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Abstract: The control of time-delay systems is a hot research topic. Ever since the theory of linear
active disturbance rejection control (LADRC) was put forward, considerable progress has been made.
LADRC shows a good control effect on the control of time-delay systems. The problem about the
parameter stability region of LADRC controllers has been seldom discussed, which is very important
for practical application. In this study, the dual-locus diagram method, which is used to solve the
upper limit of the LADRC controller bandwidth, is studied for both first-order time-delay systems and
second-order time-delay systems. The characteristic equation roots distribution is firstly transformed
into the problem of finding the frequency of the dual-locus diagram intersection point. To solve the
problem for second-order time-delay system LADRC controllers, which is a dual 10-order nonlinear
equation, a transformation has been made through Euler’s formula and genetic algorithm (GA) has
been adopted to search for the optimal parameters. Simulation results and experimental results on
coupled tanks show the effectivity of the proposed method.
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1. Introduction

In most industrial processes such as level control, boiler temperature control, and internal pressure
control of distillation columns, the time-delay phenomenon is widespread. Because of the limitations
of measuring devices, energy conversion devices, and other reasons, time delay is inevitable in
most industrial processes. The mixing process of viscous liquid is a typical industrial process with
pure time delay [1]. The change in pump speed cannot immediately generate liquid viscosity at
the outlet of pipeline change because of the delay in transmission of the viscosity signal and liquid
mixing and transportation. Another example is temperature control in beer fermentation, which is a
common process with an extremely long delay time [2]. To sum up, when the setting value changes,
the controlled variable cannot be tracked and stabilized in the setting value in time. This phenomenon
leads to asynchrony between input and output. When the controlled plant is in the closed loop of
the process with such a time delay, its own dynamic characteristics are affected, and consequently,
the system vibrates easily or even tends to diverge. Such controlled objects are disadvantageous to
the design of controllers. Therefore, how to deal with a time-delay system is a major problem in the
control field.

A modern method is to estimate and compensate the time delay in real time [3]. At present,
most of the time-delay problems in industry are solved with the proportional-integral-differential
(PID) algorithm, although numerous modern control algorithms are available. In addition to the
difficulties in implementing these algorithms, their stability is an important factor. PID controllers can
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be designed without specific plant models, and the PID algorithm has strong adaptability because of
its robustness. The algorithm is also easy to implement, and therefore is widely used in industry. In the
1990s, Han proposed the idea of active disturbance rejection control (ADRC) based on the advantages
of the PID algorithm [4]. Through an in-depth analysis of the development of control theory, Han
examined the nature of control, that is, to detect the error between the setting and actual values, and to
eliminate the error with certain methods [5]. According to this idea, Han discussed the problems in the
design of control law which depended on a model based on his understanding of model theory and
cybernetics [6]. At the same time, by analyzing how the control algorithm can reject the disturbance in
completely unknown circumstances, Han proposed a new concept of estimating compensation for the
error, which subsequently evolved into ADRC [7].

Since ADRC was proposed, abundant achievements have been reported in previous decades.
On the side of stability analysis, ADRC is also improving consistently. Zhao and Guo [8] designed
the ADRC algorithm for single-input single-output (SISO) systems and analyzed its convergence.
For the stability of the closed-loop system, Chen, Sun and Yang [9] proposed the stability theory of
linear active disturbance rejection control (LADRC). Tian and Gao [10] provided the expression of the
transfer function, which also promoted the development of ADRC in the field of stability analysis.
Robustness analysis of ADRC in the frequency domain was also conducted. With the proposed
expression of LADRC transfer function, Wu and Chen [11] presented the transfer function expression
of nonlinear ADRC. The two expressions provide additional convenience in the development of ADRC
theory. By summarizing the previous studies, Huang and Xue [12] provided the design of ADRC
and identified the design differences for various control problems. Madonski [13] proposed general
error-based ADRC for swift industrial implementations. Furthermore, these studies provided valuable
experience in the application process, and increased the convenience in the application of ADRC.
ADRC technology has been used in motors, reactors, heaters and other industrial plants [14–16].

For time-delay systems, Li, Ai and Tian [17] proposed method of ADRC combined with feedforward
control to compensate the delay time. Fu and Tan [18] use the method of ADRC to control unstable
processes with time delays. Stability analysis is an important step if ADRC is applied to the actual
process. Progress has been made on the qualitative analysis method of ADRC in stability analysis,
and the method for determining the parameter stability region of the first-order time-delay system
LADRC controller has also been proposed [19]. Sufficient simulation verification has been carried
out [20], but it has not been verified in the actual process. The parameter stability region of LADRC
controllers in higher-order time-delay systems is not discussed.

In this study, the dual-locus diagram method for solving the parameter stability region of the
first-order time-delay system LADRC controllers is validated on the actual device by programmable
logic controller (PLC). The closed-loop control loop constructed by the second-order time-delay system
and second-order LADRC is analyzed. The process of obtaining the parameter stability region of the
LADRC for the second-order time-delay systems is introduced. The dual-locus diagram method can
provide the range of the parameter. In this range, genetic algorithm (GA) is proposed to search for the
optimal parameter. Combined with the dual-locus diagram method, the theory of solving the stability
region of the controller parameters is given. Finally, it is verified in the simulation.

2. Linear Active Disturbance Rejection Control (LADRC)

To facilitate the subsequent theoretical derivation and application of this study, LADRC is selected
as the main control algorithm. The LADRC structure is shown in Figure 1.
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Figure 1. Block diagram of LADRC.

We consider the following SISO system:

y(n) = bu + f
(
y,

.
y, · · · y(n−1),ω, t

)
(1)

where u, y,
.
y, y(n−1), b, and ω are the input and output of the system, the derivative of the output of the

system, the n− 1 order derivative of the output of the system, the system gain, and the disturbance,
respectively. These variables are transformed into the following “integral” form:

y(n) = (b− b0)u + f + b0u = f + b0u (2)

where f = (b− b0)u+ f indicates total disturbance, b0 is a rough approximation of b, and the function of

LADRC is to estimate and compensate f . We define state variable X =
[

x1 x2 · · · xn xn+1
]T

,
where xn+1 is the extended state.

Transforming the preceding equation into the form of state space, we can obtain

.
x1 = x2

...
.
xn−1 = xn
.
xn = xn+1

.
xn+1 =

.

f = h
y = x1

(3)

The above equation is written in the following matrix form: .
X = AX + b0Bu + Eh

y = CX
(4)

where A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


, B =



0
0
...
1
0


, C =



1
0
...
0
0


, E =



0
0
...
0
1


.

The total disturbance f is accurately estimated and compensated by the extended state observer
(ESO), which can be designed in the following form: .

Z = AZ + b0Bu + L(y− ŷ)
ŷ = CZ

(5)

where b0 is also an adjustable parameter when the system gain of the controlled plant is unknown.
L = [l1 l2 · · · ln ln+1]

T is the gain matrix of ESO, Z = [z1 z2 · · · zn zn+1]
T is the output of ESO, and zn+1

is the estimate of f . We find out from the overall design process that the design of LADRC is basically
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the same. First, the states contained in the system are defined, and then all the disturbances of the
system, which are different from the standard type, are observed by extending a single state, thereby
realizing the compensation for the disturbance.

After obtaining the ESO, we select the control rate as follows:

u =
u0 − zn+1

b0
(6)

For the output of the controller u0, we choose:

u0 = k1(r− z1) − k2z2 − · · · − knzn (7)

where k1, k2, · · · kn are the undetermined coefficients and r is the reference signal.

3. Parameter Stability Region Determination of LADRC

In this section, we discuss the principle of the dual-locus diagram method and parameter stability
region determination method of LADRC on the general mathematical model of linear time-delay
systems. The parameter stability region determination method is discussed by using the example of
second-order time-delay systems.

3.1. Principle of Dual-Locus Diagram Method

In process control engineering, many theoretical analysis methods have been proposed for
single-variable control in a single loop. For such systems, the main method for stability analysis is to
solve their closed-loop characteristic equation

1 + Q(s) = 0 (8)

where Q(s) is the open-loop transfer function and s is the Laplace operator.
In many modern control systems, the closed-loop characteristic equations are generally not

described by Equation (8), and this equation is not generally representative. If multiloop and
multivariable situations occur in the control loop, such as chemical process control, UAV flight control,
and so on, this expression will not describe the plant. To solve this problem, we can take the following
general expression:

L1(s) + L2(s) = 0 (9)

where L1(s) and L2(s) are functions related to the Laplace operator s and satisfying Equation (9),
and may contain a nonlinear part. Making the transposition for Equation (9), we can have the
following equation:

L1(s) = −L2(s) (10)

In this manner, the left and right sides of the equation are depicted in the s plane, and the two
Nyquist curves can be obtained. From the preceding process, we can see that Equations (9) and (10)
are equivalent; thus, the system characteristics described by the two equations have not changed.
Therefore, the system stability can be analyzed by performing stability discrimination on the trajectories
at both ends of Equation (10).

In the time-delay system, the open-loop transfer function Q(s) can be written as Gc(s)G0(s)e−τs,
where Gc(s) is the transfer function of the controller and G0(s) is the transfer function of the plant
without time delay e−τs. Then the closed-loop characteristic equation 1 + Q(s) = 0 can be written as
Gc(s)G0(s) = −eτs, where Gc(s)Go(s) and eτs correspond to L1(s) and L2(s), respectively. The stability
of the original system can be determined by analyzing the interaction between the two trajectories.
The main theory used here is the dual-locus diagram method. In the next derivation, we use L(s)
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instead of L1(s) to facilitate the derivation process. We quote the following theorem of stability criterion
in a time-delay system with the dual-locus diagram method:

Lemma 1. [21] If the system is stable, then the closed-loop characteristic equation of the system must satisfy one
of the following conditions:

If the Nyquist curve of L(s) is non-intersecting with the Nyquist curve of −eτs, then L(s) has no poles in
the right half of the s plane.

If the Nyquist curve of L(s) intersects with the Nyquist curve of −eτs, then L(s) has no poles in the right
half of the s plane, and the Nyquist curve of L(s) arrives at the point of intersection earlier than −eτs, which
means that ϕ(L( jωi)) > ϕ

(
−e jωiτ

)
.

3.2. Parameter Stability Region Determination Method of LADRC

The dual-locus diagram method is mainly used in the frequency domain, and the transfer function
of the control algorithm is needed. Only when this transfer function is known can the closed-loop
transfer function of the entire control system be solved. Thus, the stability region of the controller
parameters can be obtained by using the dual-locus diagram method. The next step is to derive the
transfer function of LADRC. As the controlled plant is mainly a second-order time-delay system, we
select the second-order LADRC. The following figure shows the transfer function structure of LADRC.

In this figure, R(s) is the reference signal, Y(s) is the output signal, D(s) is the uncertain external
disturbance signal, U(s) is the control signal, Gp(s) is the controlled plant, and H(s) and Gc(s) are the
undetermined terms of the controller. We can obtain the control signal from Figure 2 as follows:

U(s) = (R(s)H(s) −Y(s))Gc(s) =R(s)H(s)Gc(s) −Y(s)Gc(s) (11)
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The control law corresponding to the second-order system is selected as follows:

U(s) =
1
b0
(k1(R(s) −Y(s)) − k2Z2(s) −Z3(s)) (12)

where k1 and k2 are the undetermined coefficients. According to Equation (5), we can obtain

.
Z = (A− LC)Z + b0Bu + Ly (13)

Laplace transformation of the above equation is

Z(s) = (sI −A + LC)−1
[

b0B L
][ U(s)

Y(s)

]

= 1
s3+l1s2+l2s+l3


b0s l1s2 + l2s + l3

b0
(
s2 + l1s

)
l2s2 + l3s

−l3b0 l3s2


[

U(s)
Y(s)

] (14)
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where I is the unit diagonal matrix and l1, l2, l3 are undetermined coefficients. From the preceding
discussion, we can obtain:  Z2(s) =

b0(s2+l1s)U(s)+(l2s2+l3s)Y(s)
s3+l1s2+l2s+l3

Z3(s) =
−l3b0U(s)+l3s2Y(s)

s3+l1s2+l2s+l3

(15)

Substituting Equation (14) into Equation (12), we have

U(s) =
1
b0

k1 (R(s) −Y(s)) − k2
b0

(
s2 + l1s

)
U(s) +

(
l2s2 + l3s

)
Y(s)

s3 + l1s2 + l2s + l3
−
−l3b0U(s) + l3s2Y(s)

s3 + l1s2 + l2s + l3

 (16)

Comparing the equation above and Equation (11), we find that both are expressions of U(s) and
their coefficients must be equal, so H(s) and Gc(s) must satisfy the following conditions: H(s) = k1 ×

s3+l1s2+l2s+l3
k1s3+(k1l1+l2k2+l3)s2+(k1l2+k2l3)s+k1l3

Gc(s) = 1
b0
×

k1s3+(k1l1+l2k2+l3)s2+(k1l2+k2l3)s+k1l3
s3+(l1+k2)s2+(l2+k2l1)s

(17)

where “×” is the multiplication operator.
According to the theory of bandwidth parameterization [22], the correspondence between

bandwidths and unknown variables in the preceding equation is as follows:

l1 = 3ωo

l2 = 3ω2
o

l3 = ω3
o

k1 = ω2
c

k2 = 2ωc

(18)

where ωo is the observer bandwidth and ωc is the controller bandwidth. Thus, H(s) and Gc(s) can be
written as the expressions of ωo and ωc in the following form:

H(s) = ω2
c ×

s3+3ωos2+3ω2
os+ω3

o
ω2

c s3+(3ω2
cωo+6ωcω2

o+ω
3
o)s2+(3ω2

cω
2
o+2ωcω3

o)s+ω2
cω

3
o

Gc(s) = 1
b0
×
ω2

c s3+(3ω2
cωo+6ωcω2

o+ω
3
o)s2+(3ω2

cω
2
o+2ωcω3

o)s+ω2
cω

3
o

s3+(3ωo+2ωc)s2+(3ω2
o+6ωcωo)s

(19)

In Equation (19), b0 is another unknown variable. If the second-order LADRC controller estimates
the states of the controlled system accurately, and the unknown variable b0 can be approximately
equal to the steady-state gain b of the controlled plant, then only two parameters are in Equation (18).
In the theory of bandwidth parameterization, the observer bandwidth ωo is usually 3–5 times larger
than the controller bandwidth ωc in the process of actual tuning parameters, which means that
ωo = 3 ∼ 5ωc. In this way, only one parameter is left to be tuned. Through the detailed introduction,
the concrete expression of the second-order LADRC transfer function has been derived. The next
main object is the controlled plant, which is the transfer function of the second-order time-delay
system. Thus, a complete control system is constructed, and then the stability region of the controller
parameters is obtained by using the dual-locus diagram method. A second-order time-delay system

T1T2
d2 y(t)

dt + (T1 + T2)
dy(t)

dt + y(t) = bu(t− τ) is considered, and its transfer function in frequency
domain is as follows:

Gp(s) =
b

(T1s + 1)(T2s + 1)
e−τs (20)

where b is the system gain, T1 and T2 are the time constants, and τ is the delay time. For the second-order
time-delay system described, we select the second-order LADRC as the control algorithm. Equation (18)
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provides the specific parameters. If accurate b is estimated, then b0 is equal to b, and we can obtain the
following closed-loop transfer function of the system:

Gcl(s) =
H(s)Gc(s)Gp(s)

1 + Gc(s)Gp(s)
(21)

From the above transfer function, we can find the following closed-loop characteristic equation:

δ = 1 + Gc(s)Gp(s) = 1 + Gc(s)G0(s)e−τs (22)

From the empirical formulas mentioned, we can see that the observer bandwidth is generally
3–5 times the controller bandwidth. Here, we select K, that is, ωo = Kωc, so that we can analyze the
stability region later.

Let L(s) = Gc(s)G0(s), and substitute Equations (18) and (19) into Equation (21), and then the
expression can be derived as follows:

L(s) =
ω2

c s3 +
(
3Kω3

c + 6K2ω3
c + K3ω3

c

)
s2 +

(
3K2ω4

c + 2K3ω4
c

)
s + K3ω5

c

s
(
s2 + 3Kωcs + 2ωcs + 3K2ω2

c + 6Kω2
c

)
(T1s + 1)(T2s + 1)

= −eτs (23)

Theorem 1. For the second-order time-delay system b
(T1s+1)(T2s+1) e−τs, the second-order LADRC is selected as

the control algorithm to build a complete closed-loop control system, which is shown in Figure 2. L(s) is also
obtained according to Equation (23).

We consider the following conditions:

(a) The steady-state gain b, time constants T1 and T2, and delay time τ are given explicitly.
(b) The appropriate bandwidth ratio K in the designed LADRC is given explicitly.

Under the preceding conditions, we can draw the following conclusions according to Nyquist stability
criterion [23]:

(1) If the open-loop transfer function of the system has no poles in the right half plane and the Nyquist curve of
L( jω) and −e jωτ do not intersect, the system is stable.

(2) If a positive real root satisfies L( jω) = 1 and the phase angle of L( jω) is larger than that of −e jωτ at their
intersection frequency, the closed-loop system is stable and the stability region of the controller bandwidth
ωc can be calculated accurately as follows:

φ =
{
ωc

∣∣∣ϕ1 −ϕ2 > 0, τ, T1, T2, b, K
}

(24)

where ϕ1 and ϕ2 are the phase angles of L( jω) and −e jωτ, respectively.

Proof. To obtain the intersection frequency ωi, the following equation can be solved:∣∣∣L( jωi)
∣∣∣ = ∣∣∣−e jωiτ

∣∣∣ = 1 (25)

From Equation (23), we can know that the order of L(s) is 5; thus, the order of
∣∣∣L( jωi)

∣∣∣ is 10.
Equation (25) can be simplified as follows:

aωi
10 + bωi

8 + cωi
6 + dωi

4 + eωi
2
− 1 = 0 (26)

where a,b,c,d, and e are the functions of ωc. Naturally, ωi can be regarded as a function of ωc, K, T1,
and T2, that is, ωi = f (ωc, K, T1, T2). Substituting ωi into L( jωi) and −e jωiτ, we can obtain their phase
angles at the intersection frequency ωi, where ϕ2 = τωi −π �.
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According to Lemma 1, if ϕ1 −ϕ2 > 0, the system is stable and the range of ωc can also be solved
at the same time.

4. Verification of Dual-Locus Diagram Method

4.1. For First-Order Time-Delay Systems

The coupled tank is a typical industrial plant. Ravi Patel, Anil Gojiya, and Dipankar Deb used
the DC gain technique to formulate failure reconfiguration of pumps in two reservoirs connected to
the overhead tank [24]. To verify the correctness of the dual-locus diagram method, we conducted an
experiment on coupled tanks. The level of the lower tank is controlled by changing the inflow rate of
the upper tank, where the rate is controlled by a frequency converter. The plant can be regarded as
a first-order plus time-delay process, where its gain, time constant, and delay time can be identified
through the method of step response. The plant is controlled by PLC S7-300; thus, the LADRC
algorithm must be discretized before being downloaded, where the discretization method of zero-order
holder is used [25].

4.1.1. Construction of Extended State Observer for First-Order Systems

We consider the following first-order system:

.
y = g(t, y, u) + w + bu (27)

where u is the input, y is the output, b is relative gain, and g and w are internal disturbance and external
disturbance, respectively.

We define x1 = y and x2 = f , where f is the total disturbance and f =
.
y− b0u. b0 is the estimated

value of b, and we can obtain the extended state space as follows:

.
x = Ax + bBu + E f

y = Cx + Du
(28)

where A =

[
0 1
0 0

]
, B =

[
1
0

]
, E =

[
0
1

]
, C =

[
1 0

]
, D = 0, x =

[
x1

x2

]
.

Constructing the state observer according to the given state space, we obtain

.
z = Az + b0Bu + L(y− ŷ)
ŷ = Cz

(29)

where z =
[

z1 z2
]T

is the estimate of x.
Then, by assigning observer poles to observer bandwidth ωo:∣∣∣sI − (A− LC)

∣∣∣ = (s +ωo)
2 (30)

we can obtain

L =

[
2ωo

ω2
o

]
(31)

4.1.2. Discretization of Extended State Observer

First, the continuous state space is discretized:

x(k + 1) = Φx(k) + Γu(k)
y(k) = Hx(k) + Ju(k)

(32)
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where Φ = eAT =

[
1 T
0 1

]
,Γ =

T∫
0

eAtdtBb0 = b0

[
T
0

]
, H = C, J = D = 0, T is the sampling period,

which is equal to the scanning period of PLC.
An observer is constructed as follows:

x̂(k + 1) = Φx̂(k) + Γu(k) + Ld(y(k) − ŷ(k))
ŷ(k) = Hx̂(k) + Ju(k)

(33)

Replacing Ld with ΦLc, we can obtain

x̂(k + 1) = Φx(k) + Ld(y(k) − ŷ(k))
x(k) = x̂(k) + Lc(y(k) − ŷ(k))

(34)

and then assigning observer poles to β:∣∣∣zI − (Φ − LdH)
∣∣∣ = ∣∣∣zI − (Φ −ΦLcH)

∣∣∣ = (z− β)2 (35)

From the above equation, we know that Ld = ΦLc =

 2(1− β)
(1−β)2

T

 and Lc = Φ−1Ld =

 1− β2

(1−β)2

T

.
β is the pole in the continuous system; thus, the pole in the discrete system is β = e−ωoT and

Lc =

 1− e−2ωoT

(1−e−ωoT)
2

T

 accordingly.

Second, the control law can be designed as follows:

u0 = kp(r− z1) (36)

u =
u0 − z2

b0
(37)

When the appropriate parameters are selected, the estimated value z is almost equal to the actual
value x, and

.
y is close to u0 accordingly.

According to the method of bandwidth parameterization, kp can be parameterized by ωc.
Third, the problem of how to implement the algorithms on PLC must be solved. We write the

main discrete algorithm in “cyclic interrupt” organization block (OB35). At the beginning of the
program, the calculation result of the previous scan cycle (x (k)) is moved to the current x (k + 1).
When the current scan cycle ends, the new x (k + 1) is held until the next scan cycle. In this manner,
the difference calculus can be implemented. The function block of the current discrete extended state
observer (CDESO) is written first, and then the function block of LADRC is written on the basis of
the CDESO.

In the experimental process, WinCC was used as the monitoring software. We selected CPU
315-2 PN/DP [6ES7 315-2EG10-0AB0] and SM334 AI/AO × 8/8Bit [SM334-0CE01-0AA0]. For the
communication protocol between PLC and PC, we selected TCP/IP. The experimental schematic
diagram and water tanks are as shown in Figures 3 and 4, respectively.

4.1.3. Analysis of Experiment Results

We first gave a “10 cm” signal manually, and then we changed the setting value to 15 cm. After
many experiments, we obtained the following results: the delay time τ was 16 s, the system gain was
1.86, and time constant T was 74 s.

Thus, the transfer function of the plant is 1.86
74s+1 e−16s.
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According to the dual-locus diagram method, the equation of frequency intersection ωi is as
follows in the LADRC controller corresponding to the first-order time-delay system:

∣∣∣L( jωi)
∣∣∣ = ∣∣∣∣∣∣∣−ωcωi

2 +
(
2Kω2

c + K2ω2
c

)
jωi + K2ωc

3

(−ωi2 + 2Kjωcωi)( jωiT + 1)

∣∣∣∣∣∣∣ = 1 (38)

The preceding equation can be simplified as

aω6
i + bω4

i + cω2
i − 1 = 0 (39)
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where a = T2

K4ωc6 , b =
(4K2T2ωc

2+1−ωc
2)

K4ωc6 , and c =
4K2ω2

c+2K2ω4
c−(2Kω2

c+K2ω2
c)

2

K4ωc6 . [19] also presents its
solutions that satisfy actual conditions:

ωi =

√√√
3

√
−

q
2
+

√(q
2

)2
+

(p
3

)3
+

3

√
−

q
2
−

√(q
2

)2
+

(p
3

)3
−

b
3a

(40)

where p = c
a −

b2

3a2 and q = 2b3

27a3 −
bc

3a2 −
1
a .

The phase angle of L( jω) at intersection frequency ωi can be written as follows:

ϕ1 = arctan(
2Kω2

cωi + K2ω2
cωi

K2ωc3 −ωcω2
i

) − arctan(
ωi

2Kωc
) − arctan(Tωi) −

π
2

(41)

Similarly, the phase angle of −e jωτ at intersection frequency ωi is ϕ2 = τωi − π. Let ϕ1 > ϕ2,
and then the upper limit of ωc can be obtained. We used MATLAB to perform this work. In these
coupled-tank devices, ωc is approximately 0.1505 when K = 10. First, we manually set the liquid
level at 10 cm, where the set value of LADRC was also 10 cm. Then, we cut the manual mode of the
controller to the automatic mode and changed the set value to 15 cm. We recorded the data and drew
the figure by MATLAB (9.4, MathWorks, Natick, MA, US, 2018) and the result is shown in Figure 5.
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We can observe that the measured value PV of the level has an unattenuated oscillation between
10 cm and 20 cm. Also, the measured value of the level can be convergent if the controller bandwidth
ωc becomes smaller, which is verified in the next two experiments. This time we only changed ωc to
0.1 and 0.05. The rest of the operation was the same as in the previous experiment. We obtained the
following results:

According to Figures 6 and 7, a smaller controller bandwidth ωc can make the plant convergent
and lead to a smaller overshoot.

4.2. For Second-Order Time-Delay Systems

We considered a second-order time-delay system as follows:

Gp = G0e−153s =
1.5

(120s + 1)(75s + 1)
e−153s (42)
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The steady-state gain b was 1.5, and two time constants T1 and T2 were 120 and 75, respectively.
The delay time τ was 153 s. According to the theory introduced in part 2, a second-order LADRC
controller can be chosen, and we selected b0 = b = 1.5 and K = 10. In this way, Equation (22) becomes
the following form:

L(s) =
ω2

c s3 +
(
15ω3

c + 150ω3
c + 125ω3

c

)
s2 +

(
75ω4

c + 250ω4
c

)
s + 125ω5

c

s
(
s2 + 15ωcs + 2ωcs + 75ω2

c + 30ω2
c

)
(120s + 1)(75s + 1)

= −e153s (43)

After simplification, the preceding equation becomes

L(s) =
ω2

c s3 + 290ω3
c s2 + 325ω4

c s + 125ω5
c

s
(
s2 + 17ωcs + 105ω2

c

)
(120s + 1)(75s + 1)

= −e153s (44)

Let its modulus be equal to the modulus of −e153s, and we can obtain the following equation and
solve for ωi, which is a function of ωc:

∣∣∣L( jωi)
∣∣∣ = ∣∣∣∣∣∣∣ − jω2

cω
3
i − 290ω3

cω
2
i + jω4

cωi + 125ω5
c

jωi
(
−ω2

i + 17 jωcωi + 105ω2
c

)
(120 jωi + 1)(75 jωi + 1)

∣∣∣∣∣∣∣ = ∣∣∣−e153 jωi
∣∣∣ = 1 (45)
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From the introduction in part 2, the phase angles of L( jω) and −e153 jω can be written as

ϕ1 = arctan

 −ω2
cω

3
i +ω4

cωi

−290ω3
cω

2
i + 125ω5

c

− π2 − arctan

 17ωcωi

−ω2
i + 105ω2

c

− arctan(75ωi) − arctan(120ωi) (46)

ϕ2 = τωi −π (47)

Furthermore, their difference value is

ϕ1 −ϕ2 = arctan
(
−ω2

cω
3
i +ω

4
cωi

−290ω3
cω

2
i +125ω5

c

)
− arctan

(
17ωcωi

−ω2
i +105ω2

c

)
−arctan(75ωi) − arctan(120ωi) − 153ωi +

π
2

where ωi is a function of ωc; thus, ϕ1 −ϕ2 is also a function of ωc.
We can find that solving forωc is equivalent to solving the following nonlinear system of equations:

∣∣∣L( jωi)
∣∣∣ =

∣∣∣∣∣ − jω2
cω

3
i −290ω3

cω
2
i + jω4

cωi+125ω5
c

jωi(−ω2
i +17 jωcωi+105ω2

c)(120 jωi+1)(75 jωi+1)

∣∣∣∣∣ = ∣∣∣−e153 jωi
∣∣∣ = 1

ϕ1 −ϕ2 = arctan
(
−ω2

cω
3
i +ω

4
cωi

−290ω3
cω

2
i +125ω5

c

)
− arctan

(
17ωcωi

−ω2
i +105ω2

c

)
− arctan(75ωi)

−arctan(120ωi) − 153ωi +
π
2 = 0

(48)

where the two unknown variables ωc are and ωi. In fact, the preceding nonlinear system of equations
means that the argument and modules of L( jωi) are equal to the argument and modules of −e153 jωi ,
respectively. In other words, the real and imaginary parts of L( jωi) are equal to the real and imaginary
parts of −e153 jωi , respectively. In addition, we can know that −e153 jωi = − cos(153ωi) − j sin(153ωi)

from Euler’s formula. Then, another nonlinear system of equations containing trigonometric functions,
which is equal to Equation (48), can be obtained:

 900ωcω4
i − 9135ω2

cω
2
i + 87ω4

− 17ωcω2
i = (290ω3

cω
2
i − 125ω5

c ) cos(153ωi) +
(
ω2

cω
3
i −ω

4
cωi

)
sin(153ωi)

−94500ω2
cω

3
i + 900ω5

− 1479ωcω3
i + 105ω2

cωi −ω3
i = (125ω5

c − 290ω3
cω

2
i ) sin(153ωi) +

(
ω2

cω
3
i −ω

4
cωi

)
cos(153ωi)

(49)

Systems of equations in the preceding forms can be solved by the function fsolve in MATLAB.
Then, we can obtain ωc ≈ 0.1727 under the condition of K = 5, and its step response is shown in
Figure 8.Processes 2020, 8, x FOR PEER REVIEW 13 of 19 
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At the same time, we can obtain the Nyquist curves of L(s) and −e153s as shown in Figure 9.
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When K takes different values, ωc will have different stability regions. Using the above method,
we calculate the stability region when K takes different values. The results are shown in Figure 10.Processes 2020, 8, x FOR PEER REVIEW 14 of 19 

 

 
Figure 10. Step Response (Equal Amplitude Oscillation) of a Second-Order Time-Delay System for 
Different 𝐾. 

The local enlargement is shown in Figure 11. 

 
Figure 11. Local Magnification for Figure 10. 

The corresponding upper bounds of 𝜔௖ and 𝜔௢ are shown in Table 1 when 𝐾 takes different 
values in the preceding figures. 

Table 1. Upper Limit of 𝜔௖ for Different 𝐾. 𝑲 3 5 10 20 30 50 100 200 𝝎𝒄 0.2164 0.1727 0.1308 0.1016 0.0882 0.0741 0.05905 0.0473 𝝎𝒐 0.6492 0.8635 1.308 2.032 2.646 3.705 5.905 9.46 
From Figure 11 and Table 1, the upper limit of 𝜔௖ decreases with the increase of 𝐾. However, 

its amplitude and period of step response decrease with the increase of 𝐾, which means that the 
increase of 𝐾 helps improve the control performance. 

In the actual industrial process, the devices cannot be permitted to work at the upper limit of 𝜔௖ 
because it will wear the devices seriously. In fact, the overshoot and setting time are expected to be 
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Figure 10. Step Response (Equal Amplitude Oscillation) of a Second-Order Time-Delay System for
Different K.

The local enlargement is shown in Figure 11.
The corresponding upper bounds of ωc and ωo are shown in Table 1 when K takes different values

in the preceding figures.

Table 1. Upper Limit of ωc for Different K.

K 3 5 10 20 30 50 100 200

ωc 0.2164 0.1727 0.1308 0.1016 0.0882 0.0741 0.05905 0.0473
ωo 0.6492 0.8635 1.308 2.032 2.646 3.705 5.905 9.46
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From Figure 11 and Table 1, the upper limit of ωc decreases with the increase of K. However, its
amplitude and period of step response decrease with the increase of K, which means that the increase
of K helps improve the control performance.

In the actual industrial process, the devices cannot be permitted to work at the upper limit of ωc

because it will wear the devices seriously. In fact, the overshoot and setting time are expected to be as
small as possible for the actual control performance. When K is given, we can reduce the overshoot by
reducing ωc, and the relationship between system step response and ωc is shown in Figure 12.Processes 2020, 8, x FOR PEER REVIEW 15 of 19 
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Figure 12. Step Response of a Second-Order Time-Delay System for Different ωc and K = 5.

As shown in Figure 12, the overshoot decreases with the decrease of ωc. However, the setting time
also lengthens with the decrease of ωc. Thus, considering all these factors, we find that ωc is acceptable
between 0.09 and 0.11 in the actual process.

When ωc is in the aforementioned range, its step response has a relatively shorter setting time and
smaller overshoot. To determine the optimal value of ωc, GA is proposed [26]. As the upper limit of ωc

can be solved by the method of dual-locus diagram, ωc can quickly converge to the optimal value,
which is a problem about multiple local optima in the objective space.

A suggested fitness function is as follows:

J =
∫
∞

0

(
ω1t

∣∣∣e(t)∣∣∣+ω2u2(t)
)
dt +ω3umax +ω4δp (50)
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where e, u, umax, and δp are error, control quantity, maximum value of control quantity, and overshoot
of the system, respectively. Weights ω1, ω2, ω3, and ω4 are 1, 1, 5,000,000, and 5,000,000, respectively.
The range of parameter ωc is 0–0.1727 when K = 5, and the population size is 50. The stopping
generation is 50. The results are presented in Figure 13.
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Figure 13 shows that ωc converges to the optimal value at the 15th generation, and the best
individual is 0.103. The step response for ωc = 0.103 is shown in Figure 14.
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Figure 14. Step Response of a Second-Order Time-Delay System for ωc = 0.103 when K = 5.

Figure 14 shows that the step response of the system has a relatively shorter setting time and
smaller overshoot when ωc = 0.103.

In the preceding section, we discussed the effect of the change of ωc in control performance when
K is given. Also, we examined the effect of the change of K on the control performance when ωc is
given. The next simulation was used to discuss the above issues. In this simulation, ωc was set to
0.0473, which is the upper limit for K = 200. We selected K as 3, 5, 10, 20, 30, 50, 100, and 200 to perform
simulations for its step response. The results are shown in Figure 15.
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Figure 15. Step Response of a Second-Order Time-Delay System for Different K when ωc = 0.0473.

Figure 15 shows that the overshoot decreases with the decrease of K, but similar to ωc, a smaller K
means a longer setting time. Furthermore, the acceptable range of K is 50–100. Evidently, the effect
of the change of K on the control performance when ωc is given is similar to ωc. However, K is not
supposed to be extremely large in the actual process. Similarly, the optimal value of K can be found
by GA, which is also a problem about multiple local optima in the objective space. The process of
objective function optimization for K is shown in Figure 16.
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Figure 16. Process of Objective Function Optimization for K.

Figure 16 shows that K converges to the optimal value at the 10th generation, and the best
individual is 40.626. The step response for K = 40.626 is presented in Figure 17.

Figure 17 shows that the step response of the system has a relatively shorter setting time and
smaller overshoot when K = 40.626.

From the preceding analysis, we can observe that an ideal control performance needs an appropriate
controller bandwidth ωc and bandwidth ratio K. For the actual process, we can first determine the
approximate range of K, and then select the appropriate ωc. When we select roughly ωc and K, we can
fine-tune them to find the best values according to the actual process.
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5. Conclusions

In this study, the dual-locus diagram method for the parameter stability region of first-order
time-delay system LADRC controllers is validated by water tank experiments by PLC. A method for
solving the parameter stability region of LADRC controllers of second-order time-delay systems is also
provided, and simulations are conducted to validate this method. GA is introduced to optimize the
LADRC controller parameters and achieves good results. These experimental and simulation results
show that the actual process needs an appropriate bandwidth ratio K and controller ωc, and smaller ωc

and K both mean a smaller overshoot and longer setting time. The adjustable range of K is relatively
smaller in the actual process and the adjustable range of ωc has an upper limit. In the actual process,
both K andωc need to be considered. However, the method of solving the upper limit ofωc complicates
the application of LADRC on second-order time-delay systems. Although GA can find the optimal
parameter, further effort is needed to simplify the dual-locus diagram method for its application.
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