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Abstract: Polymer flooding is an effective enhanced oil recovery technology used to reduce the
mobility ratio and improve sweep efficiency. A new polymer injection scheme is investigated that
relies on the cyclical injection of low-salinity, low-concentration polymer slugs chased by high-salinity,
high-concentration polymer slugs. The effectiveness of the process is a function of several reservoir
and design parameters related to polymer type, concentration, salinity, and reservoir heterogeneity.
We use reservoir simulations and design-of-experiments (DoE) to investigate the effectiveness of
the proposed polymer injection scheme. We show how key objective functions, such as recovery
factor and injectivity, are impacted by the reservoir and design parameters. In this study, simulations
showed that the new slug-based process was always superior to the reference polymer injection
scheme using the traditional continuous injection scheme. Our results show that the process is
most effective when the polymer weight is high, corresponding to large inaccessible pore-volumes,
which enhances polymer acceleration. High vertical heterogeneity typically reduces the process
performance because of increased mixing in the reservoir. The significance of this process is that it
allows for increased polymer solution viscosity in the reservoir without increasing the total mass of
polymer, and without impairing polymer injectivity at the well.
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1. Introduction

Polymer flooding has been broadly deployed in the industry and is the most commonly used
chemical Enhanced Oil Recovery (EOR) method in conventional oilfields [1]. Polymer is typically
added to the injected water to increase its viscosity, creating more favorable conditions for oil sweep.
Poor sweep efficiency is one of the most challenging problems often encountered during secondary
recovery. Poor sweep efficiency arises owing to pronounced reservoir heterogeneity (e.g., the presence
of thief layers) and an unfavorable mobility ratio (M), where M is defined as:

M =
krwµo

kroµw
(1)
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In the above equation, krw, µw, kro, and µo are the relative permeability and viscosity of the
water phase and the oil phase, respectively. A displacement is termed unfavorable when M becomes
significantly larger than one. Polymer flooding is an enhanced oil recovery technique that improves
sweep efficiency by adding polymer molecules to the injected water, which increases the water viscosity,
and hence, a reduction of M [1]. A polymer flooding project typically becomes economically viable
when the mobility ratio can be reduced by one order of magnitude while the rate of polymer injection
(i.e., polymer injectivity) is kept sufficiently high. However, the polymer injectivity degrades with
increasing polymer viscosity. Therefore, the successful design of a polymer flooding project requires
optimization of a multi-objective problem under uncertainty [2].

1.1. Background

The traditional approach to polymer flooding consists of designing a constant composition of
polymer and brine such that the polymer viscosity is maximized while the injectivity is kept high
enough to improve project economics. Predicting optimum polymer injectivity is often challenging. If
polymer viscosity is set too high, the subsurface formation near the wellbore may experience damage
owing to the plugging of pores, and consequently, polymer injectivity may degrade. Recently, Torrealba
and Hoteit [3] proposed an alternative injection scheme based on the design of compositionally-tuned
slugs. They showed that the EOR scheme could be designed to take advantage of polymer acceleration
relative to salt in the reservoir, which often occurs as a result of the discrepancy in the rock pore
volumes accessible to polymer and salt components. The proposed process can recover additional oil
compared to the traditional approach, without significantly impacting polymer injectivity and without
increasing the overall usage of the polymer mass.

The performance of enhanced oil recovery techniques depends on multiple parameters, including
the properties of the reservoir rock, the displaced and injected fluid properties, the reservoir rock-fluid
interactions, and the extraction method. The parameters related to the rock and the displaced fluid are
mostly considered uncontrollable variables, and those related to the injected fluid and the wells are
considered controllable or design variables that can be optimized based on the subsurface uncertainties.

To understand the sensitivities of the governing parameters, classical laboratory experiments,
or numerical experiments are typically conducted. The former provides reliable observations at a
high cost of time and resources. In contrast, the latter provides an efficient alternative to understand
the response relative to different objective functions (e.g., oil recovery factor, fluid injectivity) under
uncertainty [4,5]. In addition to understanding the recovery behavior, these numerical experiments can
be used to define proxy models that allow for the quantitative estimation of the output performance as
a function of both uncontrollable and controllable variables. Finally, the numerical experiments can be
used to test and confirm the predictability of the proxy models.

A typical approach for designing experiments is to keep all variables constant while modifying
only One-Variable-At-a-Time (OVAT). This approach is inefficient, and its success is mostly a function
of guesswork, luck, prior experience, and instinct [6]. Further, this approach demands considerable
resources and yields limited insights into the process under investigation. Design of Experiments
(DoE) was first developed by Fisher [7] to optimize the process of determining the response of different
plots of lands as a function of various fertilizers. Fisher [8] formalized this statistical methodology by
considering how measures of accuracy and efficiency varied as a function of the number of experiments.
Moving forward some 50 years, Sawyer et al. [9] were among the first researchers to use the DoE
framework in petroleum engineering to understand the performance of the wet-combustion drive
process. Regardless of the industry or application, the ethos of DoE does not change: obtaining
maximum information at minimum cost [10,11].
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DoE has been extensively used for assessing parameter sensitivity, quantifying uncertainty, and
performing optimization in various EOR applications. Ghaderi et al. [12] deployed a D-Optimal design
to perform sensitivity analysis and optimization for CO2-WAG injection. Ogunbanwo and Kovscek [13]
utilized a three-level design to explore multiple-parameter interactions in in-situ combustion. Bevillon
and Mohagerani [14] used Latin Hypercube design to check sensitivities and quantify uncertainties in
a miscible EOR project in the Middle East. Bengar et al. [15] conducted sensitivity analysis for polymer
injection using two-level full factorial design. Adepoju et al. [16] proposed a lumped approach to
account for parameter dependency in a surfactant-polymer flood and demonstrated their method on a
field case. A recent study by Santoso et al. [17] introduced a comprehensive DoE workflow to perform
a sensitivity analysis and uncertainty quantification and optimization sequentially. The workflow
emphasizes on the use of a two-level design for sensitivity analysis and space-filled augmented design
for accurate surrogate modeling. Then, uncertainty quantification or optimization is conducted on the
surrogate model. We adopt this workflow to properly assess the interaction of multiple parameters
in compositionally-tuned polymer slug injection. Simulations were conducted using the UTChem
simulator, developed by the University of Texas at Austin, with DOE support available in its early
releases. The simulator is based on the traditional cell-centered finite-difference discretization with
IMPES-based (implicit pressure Explicit Saturation) temporal schemes [18–20]. It supports various
applications including black-oil, multi-component, four-phase for chemical EOR including surfactants
and polymers. The code also supports other applications such as groundwater fluid flow and transport,
and others. For a complete description of the code, we refer to the user manual [21].

1.2. Factors That Impact Performance in Polymer Flooding

In this section, we review some of the key mechanisms that govern the transport of polymer
solutions through porous media, which will allow us to identify the most relevant factors impacting
polymer injectivity of oil recovery factor during polymer-based enhanced oil recovery.

Polymer molecular weight (MW) is a crucial design parameter in polymer flooding that controls
both polymer bulk solution properties as well as polymer-rock interaction. Liauh et al. [22] showed
unequivocally that polymer inaccessible pore volume (IPV) increases with increasing MW. A simplistic
interpretation of IPV is that it only depends on the relation of the pore size distribution to the polymer
molecular size (i.e., size exclusion). Other considerations are described in recent work by Torrealba
and Hoteit [23]. Typical values of IPV for consolidated rock samples range from 7 to 40% [24–27].
De Gennes [28,29] developed the scaling concept that showed how polymer solution viscosity increases
with both MW and polymer concentration. An increase in both salt content and the shear rate has a
degrading impact on polymer solution viscosity [30–34].

Polymer adsorption to rocks is determined by the interplay between polymer-surface energy
and polymer entropic effects [35]. These factors generally counteract each other, making polymer
adsorption one of the most challenging polymer-rock interaction properties to estimate. Large negative
polymer-surface energy is considered favorable and leads to higher adsorption. When permeability
is low, the ratio of pore-wall surface to pore volume is high, corresponding to higher polymer
adsorption. Consistently, polymer hydrodynamic retention—typically modeled through an adsorption
isotherm—is known to increase with increasing pore velocity [36], and therefore scales with the inverse
of permeability [32,37]. Ahmed et al. [38], found that polymer adsorption generally decreases with
increasing viscosity in rocks with high clay content. In agglomerated substrate studies, they also found
that polymers with lower molecular weight have higher adsorption, while for deflocculated bentonite
substrates, the molecular weight was found to be insignificant.
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As reported in the literature, one of the most challenging aspects of a successful polymer flooding
project is maintaining a high injection rate [39,40]. From Darcy’s law (1856), we know that the average
reservoir permeability plays a dominant role in polymer injectivity. Reservoir heterogeneity is another
controlling factor that impacts performance at the field scale [41–43]. Interwell spacing has a significant
impact on polymer performance, with smaller patterns being more beneficial at improving the ability
to inject polymer solutions compared to larger ones [44,45].

In this paper, we implemented a Design-of-Experiments methodology to assess the performance
and sensitivity of a new polymer injection scheme based on the injection of compositionally-tuned
slugs [3]. Both the oil recovery factor and average injection pressure for the new scheme were compared
to the traditional baseline polymer injection scheme and waterflooding. Based on the simulations,
we defined performance proxies, identified the most relevant parameters (i.e., the heavy hitters), and
tested the predictive quality of the proxies.

2. Methodology

In this section, we elaborate on the basis for the new slug-based scheme, discuss the selected
parameters for the DoE analysis as well as the relevant objective functions used to assess polymer
performance. We also define the reference continuous polymer injection composition to ensure a
rational comparison. Finally, we discuss the DoE workflow used to identify the heavy hitters, tune the
proxies, and test their predictability.

2.1. Polymer Flow in Porous Media

Polymer flow in porous media is described with the mass-balance equation, Darcy’s law, and the
energy-balance equation. The key features related to polymer flooding is shear-dependent viscosity of
Non-Newtonian fluid and permeability reduction as a function of polymer concentration, rock type,
and polymer adsorption [3,21]. The shear-dependent viscosity is expressed as follows:

µp = µw +
µp

0
− µw

1 +
( .
γ

.
γ1/2

)Pα−1
(2)

where µp is the polymer viscosity at a shear rate of
.
γ, µ0

p is the polymer viscosity at zero shear rate, µw

is the water viscosity,
.
γ1/2 is one-half shear, and Pα is shear exponent coefficient. The permeability

reduction is captured through

RK = 1 +
(RKmax − 1)bRKCpw

1 + bRKCpw
(3)

where RKmax = f
(
cRK, ap1, Csalt

e f f , K,φ
)
, bRK, cRK are input coefficients, ap1 is isotherm parameter,

Csalt
e f f is effective salt concentration, K is permeability, φ is porosity, and Cpw is the polymer

concentration in the water phase. The detailed mathematical formulation and implementation
are available publicly in UTChem Documentation [21].

2.2. Polymer Flooding Using Compositionally-Tuned Slugs

The new slug-based process [3] relies on the realization that, once adsorption is satisfied, the
polymer component accelerates with respect to a reference tracer component, like salinity [46]. Figure 1
shows a simplified schematic of this scheme, where two slugs are injected: the leading slug (i.e., low
polymer concentration at low salinity condition) followed by the trailing slug (i.e., high polymer
concentration at high salinity condition). The viscosity of both slugs is designed to be approximately
equal to the maximum viscosity that can be injected into the formation without causing wellbore damage.
The basis of the scheme is that the polymer component will accelerate compared to its corresponding
salinity condition, provided that the inaccessible pore volume dominates over adsorption. Therefore,
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there will be a mixing zone with high polymer concentration at low salinity where the polymer
viscosity becomes larger than the injected one. The polymer concentration in the leading slug will also
accelerate into the high salinity zone of the reservoir, leading to a degradation in viscosity. This effect
can be minimized if two polymer components are used in the different slugs: A high MW component
(corresponding to a high IPV) in the trailing slug and a low MW component (corresponding to a
low IPV) in the leading slug. In this way, there will only be polymer acceleration of high polymer
concentration into a low salinity condition. Further, in the transition zone, there will be mixing of
both low and high MW polymers, leading to an even higher viscosity than the corresponding polymer
concentration for the high MW owing to a synergistic, non-ideal effect [47]. In this work, we used the
chemical flooding simulator, UTChem [21] that only supports modeling for a single polymer component,
but the process can be optimized further by considering two MW polymer components. Modeling
multiple polymers is tricky because of the non-linear mixing behavior of different polymers [48]. For
all cases considered in our DoE study, we inject one pore volume injected (PVI) of the polymer after a
slug of volume Vw PVI of water injection. The polymer injection is divided into multiple cycles of Vls
PVI of the leading slug chased by Vts PVI of the trailing slug. For cases where the addition of a slug
would extend the polymer injection volume beyond one PVI, we instead take a larger volume for the
previous slug so that the total sum of the slugs is one PVI. The polymer concentrations of the leading
and trailing slugs are Cp

ls and Cp
ts, respectively. The salinity concentrations of the leading and trailing

slugs are Csalt
ls and Csalt

ts, respectively.
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Figure 1. Illustration showing how the compositionally-tuned slug-based polymer flooding scheme
works: Owing to polymer acceleration, a transition zone forms between the leading and trailing slugs,
where polymer solution viscosity is significantly higher than the injected viscosities. The zones on the
left, middle, and right correspond, respectively to high-salinity-high-polymer (HSHP) concentration
(trailing slug), low salinity-high polymer (LSHP) concentration (mixing zone), low-salinity-low-polymer
(LSLP) concentration (leading slug).
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2.3. Reference Polymer Flooding Using Constant Composition

We define a reference polymer flooding scheme using constant injection composition of polymer
and salt for one PVI. For a given slug-based polymer injection case, we compute the corresponding
composition for the continuous polymer injection case such that the total masses of polymer and salt
are the same for both cases. The polymer composition

(
Cp

c
)

and salinity (Csalt
c) for the continuous

polymer flood case are given by:

Ci
c =

Ci
lsVls + Ci

tsVts

Vls + Vts
, for i = p, salt. (4)

2.4. Description of Variables for DoE Study

For all our simulations, we considered a 2D vertical cross-section in a layered reservoir. Based on
the literature review, we consider the following reservoir parameters in the DoE study: Heterogeneity,
defined using the Dykstra-Parsons coefficient (VDP), interwell spacing (L), average permeability (K),
and reservoir salinity (Csalt

res). The effect of vertical heterogeneity on flow is often more pronounced
than the effect of horizontal heterogeneity because of the nature of the depositional processes. In this
work, we do not consider the effect of horizontal heterogeneity, which sometimes could be significant.
The Dykstra–Parsons coefficientis a statistical measure of vertical permeability variation in layered
systems [49], which reflects a relative contrast in permeability. It is expressed by

VDP =
K0.5 −K0.16

K0.5
(5)

where K0.5, and K0.16 denote, respectively, 50% and 16% probabilities, obtained from the Cumulative
Distribution Function (CDF) of the permeability. For the polymer component, we considered MW as a
structural parameter that controls both IPV and polymer viscosity coefficients as a function of polymer
concentration (APk)

µp
0 = µw

1 +

 3∑
k=1

ApkCp
k

Csalt
Sp

, (6)

where µp
0 is the zero-shear polymer viscosity, µw is the water-phase viscosity, Cp is the polymer

concentration in the water phase, Csalt is the effective salinity, and Sp is a coefficient reflecting the
dependency of polymer viscosity on water salinity. We considered the polymer adsorption using a
Langmuir isotherm

Ĉp = min

Cp,
ap

(
Cp − Ĉp

)
1 + bp

(
Cp − Ĉp

) , (7)

where ap =
(
ap1 + ap2Csalt

)(
Kre f /K

)0.5
, the set

(
ap1, ap2, bp

)
includes the isotherm parameters, Kre f is the

reference permeability (set to 1000mD), and Cp and Ĉp are the total polymer and the adsorbed polymer
concentrations, respectively. Polymer adsorption typically increases with decreasing permeability
and increasing salinity. In our simulations, we assessed the impact of adsorption by changing the ap1

parameter, which is also affected by the average permeability and salinity. For all slug-based cases, we
considered the high salinity condition of the trailing slug to be the same as the initial reservoir salinity
condition (i.e., Csalt

ts
≡ Csalt

res). Then, we coupled all relevant compositions (C) for the slug-based
cases (i.e., Ci

ls and Ci
ts with i = p, salt) to avoid unrealistic polymer conditions in the transition zone

(e.g., the high range of Cp
ts with the low range of Csalt

ls). Table 1 shows the ranges for all parameters
considered in the DoE study. We note that identifying the appropriate ranges of uncertainties is often
a tedious challenge in real applications. Our selected ranges reflect a real field case (unpublished).
Other field cases may exhibit different ranges. For more discussion about this topic, we refer to other
studies [16,23,50–52].
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2.5. Description of Objective Functions for DoE Study

We quantified the performance of the slug-based polymer flooding process using four objective
functions, namely, incremental oil recovery over the reference continuous polymer flooding

(
∆RFcp

sp
)

at the end of the displacement corresponding to one PVI, incremental oil recovery over waterflooding
at the end of the displacement

(
∆RFw f

sp
)
, ratio of the average pressure during slug-based polymer

flooding to the average pressure during continuous polymer flooding
(
PRcp

sp
)
, and ratio of the average

pressure during slug-based polymer flooding to the average pressure during water flooding over the
same injection time

(
PRw f

sp
)
. Monitoring the average injection pressure is essential to capture any

degradation issues in the injectivity.

2.6. DoE Workflow

Here, we describe the overall schematic of the DoE workflow, which follows the work of
Santoso et al. [17]. After identifying the relevant parameters and objective functions, as described
in the previous two sections, we implemented a parameter screening workflow to identify the
heavy-hitters and the insignificant parameters. Then, we proceeded into the surrogate modeling
workflow step using only the heavy-hitters. Finally, we extract the probability distributions using
Monte Carlo simulations.

3. Results and Discussion

In this section, we report and discuss the results obtained in this study. We start by exploring
in detail a test case to explain the recovery mechanisms for the proposed compositionally-tuned
slug-based process and to highlight the key differences compared to both the baseline waterflooding
and the continuous polymer flooding. Then, we move into the DoE workflow and show the sensitivity
of the objective functions to the parameters using two- and three-level Plackett–Burman designs.
Finally, we assess the predictive quality of the constructed proxies, which are then used in the Monte
Carlo simulations.

3.1. Recovery Mechanism in the Slug-Based Scheme

The motivation of this test case was to shed more light on the mechanisms governing the proposed
slug-based polymer injection scheme, and to emphasize the differences compared to both cases:
the continuous polymer flooding and the baseline waterflooding. The parameters corresponding to
this test case are listed in the first column of Table 1. Other simulation input parameters are listed in
Table 2. The reservoir layers and the corresponding permeabilities are shown in Figure 2.

Table 1. List of parameters and corresponding ranges used in the design-of-experiments (DoE) study.

Parameter Test Case Low Middle High

L, f t 1000 500 1000 1500
K, mD 681 500 1000 2000

VDP, fraction 0.7 0.5 0.7 0.9
IPV, fraction 0.25 0.1 0.2 0.3

(AP1, AP2, AP3) * (40, 47.5, 1750) (10, 40, 1000) (30, 45, 1500) (50, 50, 2000)
ap1, dimensionless 1.0 0.5 1.0 1.5(
Cp

ls, Cp
ts
)
, wt.% (0.125, 0.175) (0.1, 0.15) (0.125, 0.175) (0.15, 0.2)(

Csalt
ls, Csalt

ts
)
, meq

mL (0.2, 1.0) (0.1, 0.5) (0.2, 1.0) (0.4, 2.0)
Vw, PVI 0.75 0.5 0.75 1.0
Vls, PVI 0.075 0.05 0.075 0.1
Vts, PVI 0.075 0.05 0.075 0.1

* Corresponding units
(
wt.%−1, wt.%−2, wt.%−3

)
. L = interwell spacing, K = permeability, IPV = inaccessible

pore volume, AP = Polymer viscosity pressure, ap1 = Langmuir adsorption parameter of polymer component,
C = volumetric composition, ls = leading slug polymer component, tsts = trailing slug,w = water phase.
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Table 2. Additional parameters kept constant for all polymer flooding and waterflooding simulations.

φ Kz, mD Pres = Pprod, psia qinj, PVI/yr Sw
o Sor = Swr

0.28 0.1K 1000 0.1 0.2 0.2

kro = krw no = nw µw, cP µo, cP Sp
.
γc, s−1

0.5 1.5 1 30 -0.5 4
.
γ1/2, s−1 Pα ap2, ml/meq bp, wt.%−1 bRK,wt.%−1 cRK, D1/2

47 1.7 0.5 100 1.0 0
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Figure 2. Vertical cross-section of the reservoir model showing the layering and the corresponding
permeabilities for the test case with VDP = 0.7 and K = 681mD.

Figure 3 shows the oil recovery factor (a) and injection bottom hole pressure (b) as a function
of pore volumes injected for the three schemes. The continuous and slug-based polymer processes
are switched to polymer injection after tD = 0.75 of water injection, where tD is a dimensionless
time reflecting PVI. The recovery-factor response from switching to polymer becomes pronounced at
tD = 1.0 (i.e., after injecting 0.25 PVI of polymer), while the pressure response is immediate. From
an oil recovery standpoint, the slug-based process yields clear benefits over the continuous process,
with cyclical increments corresponding to the cyclical injection of slugs. At tD = 1.75 for this test case,
the incremental oil recovery was 6% OOIP and 19% OOIP over continuous polymer flooding and
waterflooding, respectively. The injection bottom hole pressure for both polymer processes increased
between 1.6 to 1.7 times that of waterflooding, owing to the higher aqueous phase viscosity. However,
it is important to note that the slug-based process is able to increase oil recovery without impacting
injectivity compared to the continuous polymer flood. In this case, the injection bottom hole pressure
of the slug-based process increased by only about 5% compared to that of the continuous polymer
injection. One interesting feature of the slug-based process is the cyclical nature of the pressure: After
the initial increase in pressure, there is a pressure decrease during the injection of the leading slug (i.e.,
low salinity and polymer concentration) and a pressure increase during the injection of the trailing slug
(i.e., high salinity and polymer concentration). The reason for the pressure decrease is the acceleration
of the low polymer concentration from the leading slug into the high salinity of the trailing slug from
the previous cycle, causing a drop in aqueous phase viscosity. Similarly, the reason for the pressure
increase is the acceleration of the high polymer concentration from the trailing slug into the low salinity
of the leading slug from the same cycle, causing a rise in aqueous phase viscosity.
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Figure 3. Oil recovery factor (a) and injection bottom hole pressure (b) as a function of pore volumes
injected for the test case using waterflooding (WF), continuous polymer flooding (Cont.), and the
compositionally-tuned slug-based process (Slugs).

Figure 4 shows the oil saturation profiles for the three recovery schemes at tD = 1.3 (a,c,e) and
tD = 1.7 (b,d,f). The saturation for waterflooding shows a preferential sweep in the high permeability
layers, and low sweep in the low permeability layers. Figure 5 shows the remaining oil saturations
versus distance in layers nine (a) and eight (b), where two different phenomena appear. In layer nine
(Figure 5a), the slug-based method shows an improved oil sweep compared to the waterflood baseline
and the continuous polymer flood methods. In layer eight (Figure 5b), the slug-based method shows
two oil banks, corresponding to the enhanced polymer viscosity from slug mixing. The formation
of secondary oil-banks contributes to the overall improvement in the recovery factor. The saturation
distribution during the continuous and slug-based polymer injection also suggests that there is an
improved crossflow from the high to low permeability layers owing to the increase in aqueous phase
viscosity. Figure 6 presents the salinity and viscosity profiles versus distance in layer 8, which highlights
the viscosity boost as a result of salinity and polymer concentration slugs.Processes 2020, 8, x FOR PEER REVIEW 10 of 22 
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Figure 6. Water salinity (a), and aqueous phase viscosity (b) profiles versus distance for the slug-based
(green) and continuous (red) polymer schemes in layer eight (middle) at tD = 1.7.

Figure 7 shows the polymer concentration in wt.% (a,b), salinity (c,d), and aqueous phase viscosity
(e,f) profiles at tD = 1.3 (a,c,e) and tD = 1.7 (b,d,f) for the slug-based process. Figure 8 shows the same
profiles for the continuous polymer injection process, provide for comparison. From Figure 7, in the
third layer from the top, we note a sharp accumulation in polymer concentration from the trailing slug
(a,b) accelerating into low salinity conditions from the leading slug (c,d), responsible for the increase in
aqueous phase viscosity (e,f).
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3.2. Parameter Screening

The DoE workflow is described in Figure 9. The first step in the workflow is a screening step to
identify the significant parameters by using a two-level Plackett–Burman design. Screening using
Plackett–Burman design inherently assumes uniform distribution for all parameters and independency
among parameters [53]. Therefore, we had to make sure that parameters or groups of parameters
were appropriately arranged, and their correlations to each other were well-investigated. Figure 10
shows a Pareto chart showing the parameter significance relative to the four objective functions
described previously. For the incremental oil recovery of the slug-based process over waterflooding,
the heavy-hitters are the polymer molecular weight (MW), Dykstra–Parsons coefficient (VDP), and
interwell spacing (L). While the heavy-hitters for the incremental oil recovery of the slug-based
process over the continuous polymer flooding scheme are MW and L. For the pressure ratio between
the slug-based process and waterflooding, the heavy-hitters are K, L and MW; for the pressure ratio
between the slug-based process and continuous polymer flooding, the heavy-hitters are K, MW, L and
VDP. From this preliminary parameter screening, we identified two reservoir parameters (K and VDP)
and two design parameters (MW and L) as the most significant parameters that were carried on to the
subsequent steps in the DoE workflow. We should emphasize that this sensitivity study reflects the
significance of a parameter based on its range of uncertainty, which should not be confused with the
significance of the absolute value of the parameter. In other words, a measured quantity with narrow
uncertainty, as such, brine salinity will be insignificant in the sensitivity study, which does not mean
that salinity is insignificant for polymer flood.
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Figure 11 shows the importance of deploying a folded two-level Plackett–Burman design with
the identified significant variables. Owing to the better definition of the proxy, we can get a more
reliable interpretation of the significant parameters. For the incremental oil recovery of the slug-based
process over waterflooding, K was now assessed as significant, and for the pressure ratio between the
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slug-based process and continuous polymer flooding, the order of significance of the heavy-hitters was
changed, with MW being the most critical parameter.
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3.3. Uncertainty Quantification

Based on the screened parameters, we proceed into the surrogate modeling (for uncertainty
quantification) as part of the DoE workflow. After using a three-level Latin Hypercube design, we tune
the proxy parameters using a total of 107 simulation cases. For the proxy modeling step, we consider a
quadratic proxy function of the following form

Fk = κk +

Nv∑
i=1

κi
kxi +

Nv∑
i, j=1

κi j
kxix j, (8)

where Fk is the objective function, xi is a proxy variable, Nv is the number of variables, and κk,κi
k and

κi j
k are the corresponding regression coefficients. In the cases considered in Equation (5), (F1, F2, F3, F4)

correspond to
(
∆RFw f

sp, ∆RFcp
sp, PRw f

sp, PRcp
sp
)
, based on the parameter screening Nv = 4, and

(x1, x2, x3, x4) are the variables corresponding to (L, VDP, K, MW). The corresponding proxy coefficients
are listed in Table 3.

Table 3. Proxy coefficients for the various objective functions considered.

Coefficient F1 F2 F3 F4

κk 0.1573 0.0447 1.0275 1.3762
κ1

k 0.0095 0.0118 0.0065 0.1828
κ2

k −0.0470 −0.0020 0.0079 0.0126
κ3

k −0.0096 −0.0063 −0.0147 −0.2604
κ4

k 0.0577 0.0291 0.0173 0.1772
κ12

k 0.0013 0.0014 0.0000 0.0029
κ13

k −0.0071 −0.0028 −0.0035 −0.1188
κ14

k 0.0052 0.0043 −0.0030 −0.0121
κ23

k 0.0053 0.0036 0.0002 0.0793
κ24

k −0.0155 0.0056 0.0090 0.0179
κ34

k −0.0016 −0.0043 −0.0078 −0.1003
κ11

k 0.0003 −0.0002 −0.0011 −0.0082
κ22

k 0.0150 −0.0122 −0.0021 0.0207
κ33

k 0.0013 0.0006 0.0026 0.0953
κ44

k −0.0034 0.0032 0.0034 −0.0127

F = objective function, κ = regression coefficient

To verify the proxy predictability, we performed blind testing with 107 random cases. Once we
assessed the performance of the proxies, we proceeded into the Monte Carlo simulation, where 10,000
cases were considered to explore the probabilities of the objective functions.

Figure 12a shows a very good agreement between the simulated and predicted values for the
incremental oil recovery for the slug-based process over both waterflooding (a,b) and continuous
polymer flooding (c,d), with R2 values of 0.93 and 0.91, respectively. More importantly, for all
cases considered, ∆RFcp

sp > 0, emphasizing that the proposed technology always outperformed the
traditional continuous polymer flooding. Monte Carlo simulations (Figure 12b,d) applied to these
proxies yielded a most likely (i.e., p50) incremental value for the slug-based process over waterflooding
of 16% OOIP and over continuous polymer flooding of 4% OOIP.

Figure 13a,c also shows a good agreement between the simulated and predicted values for the
injection pressure ratio of the slug-based process compared to both waterflooding (a,b) and continuous
polymer flooding (c,d), with R2 values of 0.94 and 0.93, respectively. For all cases considered, PRcp

sp

was slightly above one, emphasizing that the proposed slug-based scheme does not exhibit any major
loss in injectivity compared to the continuous polymer flooding scheme. Monte Carlo simulations
(Figure 13b,d), using these proxies, yielded a most likely (p50) pressure ratio value of the slug-based
process compared to a waterflooding of 1.3, and compared to continuous polymer flooding of 1.02.
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probabilities from the Monte Carlo simulation (b,d) for the average injection bottom hole pressure ratio
of the slug-based process to waterflooding (a,b), and to continuous polymer flooding (c,d).
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4. Summary

In this paper, we evaluated the performance of a new compositionally-tuned slug-based polymer
flooding injection scheme using Design-of-Experiments. The recovery performance of the new scheme
was compared to both traditional polymer flooding using constant composition injection and baseline
waterflooding. The following points summarize the key findings of our study:

• The new slug-based polymer injection scheme is demonstrated using simulations to increase oil
recovery over traditional polymer flooding for all cases considered, without hampering polymer
injectivity. This injection scheme leads to a higher recovery factor relative to traditional continuous
polymer injection without a need to increase the total mass of the polymer.

• The polymer molecular weight, which controls both the inaccessible pore volume and the polymer
viscosity coefficients, was found to be the most critical design parameters. High molecular weight
polymer yielded the largest polymer component acceleration over the salinity component, which
is responsible for the size of the transition zone.

• Vertical heterogeneity was also an important reservoir parameter that impacted the recovery
performance. High reservoir heterogeneity increased mixing owing to changes in vertical velocity,
which negatively impacted the performance of the recovery process.

• For the ranges considered, polymer adsorption did not play a significant role in the process
performance. This behavior is expected because the cases corresponded to rocks with low to
moderate adsorption, and hence polymer adsorption, which contributes to polymer component
retardation, is satisfied early in the polymer injection process.

• Uncertainty quantification through surrogate modeling can be a useful, yet simple tool to estimate
the process performance in the early stages of technology assessment provided that the correct
parameters and objective functions are identified.
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Nomenclature

Roman
a Langmuir adsorption parameter
A Polymer viscosity parameter
b Langmuir adsorption parameter
bRK Permeability reduction parameter
c Permeability reduction parameter
C Volumetric composition
F Objective function
IPV Inaccessible pore volume
k Relative permeability
K Permeability
L Interwell spacing
MW Molecular weight
N Number of variables
P Pressure
Pα Shear exponent coefficient
q Flow rate
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S Phase saturation
Sp Salinity exponent
V Volume
x Variable
Greek
.
γ Shear rate
κ Proxy coefficient
µ Phase viscosity
φ Porosity
Subscripts
1
2 One-half shear
1 First coefficient, variable, or objective function
2 Second coefficient, variable, or objective function
3 Third coefficient, variable, or objective function
4 Fourth variable, or objective function
α Shear exponent
c Coefficient in shear rate model
d Displaced fluid
e f f Effective
i Injected fluid
inj Injecting condition
j Variable
ls Leading slug
o Oil phase
or Residual oil phase
p Polymer component
prod Producing condition
re f Reference
res Reservoir
RK Permeability reduction
salt Salt component
ts Trailing slug
w Water phase
wr Irreducible water phase
z z-direction
Superscripts
c Continuous injection
k Objective function
ls Leading slug
o Initial
ts Trailing slug
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