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Abstract: An analytical model predictive control (MPC) tuning method for multivariable first-order
plus fractional dead time systems is presented in this paper. First, the decoupling condition of the
closed-loop system is derived, based on which the considered multivariable MPC tuning problem is
simplified to a pole placement problem. Given such a simplification, an analytical tuning method
guaranteeing the closed-loop stability as well as pre-specified time-domain performance is developed.
Finally, simulation examples are provided to show the effectiveness of the proposed method.

Keywords: model predictive control; parameter tuning; analytical method; multivariable fractional
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1. Introduction

Model predictive control (MPC) is widely applied in various kinds of applications in different
industrial areas like chemical, petrochemical, automotive, and aerospace [1–3]. As an advanced modern
control technology, MPC uses a specific process model to predict future plant response and solves an
optimization problem based on such a prediction to obtain the control signal. Such a configuration
provides a number of advantages to the MPC system, like robustness, flexibility on model requirements,
and easiness for dealing with the constraints on controls and states, which makes the MPC the most
successful control method except for PID (Proportion Integration Differentiation) controllers [4,5].

In MPC design, there are several tuning parameters, such as prediction horizon, control horizon,
and weight matrices in the cost function. These parameters can significantly influence the closed-loop
performance, stability, and robustness of the controlled system. For multivariable systems, parameter
tuning becomes more intricate in light of the complex coupling [6]. Therefore, parameter tuning
becomes more crucial and challenging for the successful implementation of multivariable MPC.
The existing tuning methods in industrial applications are mostly based on practical experiences
or numerical methods, which are extraordinarily time-wasting and computationally expensive [7].
In addition, the study of the closed-loop properties cannot be performed conveniently via those
methods [8]. Therefore, it is important to study the analytical MPC tuning methodology which gives
closed form formulas for the selection of the tuning parameters.

As a large portion of the industrial processes controlled by MPC can be effectively modeled by
first-order plus dead time (FOPDT) systems, we focus on MPC tuning for FOPDT systems in this work.
In Shridhar and Cooper [9], an analytical tuning strategy is proposed for unconstrained multivariable
dynamic matrix control (DMC) through the approximation of the FOPDT model. In Nery Júnior et
al. [10], an analytical DMC tuning tool is developed based on the application of analysis of variance
(ANOVA) and nonlinear regression analysis for FOPDT systems. In Bagheri and Khakisedigh [11],
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a constrained multivariable MPC tuning method is developed for uncertain plants using particle
swarm optimization technique. In Shah and Engell [12], an approach to determine GPC (Generalized
Predictive Control) tuning parameters for unconstrained multiple-input multiple-output (MIMO)
system is presented based on the frequency domain analysis using convex optimization solvers. In
Yong et al. [13], a generalized predictive control method using the recursive least squares algorithm
is presented for the FOPDT model. In Bagheri and Khakisedigh [14], an analytical MPC tuning
method is proposed for a single-input single-output (SISO) FOPDT model without active constraints.
Moreover, an analytical MPC tuning method for a multiple-input multiple-output (MIMO) FOPDT
model is developed in Bagheri and Khakisedigh [15]. In Bagheri and Khakisedigh [16], the authors
also provide an MPC tuning method that is able to meet pre-described performance requirements for
SISO first-order plus fractional dead time (FOPFDT) models.

Note that some industrial processes own a fractional order dead time and when the dead time
is approximated from fractional to integral to apply the existing tuning method, the closed-loop
performance can significantly downgrade [17], and thus MPC tuning of first-order plus fractional dead
time (FOPFDT) systems should be specifically considered. To the best of the authors’ knowledge, MPC
tuning of FOPFDT systems has only been studied by [16], who, however, just focused on the SISO
case. As MIMO plants play an important role in industrial applications, it is vital to study the MIMO
FOPFDT case. Therefore, this paper proposes an analytical MPC tuning approach for MIMO FOPFDT
models, and the contributions of the paper are summarized as follows:

(1) The decoupling condition of the MIMO FOPFDT system controlled by MPC is derived, based on
which the considered multivariable MPC tuning problem is simplified as a pole placement problem.

(2) Given such a simplified MPC tuning problem, an analytical tuning method is proposed to
guarantee the closed-loop stability as well as the pre-specified time-domain performance for the
considered system.

This paper is organized in the following way: in Section 2, the problem formulation of MPC tuning
for MIMO FOPFDT models is addressed. In Sections 3 and 4, by performing a closed-loop analysis,
the decoupled condition is obtained, and then the analytical MPC tuning equations are derived. In
Section 5, the effectiveness of the proposed tuning formulas is validated through simulation examples.
Finally, in Section 6 the paper closes with some conclusions.

2. Problem Formulation

In this section, the multivariable FOPFDT model is provided and transformed into the state space
realization. Then, some tuning bases of the multivariable MPC are presented. To facilitate the analysis,
it is first presumed that every manipulated variable (input) influences the control variables (outputs)
with the same dead time and dynamic behavior.

Consider a square multivariable plant model as

y(s) = G(s)u(s) (1a)

where
y(s) = [y1(s), y2(s), . . . , ym(s)]

T , u(s) = [u1(s), u2(s), . . . , um(s)]
T ,

G(s) =
[
gi j(s)

]
, gi j(s) = ki j

e−θ js

τ js+1 i, j = 1, 2, . . . , m .
(1b)

The fractional dead time model is obtained by discretizing from Equation (1a) with a sampling
time Ts

y(z) = G(z)u(z), (2a)

where
y(z) = [y1(z), y2(z), . . . , ym(z)]

T, u(z) = [u1(z), u2(z), . . . , um(z)]
T,

G(z) = [gi j(z)], gi j(z) = ki j(1− a j)
(1−b j)z+b j

zdj+1
(z−a j)

i, j = 1, 2, . . . , m, (2b)
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and yi(z) is the ith plant model output and uj(z) is the jth control signal. ai = e−Ts/τi , θi = Ts(di + bi),
0 ≤ bi < 1, and di is the delay between the ith output and input which is a non-negative integer number.
The time delay is generally a non-integer multiple of the sampling time, so the dead time of the discrete
model is non-integral. Let K be the gain matrix of Equation (2b) as

K = [ki j] , i, j = 1, 2, . . . , m (3)

Let P(z) and D(z) be the dynamic response and time delay matrices of Equations (2b) and (3),
which are represented as

P(z) = diag
{
(1− a1)

(1−b1)z+b1
z(z−a1)

, (1− a2)
(1−b2)z+b2

z(z−a2)
, . . . , (1− am)

(1−bm)z+bm
z(z−am)

}
,

D(z) = diag
{
z−d1 , z−d2 , . . . , z−dm

}
.

(4)

Thus,
G(z) = KP(z)D(z). (5)

Then, the following state space realization of Equation (2a) is obtained,

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n)

(6a)

where
y(n) = [y1(n), y2(n), . . . , ym(n)]

T , u(n) = [u1(n), u2(n), . . . , um(n)]
T, (6b)

and depending on whether dead times of subsystems are the same or not, the derivations of the vectors
and matrices x(n), A, B, and C are not the same, and therefore the details are represented later in
Sections 3 and 4 separately when the tuning problem for each case is studied.

Define the prediction of model outputs as

ŷ(n) = Tx(n) + Lu(n), (7)

where ŷ(n) is the prediction of model output, u(n) is the corresponding control signal, and the matrices
T and L are defined later in Sections 3 and 4. In addition,

ŷ(n) = [ŷ1
T(n), ŷ2

T(n), . . . , ŷm
T(n)]T, ŷi(n) = [ŷi(n + di + 1

∣∣∣n), ŷi(n + di + 2
∣∣∣n), . . . , ŷi(n + di + Pi

∣∣∣n)] T
,

u(n) = [u1
T(n), u2

T(n), . . . , um
T(n)], ui(n) = [ui(n), ui(n + 1), . . . , ui(n + Mi − 1)]T i = 1, 2, . . . , m,

(8)

where ŷi(.
∣∣∣n) is the prediction of the ith model output at instance n, Pi is the prediction horizon of the

ith output, and Mi is the ith control horizon.
Meanwhile, the prediction of plant outputs are

ŷp(n) = [ŷT
p1(n), ŷT

p2(n), . . . , ŷT
pm(n)]

T
= ŷ(n) + (diag

{
1P1×1, 1P2×1, . . . , 1Pm×1

}
)b(n) , 1 = [1, 1, . . . , 1]T,

ŷpi(n) = [ŷpi(n + di + 1
∣∣∣n), ŷpi(n + di + 2

∣∣∣n), . . . , ŷpi(n + di + Pi
∣∣∣n)] T

, i = 1, 2, . . . , m,
(9)

where ŷpi(·
∣∣∣∣n) is the prediction of the ith plant output at instance n and b(n) is the bias term as follows

b(n) = [b1(n), b2(n), . . . , bm(n)]
T = yp(n) − y(n) , yp(n) = [yp1(n), yp2(n), . . . , ypm(n)]

T, (10)

where ypi(n) is the ith plant output.
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Based on the aforementioned descriptions, the optimization problem of predictive control is
described as follows

min
u(n)

(w(n) − ŷp(n))
TQ(w(n) − ŷp(n)) + (uss − u(n))TR(uss − u(n))

s.t. uimin ≤ ui(n + j) ≤ uimax , j = 0, 1, . . . , Mi − 1 , i = 1, 2, . . . , m
yimin ≤ ŷpi(n + j

∣∣∣n) ≤ yimax , j = di + 1, di + 2, . . . , di + Pi , i = 1, 2, . . . , m

(11a)

where

w(n) = (diag
{
1P1×1, 1P2×1, . . . , 1Pm×1

}
)w(n), w(n) = [w1(n), w2(n), . . . , wm(n)]

T,
uss(n) = (diag

{
1M1×1, 1M2×1, . . . , 1Mm×1

}
)K−1(w(n) − b(n)).

(11b)

The matrix Q is positive semi-definite, the matrix R is positive definite, wi(.) is the reference signal
of the ith output and uss(n) is the steady state value of the control signals.

On the condition of no active constraints, the optimal control solution of Equation (11a) is
represented as

u(n) = (R + LTQL)
−1
(LTQ(diag

{
1P1×1, 1P2×1, . . . , 1Pm×1

}
)[w(n) − b(n)] − LTQTy(xy(n) + Hxu(n))

+RK−1(diag
{
1M1×1, 1M2×1, . . . , 1Mm×1

}
)[w(n) − b(n)]),

(12)

where Ty and H are derived from T, and xy(n) and xu(n) present the corresponding parts of the state
x(n). The detailed derivation of the above formula is given in Sections 3 and 4. Let

Ω = (R + LTQL)
−1

LTQTy,

Γ = (R + LTQL)
−1
(LTQ(diag

{
1P1×1, 1P2×1, . . . , 1Pm×1

}
) + R(diag

{
1M1×1, 1M2×1, . . . , 1Mm×1

}
K−1).

(13)

Hence, Equation (12) turns to

u(n) = Γ(w(n) − b(n)) −Ω(xy(n) + Hxu(n)). (14)

Then, the actual optimal control signals of the plant are obtained as

u(n) = Γ(w(n) − b(n)) −Ω(xy(n) + Hxu(n)) (15a)

where
Γ = JΓ , Ω = JΩ,

J = [J1, J2, . . . , Jm] , Ji =


0(i−1)×Mi

1 0 0 . . . 0
0(m−1)×Mi


m×Mi

i = 1, 2, . . . , m. (15b)

Note that Equation (15a) indicates that the control signal is determined by the gain matrices Ω and
Γ, and therefore via selecting them to desired values (named as Ωd and Γd hereafter), we can acquire
the desired control signal. Therefore, MPC tuning problem is solved by analyzing the correspondence
between the gain matrices and the tuning parameters (Q, R, Pi, and Mj). Additionally, it can be shown
that Γ is relative to Ω and thus Ω is chosen as the tuning parameter. However, it is worthwhile to
mention that under such a structure, not all desired performances of the multivariable FOPFDT system
are achievable, and moreover, some gain matrices that satisfy the achievable performance may not
ensure the closed-loop stability.

Based on the above analysis, the tuning problem is described as follows: selecting the weighting
matrices Q and R, and prediction and control horizons Pi and Mj to achieve the desired gain matrix
Ωd such that the closed-loop stability and desired performance are guaranteed. To better solve such a
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problem, FOPFDT systems with same dead time are first considered, and then the obtained results are
generalized to the different dead time case.

3. Tuning Method for MIMO FOPDT Models with Same Fractional Dead Time

In this section, the optimal solution to the MPC is derived and represented in the state space
realization for FOPFDT systems with the same fractional dead time (d1 = d2 = · · · = dm , b1 = b2 =

· · · = bm). Then, the closed-loop transfer function is provided, and the decoupling condition is derived.
Finally, the tuning equations are obtained for the desired performance.

3.1. MPC Solution

The ith output of the considered system is represented as

yi(n) =
m∑

j=1

ki jv j(n) i = 1, 2, . . . , m, (16a)

where
vi(n) = (1− ai)

(1−bi)z+bi
z(z−ai)

i = 1, 2, . . . , m,

b1 = b2 = · · · = bm.
(16b)

The relationship between each vi(n) for i = 1, 2, . . . , m and any input is described as

xi(n + 1) = Aixi(n) + Biu(n)
vi(n) = Cixi(n)

(17a)

where

xi(n) = [vi(n) , vi(n + 1), · · · , vi(n + di) , (1− ai)biui(n− 1)],

Ai =



0 1 0 · · · 0 0

0 0 1
. . .

...
...

...
...

. . . . . . 0 0
0 0 · · · 0 1 0
0 0 · · · 0 ai 1
0 0 · · · 0 0 0


, Bi = (1− ai)



0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 1− bi 0 · · · 0
0 · · · 0 bi

iTh
0 · · · 0


,

Ci = [ 1 0 0 · · · 0 0 ].

(17b)

Therefore,

x(n) = [x1(n)
T, x2(n)

T, . . . , xm(n)
T]

T
, A = diag

{
A1, A2, . . . , Am

}
,

B = [B1
T, B2

T, . . . , Bm
T]

T
, C = Kdiag

{
C1, C2, . . . , Cm

}
.

(18)

The above state space realization is controllable and observable. From Equation (7), the prediction
of the future model output value is obtained as

T = [Ti j] ,

Ti j = ki j


C jA j

di+1

C jA j
di+2

...
C jA j

di+Pi

 = [0, 0, . . . , 0, Tyi j , Tui j ] , i, j = 1, 2, . . . , m,
(19a)
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where
Tyi j = a jTui j = ki j[a j, a j

2, · · · , a j
Pi ]

T
i, j = 1, 2, . . . , m , (19b)

and 0 is a zero matrix with corresponding dimensions.

L = [Li j] , i, j = 1, 2, . . . , m, (20a)

Li j = ki j(1− a j)



(1− b j)



1 0 · · · 0 0

a j 1
. . .

.

.

.
.
.
.

.

.

. a j

. . . 0
.
.
.

.

.

.
.
.
.

. . . 1 0

.

.

.
.
.
. · · · a j 1

.

.

.
.
.
. · · ·

.

.

. 1 + a j

.

.

.
.
.
. · · ·

.

.

.
.
.
.

a j
Pi−1 a j

Pi−2
· · · a j

Pi−M j+1 1 + a j + · · ·+ a j
Pi−M j



+ bi



0 0 . . . 0 0

1 0 · · · 0 0

a j 1
. . .

.

.

.
.
.
.

.

.

. a j

. . . 0
.
.
.

.

.

.
.
.
.

. . . 1 0

.

.

.
.
.
. · · · a j 1

.

.

.
.
.
. · · ·

.

.

. 1 + a j

.

.

.
.
.
. · · ·

.

.

.
.
.
.

a j
Pi−2 a j

Pi−3
· · · a j

Pi−M j 1 + a j + a j
Pi−M j−1





,

i, j = 1, 2, . . . , m.

(20b)

Let
Ty = [Tyi j ] , Tu = [Tui j ] i, j = 1, 2, . . . , m. (21a)

Then, Tyxy(n) + Tuxu(n) is used to represent the active part of.
It can be shown that

Tu = TyH = Tydiag
{
a1
−1, a2

−1, . . . , am
−1

}
. (21b)

Therefore, from Equation (21b), we have

Tyxy(n) + Tuxu(n) = Ty(xy(n) + Hxu(n)). (21c)

Using Equations (16a) and (21b), it can be obtained that

xy(n) = D(z)−1K−1y(n),
Hxu(n) = Eu(n− 1) = EZ(z)u(n),

(22a)

where
E = diag

{
(1− a1)(b1/a1), (1− a2)(b2/a2), . . . , (1− am)(bm/am)

}
,

Z(z) = diag{z−1, z−1, . . . , z−1

}

m

}. (22b)

Hence, the optimal solution in Equation (15a) is transformed into

u(n) = Γ(w(n) − b(n)) −Ω(D(z)−1K−1y(n) + EZ(z)u(n)), (23)

where
Γ =

[
γi j

]
, Ω =

[
δi j

]
, i, j = 1, 2, . . . , m. (24)

3.2. Closed-Loop Analysis

Let b(n) = 0, and thus the plant and model outputs are the same. Using (23), we have

(I + KP(z)D(z)ΩD(z)−1K−1 + ΩEZ(z))yp(n) = KP(z)D(z)Γw(n). (25)
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It can be found that
Γ = (I + Ω + ΩE)K−1. (26)

Hence, the closed-loop model can be obtained as

yp(n) = Gcl(z)w(n), (27a)

where
Gcl(z) = KP(z)D(z)(I + P(z)Ω + ΩEZ(z))−1(I + Ω + ΩE)K−1. (27b)

Based on the aforementioned analysis, the first main result of the paper is provided in the following.

Theorem 1. On the condition of no active constraints and no model mismatch, the tuning problem can be
converted to the following decoupled closed-loop transfer function matrix and then restated as a pole placement
problem:

Gcld(z) = diag{
∆1

z−(d1+1)(z− x1)
,

∆2

z−(d2+1)(z− x2)
, . . . ,

∆m

z−(dm+1)(z− xm)
}, (28a)

if the gain matrix is selected as

Ω = (K−1[zdGcld(z)]
−1

K−P(z)−1)[I + EZ(z)P(z)−1
−K−1[zdGcld(z)]

−1
K(I + E)]

−1
, (28b)

where
∆i = (1− ai)(1 +ω+ω(1− ai)biai

−1)[(1− bi)z + bi] i = 1, 2, . . . , m. (28c)

Proof. Letting the closed-loop transfer function derived in Equation (27b) equal the decoupled transfer
function in Equation (28a), and solving such an equation for Ω, Equations (28b) and (28c) are then
obtained based on some tedious but straightforward calculations. �

3.3. Tuning Equations for Desired Performance

Assuming every dead time is the same and the control horizon is chosen as one, we derive the
parameter tuning formulas that achieve the desired performance through the above pole placement
problem. The details are summarized in the following theorem.

Theorem 2. On the condition of no active constraints and no model mismatch, the achievable gain matrix
corresponding to the desired performance for the MPC tuning problem should satisfy the following inequalities:

Ωd < (LTQL)
−1

LTQTy, (29)

and the closed-loop stability condition by the Jury criterion [18].
Choosing R as the tuning parameter, the tuning formula for satisfying the feasible gain matrix Ωd is

R = LTQ[TyΩd
−1
− L]. (30)

Proof. According to Equation (27b), the closed-loop model can reach the desired form by properly
selecting the gain matrix Ωd. Using Equations (13) and (24), we have

Ωd = (R + LTQL)
−1

LTQTy, (31)
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From Equation (29), we have

(R + LTQL)Ωd = LTQTy ⇒ (R + LTQL) = LTQTyΩd
−1
⇒ R = LTQ[TyΩd

−1
− L]. (32)

Since R is a positive definite matrix, it is obtained that

LTQ[TyΩd
−1
− L] > 0 ⇒ LTQTyΩd

−1
− LTQL > 0 ⇒ Ωd < (LTQL)

−1
LTQTy. (33)

�

4. Tuning Method for MIMO FOPFDT with Different Fractional Dead Times

In this section, the tuning method proposed in the last section is generalized to the different dead
time case for the desired performance.

4.1. MPC Solution

Let G̃(z) describe the non-delay part of the transfer function matrix

G̃(z) = [g̃i j(z)], g̃i j(z) = ki j(1− a j)
(1− b j)z + b j

z(z− a j)
i, j = 1, 2, . . . , m. (34)

Recall the ith output is

yi(n) =
m∑

j=1

vi j(n) i = 1, 2, . . . , m, (35a)

where
vi j(n) = g̃i j(z)u j(n− d j) i, j = 1, 2, . . . , m. (35b)

Then, the corresponding state space realization is described as

xi j(n + 1) = Ã jxi j(n) + B̃i ju(n)
vi j(n) = C̃ jxi j(n)

(36a)

where

xi j(n) = [vi j(n) , vi j(n + 1), · · · , vi j(n + d j) , ki j(1− a j)b ju j(n− 1)],

Ã j =



0 1 0 · · · 0 0

0 0 1
. . .

...
...

...
...

. . . . . . 0 0
0 0 · · · 0 1 0
0 0 · · · 0 a j 1
0 0 · · · 0 0 0


, B̃i j = ki j(1− a j)



0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0
0 · · · 0 1− b j 0 · · · 0
0 · · · 0 b j

jTh
0 · · · 0


,

C̃ j = [ 1 0 0 · · · 0 0 ], i, j = 1, 2, . . . , m.

(36b)

Therefore,

x(n) = [x11(n)
T, . . . , x1m(n)

T, x21(n)
T, . . . , x2m(n)

T, . . . , xm1(n)
T, . . . , xmm(n)

T]
T

,
A = diag

{
Â1, Â2, . . . , Âm

}
,

B = [B̃11
T, . . . , B̃1m

T, B̃21
T, . . . , B̃2m

T, . . . , B̃m1
T, . . . , B̃mm

T]
T

,
C = diag

{
Ĉ1, Ĉ2, . . . , Ĉm

}
,

(37a)
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where
Âi = diag

{
Ã1, Ã2, . . . , Ãm

}
, Ĉi = [C̃1, C̃2, . . . , C̃m] i = 1, 2, . . . , m. (37b)

Note that although notations of x(n), A,B, and C are utilized both in Sections 3.1 and 4.1, the
details are not the same as they represent models for systems with different types of time delays.

As the above state space realization is controllable and observable, the prediction of future model
output value is obtained with

T = diag
{
T̃1, T̃2, . . . , T̃m

}
, T̃i = [T1 , T2, . . . , Tm],

T j =


C jA j

di+1

C jA j
di+2

...
C jA j

di+Pi

 = [0, 0, · · · , 0, Ty j , Tu j ] ,

Ty j = a jTu j = [a j , a j
2, . . . , a j

Pi ]
T j = 1, 2, . . . , m,

Ty = [Ty1 , Ty2 , . . . , Tym ] , Ty1 =


T̃y

0

 , Ty2 =


0

T̃y

0

 , Tym =


0

T̃y

, T̃y = [Ty1 , Ty2 , . . . , Tym ],

Tu = [Tu1 , Tu2 , . . . , Tum ] , Tu1 =


T̃u

0

 , Tu2 =


0

T̃u

0

 , Tum =


0

T̃u

, T̃u = [Tu1 , Tu2 , . . . , Tum ],

(38)
and 0 is a zero matrix with corresponding dimensions.

L = [Li j] , i, j = 1, 2, . . . , m, (39a)

Li j = ki j(1− a j)



(1− b j)



1 0 · · · 0 0

a j 1
. . .

.

.

.
.
.
.

.

.

. a j

. . . 0
.
.
.

.

.

.
.
.
.

. . . 1 0

.

.

.
.
.
. · · · a j 1

.

.

.
.
.
. · · ·

.

.

. 1 + a j

.

.

.
.
.
. · · ·

.

.

.
.
.
.

a j
Pi−1 a j

Pi−2
· · · a j

Pi−M j+1 1 + a j + · · ·+ a j
Pi−M j



+ bi



0 0 . . . 0 0

1 0 · · · 0 0

a j 1
. . .

.

.

.
.
.
.

.

.

. a j

. . . 0
.
.
.

.

.

.
.
.
.

. . . 1 0

.

.

.
.
.
. · · · a j 1

.

.

.
.
.
. · · ·

.

.

. 1 + a j

.

.

.
.
.
. · · ·

.

.

.
.
.
.

a j
Pi−2 a j

Pi−3
· · · a j

Pi−M j 1 + a j + a j
Pi−M j−1





,

i, j = 1, 2, . . . , m.

(39b)

Using Equations (2b), (34), and (35), we have

xy(n) = J(z)G(z)−1y(n). (40a)

where

J(z) = [J1(z)
T, J2(z)

T, . . . , Jm(z)
T]

T
, Ji(z) = diag

{
g̃i1(z), g̃i2(z), . . . , g̃im(z)

}
i = 1, 2, . . . , m (40b)

Let

Tu = TyF ,
F = diag

{̃
F1, F̃2, . . . , F̃m

}
, F̃i = diag

{
a1
−1, a2

−1, . . . , am
−1

}
i = 1, 2, . . . , m,

(41)



Processes 2020, 8, 212 10 of 15

then from Equation (41), we have

Fxu(n) = Ẽu(n− 1) = ẼZ(z)u(n), (42a)

where

Ẽ = [Ẽ1
T, Ẽ2

T, . . . , Ẽm
T]

T
,

Ẽi = diag
{
ki1(1− a1)(b1/a1), kim(1− a2)(b2/a2), . . . , kim(1− am)(bm/am)

}
i = 1, 2, . . . , m,

Z(z) = diag{z−1, z−1, . . . , z−1

}

m

}.
(42b)

Hence, the optimal solution in Equation (15a) is transformed into

u(n) = Γ(w(n) − b(n)) −Ω(J(z)G(z)−1y(n) + ẼZ(z)u(n)), (43)

where
Γ =

[
γi j

]
, Ω = [Ω1, Ω2, . . . , Ωm] , Ωi =

[
δi j

]
, i, j = 1, 2, . . . , m. (44)

4.2. Closed-Loop Analysis

Let b(n) = 0, so the plant and model outputs are the same. Using Equation (43), we have

(I + ΩJ(z) + ΩẼZ(z))G(z)−1y(n) = Γw(n). (45)

It can be shown that
Γ = (I + ΩJ(1) + ΩẼ)K−1. (46)

Hence, the closed-loop model is obtained as

yp(n) = Gcl(z)w(n), (47a)

where
Gcl(z) = G(z)(I + ΩJ(z) + ΩẼZ(z))

−1
(I + ΩJ(1) + ΩẼ)K−1. (47b)

To further study the closed-loop behavior of the system, the gain matrix Ω is designed as

Ω i = diag{δ1 , δ2 , · · · , δm} . (48)

Then, the following characteristic polynomials are derived

z− a1 + δ1
m∑

i=1
ki1(1− a1)(1− b1 + b1a1

−1) = 0,

z− a2 + δ2
m∑

i=1
ki2(1− a2)(1− b2 + b2a2

−1) = 0,

...

z− am + δm
m∑

i=1
km1(1− am)(1− bm + bmam

−1) = 0.

(49)

Therefore, we can do the pole placement for desired performance by choosing the proper gain
value δi from gain matrix Ω in each equation of Equation (49).

4.3. Tuning Method for Desired Performance

Assuming the control horizon is chosen as one, we derive the parameter tuning formulas that
achieve the desired performance, and the details are summarized in the following theorem.
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Theorem 3. On the condition of no active constraints and no model mismatch, the achievable gain matrix
corresponding to the desired closed-loop performance for MPC tuning problem should satisfy the following
inequalities:

Q > 0,

Ωdi < (LTQL)
−1

LTQTy1 i = 1, 2, . . . , m,
(50)

and Ωd must also satisfy the closed-loop stability condition by the Jury criterion [18]. Through choosing R and
Q as the tuning parameters, the tuning formulas for the desired gain matrix are obtained from

LTQ[Ty1 Ωd1
−1Ωdi − Tyi ] = 0 i = 1, 2, . . . , m,

R = LTQ[Ty1 Ωd1
−1
− L].

(51)

Proof. Under the condition of no active constraint, the tuning formulas are obtained as

[Ω1, Ω2, . . . , Ωm] = (R + LTQL)
−1

LTQTy. (52)

From Equations (38) and (52), we have

(R + LTQL)Ω1 = LTQTy1 ,
(R + LTQL)Ω2 = LTQTy2 ,

...
(R + LTQL)Ωm = LTQTym .

(53)

Then, the proof follows from Equation (53) and R and Q are all positive. �

It should be noted that the analytical solution of Q cannot be obtained directly. It can be achieved
via the following optimization problem

min
Q

m∑
i=2
‖LTQ[Ty1 Ωd1

−1Ωdi − Tyi ]‖,

s.t. (LTQL)
−1

LTQTyi −Ωdi > 0,
Q > 0,

(54)

Then for R we obtain the exact solution as

R = LTQ[Ty1 Ωd1
−1
− L]. (55)

Note that although the proposed method is developed based on unconstrained MPC, it can be
applied to constrained systems (minor modifications may be necessary). More specifically, given a
real industrial system, two different scenarios normally exist: (1) the constraints are relatively loose:
the MPC constraints of some industrial applications (e.g., paper-making processes) are utilized to
avoid extreme situations [19,20], and therefore, are normally quite loose in contrast to the real control
inputs obtained from solving the MPC problem. In this case, the control signals obtained from the
unconstrained and constrained MPCs are almost the same, and therefore the proposed method can
be directly applied; (2) the constraints are relatively tight: as the control signals from the constrained
and unconstrained MPCs are normally not the same (especially for signals near the constraints), the
performance of the proposed method may be affected, but a fine tune procedure can be incorporated to
guarantee the control performance [20]. More specifically, the proposed method is first performed to
obtain a set of tuning parameters; then, consider the obtained tuning results as the starting point; and
perform a fine tune around the obtained controller parameters based on trial-and-error or intelligent
algorithms (e.g., particle swarm optimization) to search for the desired performance. It is worthwhile
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mentioning that as the control signal of a constrained MPC is obtained via solving a constrained QP
(Quadratic Programming) online, the explicit solution to the MPC problem may not exist, and therefore
the theoretical analyses in MPC tuning algorithms are normally constructed via the closed-loop
transfer function derived based on unconstrained MPC [14,15,19,20]. Note that for MPC tuning of
MIMO FOPFDT systems, the existing methods normally approximate the fractional order dead times
to integral values to facilitate the theoretically analysis, which, however, may lead to performance
degradation and even stability problem. The method proposed in this work directly considers the
fractional order property of the dead times in the closed-loop analysis to improve the MPC performance,
which could extend MPC method to more and more relevant industrial processes.

It is worth noting that if the considered industrial systems are without constraints, the control
performance of the unconstrained MPC tuned via the proposed method and other optimization based
control strategy (e.g., LQR (Linear Quadratic Regulator) method) could be close if the weighting
matrices of the latter approach are also well tuned via, for example, the pole placement method.
However, as the intention of the paper is to provide some useful tuning techniques for MPC controllers
such that the industrial MPC systems (especially MIMO FOPFDT systems) can be tuned more efficiently
and effectively, the simulation example is provided for a constrained MPC systems, rather than the
comparison with other classical MIMO control strategies.

In addition, the proposed method may also to be applied for industrial applications with
non-perfect models, but the following modifications need to be made: first, the small-gain theorem
should be utilized instead of Jury’s criterion for stability analysis. More specifically, given the
model-plant mismatch specified via either unstructured or parametric uncertainty, the region of the
tuning parameters to guarantee the stability needs to be calculated, and this can be obtained by checking
the small gain condition based on the closed-loop transfer function developed in this work; second,
rather than the standard time domain indices (e.g., settling time), the robust time domain performance
indices [20] need to be employed to better characterize the desired performance of uncertain systems;
to perform MPC tuning towards such indices, some existing results in robust performance analysis
can be utilized. For example, the robust tuning may be performed based on the property that the
worst-case behavior of an uncertain system controlled by MPC can normally be evaluated based
on extreme uncertain systems, the model parameters of which are selected at the boundaries of the
uncertainty specifications [19,20].

5. Simulation Results

Consider the transfer function from [21] as

G(s) =
[ 16.9

s+5 e−0.003 36.12
s+11 e−0.003

−9.57
s+5 e−0.003 −4.175

s+11 e−0.003

]
This is a two-input two-output model of a turbo generator. The throttle valve position and

excitation control are the inputs. The generator terminal voltage and generator load angle are the
outputs. After discretizing the system by a sampling time of Ts = 0.01 s, we have k11 = 3.38, k12 =

3.2836, k21 = −1.914, k22 = −0.3791, a1 = 0.9512, a2 = 0.8958, b1 = b2 = 0.3, d1 = d2 = 0. The desired
settling time for two outputs are less than 0.2 s and 0.2 s, and then the desired closed-loop poles are 0.8

and 0.8. Let Q = I. According to Equation (28b), we choose Ωd =

[
3.0514

0.8884

]
and P1 = P2 =

7 satisfying Equation (30). Equation (31) gives R =

[
0.8518 3.6397
1.3944 6.7545

]
. Let the input constraints be∣∣∣u1(n)

∣∣∣≤ 2.5 ,
∣∣∣u2(n)

∣∣∣≤ 1.5 , and the output constraints be 0.8 ≤ y1(n) ≤ 2.2,
∣∣∣y2(n)

∣∣∣≤ 0.6 . Figure 1 shows
that all the outputs are able to track the references accurately with inactive constraints.
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control signal; (c) the generator terminal voltage output; (d) the generator load angel output.

Considering the dead times are different, we assume b1 = 0.3, b2 = 0.6. The desired settling time
for two outputs is less than 0.2 s and 0.2 s, and then the desired closed-loop poles are also 0.8 and 0.8.

Therefore, Equation (49) leads to [Ω1 Ω2] =

[
2.0814 0 2.0814 0

0 0.2959 0 0.2959

]
. Assuming P = 4,

we can obtain Q and R from Equation (53) as

Q =



0.9028 0.1830 −0.03344 −0.0674 0.3049 0.2118 0.1114 −0.0565

0.1830 0.7841 −0.0815 −0.1062 0.0813 0.0787 0.1590 0.0836

−0.0334 −0.0815 0.7315 −0.0396 −0.0621 0.1782 0.1886 0.2421

−0.0674 −0.1062 −0.0396 0.7924 −0.0324 0.1367 0.3039 0.4041

0.3049 0.0813 −0.0621 −0.0324 0.8720 0.1334 −0.0564 −0.2034

0.2118 0.0787 0.1782 0.1367 0.1334 0.7679 0.0527 −0.1039

0.1114 0.1590 0.1886 0.3039 −0.0564 0.0527 0.7504 −0.0331

−0.0565 0.0836 0.2421 0.4041 −0.2034 −0.1039 −0.0331 0.7455



, R =

 0.0860 0.6772

0.2858 2.2627

.

Let the input constraints be
∣∣∣u1(n)

∣∣∣≤ 1.6 ,
∣∣∣u2(n)

∣∣∣≤ 1.3 , and the output constraints be 0.8 ≤ y1(n) ≤
2.2,

∣∣∣y2(n)
∣∣∣≤ 0.6 . Figure 2 gives the closed-loop responses for different dead time cases with and

without MPC constraints.
The results above show the effectiveness of the proposed method.
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Figure 2. Closed-loop responses for different dead time cases. (a) The first control signal; (b) the second
control signal; (c) the generator terminal voltage output; (d) the generator load angel output.

6. Conclusions

In this paper, the MPC tuning problem of MIMO FOPFDT system is addressed under the condition
that the constraints are inactive and the model mismatch does not exist. The closed-loop transfer
functions of these systems are provided and the decoupling condition is given. The analytical tuning
formulas guaranteeing the closed-loop stability and desired performance are derived for control
horizon of one. Finally, simulation shows the effectiveness of the proposed method. The results of
this paper lay a good foundation for further study on the analytical MPC tuning method for general
multivariable FOPDT with fractional dead time systems.
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