × 10−4 1.31 × 10−3

25 M = 4.75 × 10−4 Ω
+ 1.15 × 10−3 4.75 × 10−4 1.15 × 10−3

30 M = 5.42 × 10−4 Ω
+ 1.54 × 10−3 5.42 × 10−4 1.54 × 10−3

Table 3. Rheological parameter values of the slurry.

Mass Concentration (%) 76 77 78 79

τ0 (Pa) 54.0 57.8 69.9 99.7
η (Pa·s) 2.37 2.50 2.65 2.83

Fly Ash Content (%) 15 20 25 30

τ0 (Pa) 90.9 79.5 69.9 93.5
η (Pa·s) 2.41 2.52 2.65 3.02

The rheological parameters of the slurry in Table 3 indicate the following:
(1) Under a certain cement to coal gangue to fly ash ratio, larger slurry mass concentrations caused

the slurry viscosity, the yield stress τ0, and the plastic viscosity η to tend to increase overall. When
the concentration increased from 78% to 79%, the rheological parameters were significantly increased;
therefore, it is appropriate to control the mass concentration to 77% to 78%.

Some scholars have studied the flow characteristics of high-concentration backfill slurry containing
coarse aggregate under different concentrations by using pipeline experimental test methods [17].
The results show that the yield stress τ0 and plastic viscosity η increase with the increase of slurry
concentration, and the higher the slurry concentration, the greater the rate of increase. When a certain
critical concentration is reached, τ0 and η increase sharply with increasing concentration. Backfill slurry
with different materials has different critical concentrations. In this paper, the viscosity characteristics
of coal gangue-fly ash backfill slurry tested by the HCGS rheometer also followed the similar law,
and the corresponding critical concentration was 78%.

(2) When the mass concentration of the slurry was unchanged at 78%, the plastic viscosity η
increased with the fly ash content. The yield stress τ0 decreased first and then increased, and was the
lowest when fly ash content was 25%.

High-concentration backfill slurry with suitable content of fine particles has good stability and
fluidity [22,28,29]. The addition of fine particles increases the viscosity of the slurry, slows down
the sedimentation of coarse particles in the slurry, and makes the vertical distribution of the slurry
concentration more even, which is beneficial to reducing the flow resistance. In addition, the fine
particles are filled between the coarse particles and act as a lubricant, which can reduce the frictional
resistance of the movement. When the content of fine particles in the slurry reaches a certain amount,
the gaps between coarse particles are filled with fine particles and the coarser particles are in a
suspended motion state. However, if more fine particles are added, the viscosity and flow resistance of
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the slurry will increase sharply. Therefore, the suitable content of fine particles is conducive to the
flow of the slurry. In the coal gangue-fly ash backfill slurry studied in this paper, coal gangue in the
aggregate was a coarse particle and fly ash was a fine particle. The suitable content of fly ash was 25%,
which gave the coal gangue-fly ash backfill slurry good fluidity.

4. Discrimination of Flow State in a Backfill Slurry Conveying Pipeline

The Reynolds number Re of the slurry and the critical Reynolds number Rec are compared to
determine whether the slurry flow in the pipeline is laminar or turbulent. When Re ≤ Rec, the flow of
slurry in the pipeline is laminar, and when Re > Rec, the flow of slurry in the pipeline is turbulent. The
viscosity in the expression for the Reynolds number varies with the concentration, while the viscosity
is related to the flow state [17,30].

For Bingham plastics, the Reynolds number is calculated based on plastic viscosity η as [21]:

Re = UDρ/η (12)

where ρ is the density of the slurry, kg/m3; D is the inner diameter of the pipeline, m; and U is the flow
velocity of the slurry, m/s.

The inner diameter of the coal gangue-fly ash backfill slurry conveying pipeline was D = 0.1–0.2
m, the normal flow rate was U = ≤2 m/s, and the slurry density was ρ = 1900 kg/m3. Therefore, based
on the values of η from Table 3, the flow Reynolds number for the slurry with mass concentrations
from 76% to 79% could be calculated from Equation (12), as shown in Table 4.

Table 4. Reynolds number and critical Reynolds number of the slurry.

Mass Concentration 76% 77% 78% 79%

D = 0.1 m Re 160 152 143 134
Rec 2662 2670 2750 2967

D = 0.2 m Re 321 304 287 269
Rec 3217 3233 3389 3809

The calculation for the critical Reynolds number based on the plastic viscosity η is

Rec = 2100/
[
1− (4/3)ac + (1/3)ac

4
]

(13)

where ac is the ratio of yield stress to shear stress at the pipe wall, which is

ac = τ0/τw (14)

where τw is the shear stress at the pipe wall, which can be calculated as

τw = η(8U/D) + (4/3)τ0 (15)

Combined with the η and τ0 values from Table 3, when D = 0.1 m and D = 0.2 m, the critical
Reynolds number of the slurry flow with mass concentrations from 76% to 79% could be calculated
from Equations (13) to (15), as seen in Table 4.

Table 4 shows that the Reynolds numbers of the coal gangue-fly ash backfill slurry with mass
concentrations from 76% to 79% were far less than the critical Reynolds numbers. Therefore, the flow
state was considered to be laminar.

5. Engineering Applications

The design backfill capacity of Gonggeying Coal Mine is Q = 90 m3/h. The total length from the
backfill pipeline inlet to the underground backfill pipeline outlet is 1069 m with a vertical height of
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118 m. The mass concentration of the backfill slurry is 77% to 78%, and the mass ratio of solids for
cement:fly ash:coal gangue is 5:25:70.

5.1. Determination of Friction Resistance Coefficient and Inner Diameter of the Backfill Pipeline

The flow state for high-concentration coal gangue-fly ash backfill slurry was close to a Bingham
plastic. In pipeline transportation, the pipeline friction resistance coefficient can be calculated using
Equation (16) [15,31]:

f = (16/3D)τ0 + η
(
32U/D2

)
(16)

where f is the friction resistance coefficient, Pa/m; D is the inner diameter of the pipeline, m; and U is
the average flow velocity of the slurry in the pipeline, m/s.

The diameter of the backfill pipeline not only affects the backfill capacity, but also the stability and
safety of the backfill system [32,33]. If the pipe diameter is too small, the pipeline resistance is large
enough that it will be severely worn. This limits the backfill capacity so that the actual requirements of
the mine production will not be met. If the pipe diameter is too large, pipeline resources will be wasted,
and the small slurry flow rate will cause solids to settle and block the pipe or cause slurry to not fill
the pipes. This can cause damaging effects such as jet impacts and cavitation in the pipeline, which
reduces its service lifetime [34,35]. Based on the above factors, for high-concentration coal gangue-fly
ash backfill slurry, the appropriate pipe diameter should be able to maintain a slurry flow rate in the
pipe between 1.2 to 1.8 m/s.

Based on the design backfill ability and the rheological parameters τ0 and η of the backfill slurry
as obtained from the testing and analysis results given in Table 3, the frictional resistance coefficients
under different pipe diameters were calculated from Equation (16), as shown in Table 5. The table
shows that the inner diameter of the pipeline D was 0.15 m, so a slurry flow velocity U of 1.42 m/s was
appropriate. When the mass concentration of the slurry was 77% to 78%, the corresponding frictional
resistance coefficient f was 7.10–7.84 kPa/m.

Table 5. Friction resistance coefficients under different pipe diameters.

Inner Diameter D
(m)

Slurry Velocity U
(m/s)

Frictional Resistance Coefficients f (kPa/m)

Mass Concentration
77%

Mass Concentration
78%

0.13 1.88 11.27 12.30
0.14 1.62 8.81 9.67
0.15 1.42 7.10 7.84
0.16 1.24 5.80 6.44

5.2. Backfill Pump Working Pressure

Based on the dimensions of Gonggeying Coal Mine, when the slurry flow Q was 90 m3/h and its
mass concentration was 78%, the working pressure of the backfill pump was

P = (1 + k)L f − ∆Hρg
= 1.1× 1069× 7.84× 103

− 118× 1900× 9.8
= 7.02× 106 Pa
= 7.02 (MPa)

(17)

where L is the total length of the pipeline at 1069 m; f is the friction coefficient of the pipeline at
7.84 kPa/m; k is the local resistance coefficient taken as 10%; ∆H is the vertical height of the pipeline at
118 m; and ρ is the slurry density at 1900 kg/m3.

Therefore, under the conditions of backfill flow Q at 90 m3/h, the working pressure of the backfill
pump was 7.02 MPa. Based on the above analysis and combined with the standard configuration of the
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backfill pump, a backfill pump with a flow rate Q of 90 m3/h and a rated pump pressure P of 10 MPa
was selected.

6. Conclusions

(1) Based on the characteristics of the coarse aggregate, the high viscosity from the coal gangue
backfill slurry, and the principle of rheological parameter testing, a rheometer for high-concentration
coal gangue backfill slurries was developed.

(2) The developed HCGS rheometer was based on the theory of slurry rheology and could test the
relationship between the stirring torque and the rotor velocity in the slurry experiment to obtain the
rheological parameters of yield stress τ0 and plastic viscosity η.

(3) The experimental results for the rheological properties of the coal gangue-fly ash backfill slurry
showed the following: (i) As the slurry concentration increased, the yield stress τ0 and plastic viscosity
η tended to increase. When the concentration increased from 78% to 79%, the rheological parameters
increased significantly; therefore, it was more appropriate to control the backfill slurry concentration to
between 77% and 78%. (ii) As the fly ash content increased, the plastic viscosity η increased, while the
yield stress τ0 initially decreased before increasing. The lowest yield stress was at a fly ash content of
25%, which was considered to be the appropriate value.

(4) The Reynolds number Re of the coal gangue-fly ash backfill slurry was much smaller than the
critical Reynolds number Rec. Therefore, the flow state of the slurry in the pipeline was laminar.

(5) Based on the actual working conditions, the resistance coefficient of the backfill pipeline was
calculated, and the reasonable pipe diameter was analyzed to provide a scientific basis for the selection
of the backfill pump.
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