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Abstract: Callicarpa candicans (Burm. f.) Hochr. (Callicarpa cana L.) is a medicinal plant that is
distributed mainly in the tropics and subtropics of Asia and finds a wide range of uses in traditional
medicine. In this study, we attempted and optimized the microwave-assisted hydro-distillation
(MAHD) process to obtain essential oil from the leaves of C. candicans. In addition, the obtained
oil was analyzed for volatile composition by gas chromatography–mass spectrometry (GC-MS) and
assayed for bioactivity against several bacteria and cancer cell lines. To optimize the extraction process,
response surface methodology (RSM) in combination with central composite design (CCD) was
adopted. Experimental design and optimization were carried out with respect to three experimental
factors including the ratio of water to raw material, extraction time, and microwave power. The optimal
extraction conditions were obtained as follows: water to raw material ratio of 6/1 (v/w), extraction
time 42 min, and microwave power 440 W. Composition determination of the obtained C. candicans
essential oil indicated the presence of predominant components including caryophyllene <b->
(10.45%), cadinene <d-> (10.28%), gurjunene <a-> (8.95%), muurolene <g-> (8.92%), selinene <a->
(7.06%), selinene <b-> (5.59%), and copaene <a-> (5.40%). In comparison with the essential oils
obtained via traditional hydro-distillation method, the essential oil extracted by MAHD exhibited
superior anti-proliferative activity on all tested cancer cell lines. Current results imply that the MAHD
is capable of recovering biologically-active natural products of greater quantity than that recovered
by the conventional distillation.
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1. Introduction

The genus of Callicarpa consists about 140 species that are distributed mostly in Oceania and east
and southeast Asia including India, Myanmar, Thailand, and Vietnam [1–3], of which, several species
such as Callicarpa candicans, C. americana L., C. japonica, C. macrophylla, and C. longissimi are highly
valued for their essential oils, which are rich in terpenoids, phenylethanoids, volatile oils, lignans,
and flavonoids. These classes have been known for a wide range of biological activities including
antimicrobial, analgesic, antipyretic, anti-inflammatory, and anti-infection [2,4–7]. C. candicans (Burm.
f.) Hochr. or Callicarpa cana L., popularly known as Nang Nang in Vietnamese, is typically used in
folk medicine as a tonic for postpartum women, for the treatment of abdominal pain and certain
liver-related diseases, and to strengthen the tendons [4,8]. Moreover, the leaf of this shrub has been
widely used as a fish poison by the locals in the Caroline and Philippine Islands [9,10].

To obtain essential oils of medicinal plants at an industrial scale, conventional hydro-distillation
(HD) and steam distillation are typically adopted. However, these techniques can lead to the loss of
certain compounds as well as the degradation of unsaturated compounds, possibly due to heat and
hydrolysis [11]. Among newer techniques devised for the extraction of thermo-sensitive compounds
such as microwave-assisted hydro-distillation (MAHD) [12,13], solvent-free microwave extraction [14],
and microwave hydro-diffusion and gravity [15], MAHD has been demonstrated to be particularly
effective [15,16]. The method combines traditional solvent extraction with microwave to generate
pressure within walls of gland cells, permitting more efficient extraction of essential oils and in turn
improving yield and quality of the product [17]. The heat is generated by microwaves following
two mechanisms: ion conduction and bipolar rotation. These two mechanisms generate heat in the
core of the material, making the heating process much faster and more efficient. The more polar the
compound is, the faster it is heated under microwave radiation, especially water. In extraction, when
microwave radiation into extraction media containing polar materials and solvents, solvent molecules
and polar substances will oscillate and heat up quickly, increasing the ability to dissolve substances
into the solvent. In addition, the solvent is better able to dissolve the analyte when the temperature is
high, whereas the surface tension and viscosity of the solvent decreases with temperature, which will
improve sample wetting and penetrate the matrix. Moreover, microwaves destroy the structure of
plant cell walls, facilitating the release of solutes into the environment, making extraction faster but also
making the extract more impurities. The interaction of microwave with free water molecules existing in
the system of glands and matrix causes the system to operate under strong dilatation and creates breakage
that allows the release of essential oil from the material [18–20]. Meanwhile, conventional heating, due to
heat loss resulting from conduction, may suffer from extended heating times [18]. The advantages of
MAHD may include reduced solvent usage, improved extraction yield, significant reduction of extraction
time and energy consumption, lower operating costs than that of HD, eco-friendliness, and energy
efficiency. However, one limitation of MAHD is that the boiling temperature of the extraction solvent
is increased rapidly, so care should be taken to control the device to avoid explosion [11,18–24]. As a
result, MAHD has been employed for the extraction of essential oils from laurel [25], thyme [24] and
rosemary [25–27]. Interestingly, the essential oil extracted from wet citrus peel waste by MAHD yielded
two additional compounds in comparison to the conventional method [28].

In this study, the recovery of essential oil from the leaves of C. candicans by MAHD was
attempted and optimized with respect to three parameters including the ratio of water to raw
material, extraction time, and microwave power. Optimization of the extraction process was realized
using response surface methodology (RSM) with central composite design (CCD) being utilized for
experimental design. Obtained essential oils were then characterized for volatile composition using gas
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chromatography–mass spectrometry (GC–MS) and compared with essential oil composition obtained
from conventional HD. Finally, the biological activity of C. candicans essential oil, obtained by MAHD
and conventional HD, were analyzed and compared regarding the anti-proliferation capacity against
some human cancer cells.

2. Materials and Methods

2.1. Material Preparation

Fresh leaves of Nang Nang (C. candicans (Burm. f.) Hochr.), approximately 10 cm in size were
collected at an altitude of 1500 m above sea level in Dai Tu district, Thai Nguyen province, Vietnam.
The raw materials were washed several times with water to remove impurities then stored in desiccant
bags at <10 ◦C.

2.2. Extraction Process

The leaves were firstly cut into small pieces or ground depending on the experiment condition.
The samples were weighed and then added to a 2 L round-bottom flask containing a suitable volume of
water. The flask was connected to the Clevenger apparatus, and MAHD was performed in a domestic
microwave oven until no more essential oil was released. Time was measured when the microwave
was turned on (model ME71A, Samsung, Ho Chi Minh City, Vietnam; microwave power range of
100–800 W, oven capacity of 23 L). Multiple experiments with different extraction durations were
performed. For each condition, experiments were repeated three times. Upon completion of each
extraction attempt, the crude essential oil along with some condensation products was recovered,
dehydrated with Na2SO4 (Sigma Aldrich, St. Louis, MO, USA), and stored at 4 ◦C until being analyzed.

2.3. Experiment Design for Response Surface Methodology Optimization

RSM combined with the Box–Wilson CCD were employed to investigate the effect of three
conditional parameters (extraction time, the ratio of water to raw material, and microwave power)
on the yield of extracted essential oil [29]. Fifteen experimental attempts were designed using
orthogonal design matrix with Design-Expert 7.0 software (Stat-Ease, Minneapolis, MN, USA). Results
of preliminary single-factor experiments were used as inputs in CCD to determine range and central
points of variables (Tables 1 and 2). To be specific, in this investigation, three parameters were varied
individually with other factors being kept fixed. To confirm model validity, analysis of variance
(ANOVA) was performed. Lastly, after optimal parameters had been obtained from the model,
an actual experiment was performed under those conditions to compare between predicted and actual
yields. Mathematically, the modeled essential oil yield could be described as a function of technology
parameters as follows (1):

Ŷ = b0 +
k∑

j=1

b jX j+
k∑

u, j=1

bujXuX j+
k∑

j=1

b j jX2
j (1)

where Ŷ and X are the predicted response and independent variable, respectively; b0 is the intercept; bj,
buj, and bjj are variable coefficients.

2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

To perform GC-MS analysis, gas chromatography (Agilent Technologies HP7890A, Santa Clara,
CA, USA) was employed in combination with a mass spectrum detector (MSD, Agilent Technologies
HP5975C, USA) and a HP5-MS column (60 m × 0.25 mm, film thickness 0.25 µm, Agilent Technologies,
Santa Clara, CA, USA). Temperature of the injector was configured at 250 ◦C and the detector was set
at 280 ◦C. Thermal profile of the column commenced at 60 ◦C, then was elevated to 240 ◦C at the rate
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of 4 ◦C/min. Injection of essential samples was carried out via splitting with the split ratio of 100:1 and
volume of 1 µL. Parameters for MSD included ionization voltage of 70 eV, emission current of 40 mA,
and acquisition scan mass range of 35–450 am under full scan. Retention time indices (RI) of essential
oil constituents were determined by comparing with a reference (a homologous n-alkane series). MSD
response was used to infer relative content of constituents without correction.

Table 1. Ranges of parameters determined by experimental design.

Independent Variables Codes
Variable

Range (∆)

Levels

−α −1 0 +1 +α

Extraction time (min) A 10 27.8 30 40 50 52.2

Water to material ratio (v/w) B 1 3.8 4 5 6 6.2

Microwave power (W) C 100 278 300 400 500 522

Coefficient α = 1.215.

Table 2. Empirical data with corresponding actual and predicted response values.

Run A B C
Y(g)

Actual Predicted

1 −1 −1 −1 0.523 ± 0.05 0.47

2 +1 −1 −1 0.58 ± 0.04 0.62

3 −1 +1 −1 0.618 ± 0.07 0.64

4 +1 +1 −1 0.77 ± 0.06 0.80

5 −1 −1 +1 0.572 ± 0.03 0.60

6 +1 −1 +1 0.758 ± 0.07 0.76

7 −1 +1 +1 0.776 ± 0.05 0.78

8 +1 +1 +1 0.971 ± 0.06 0.95

9 −1.215 0 0 0.693 ± 0.02 0.71

10 +1.215 0 0 0.937 ± 0.03 0.91

11 0 −1.215 0 0.739 ± 0.05 0.74

12 0 +1.215 0 0.98 ± 0.08 0.96

13 0 0 −1.215 0.802 ± 0.06 0.78

14 0 0 +1.215 0.951 ± 0.07 0.95

15 0 0 0 0.949 ± 0.04 0.97

2.5. Cytotoxicity Assays

The cytotoxicity of the obtained essential oils was assayed against three established cell lines.
The cell lines Hep-G2 (ATCC HB-8065) and PC-3 (ATCC CRL-1435) were purchased from the American
Type Culture Collection (Manassas, VA, USA). Cell line A-549 (Item number: 300114) was purchased
from Cell Lines Service GmbH (Eppelheim, Germany). Cell lines were maintained at bioassay
laboratory, Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology,
Vietnam. Culture media included DMEM (Dulbecco’s modified Eagle’s medium), EMEM (Eagle’s
minimum essential medium, Sigma-Aldrich, St. Louis, MO, USA), and 10% heat-inactivated fetal
bovine serum (FBS). The culture was performed in a humidified atmosphere of 95% air and 5% CO2 at
37 ◦C. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to measure
cell viability [30].
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2.6. Antimicrobial Activity Assays

Two Gram-negative bacterial strains, including Escherichia coli M42 and Pseudomonas aeruginosa
ATCC 25923, and two gram-positive strains, including Bacillus subtilis ATCC27212 and Staphylococcus
aureus ATCC12222, acted as target bacteria for determination of antimicrobial activity. Minimum
inhibitory concentrations (MICs) were derived by performing assay on 96-well microplates. Inoculum
size of each bacterial strain was adjusted to approximately 105 colony-forming units (CFU) per milliliter
by diluting growth media with microorganisms. Essential oils were mixed with 5% Dimethyl sulfoxide
(DMSO) to form solutions with varying concentrations. Blank controls were prepared identically with
essential oils being replaced by 5% DMSO [27]. Positive controls included penicillin, streptomycin,
and nystatin.

3. Results and Discussion

3.1. Single Factor Analysis

On the basis of the results of preliminary experiments, four selected parameters were initially
fixed, including material size at 0.2 cm, extraction time at 30 min, water to material ratio at 5/1 (v/w),
and microwave power at 500 W. The factors that affected the essential oil yield are shown in Figure 1.
Figure 1a reveals that the amount of essential oil obtained varied with the size of the materials used.
The highest amount of essential oil extracted was 0.82 grams (g) when the material size was 0.2 cm.
Importantly, when the material size increased to 0.5 cm and to 0.8 cm the amount of essential oil
decreased to 0.71 g and 0.5 g, respectively. This could be explained by the higher number of broken
essential oil-bearing cells, which was achieved by more thorough cutting and allowed water to diffuse
into the oil sacs at a higher rate. The essential oil, with the assistance of microwave, was thus pushed
out to the media more quickly, resulting in higher extraction yield. However, when the size of the
material was too small (0.1 cm), the amount of essential oil recovered was reduced due to the expansion
of the material, which hindered the distillation process, leading to a decrease in extraction yield. On the
basis of these data, a material size of 0.2 cm was selected for subsequent experiments.

As shown in Figure 1b, the ratio of water to raw material seemed to be positively proportional to
essential oil yield. To be specific, as the ratio was raised from 3:1 to 6:1, the oil increased from 0.63 to
0.94 g. This was because when the volume of water increased the material absorbed water more easily,
allowing more compounds to dissolve into the solvent. The addition of water promoted essential
oil diffusion into the water and in turn improved extraction yield. However, at the material ratio
of 7:1, a slight reduction in extraction yield was observed, which could have possibly been due to
the dissolution or emulsification of the essential oil that was caused by excess water. It was found
that the range of ratio from 4:1 to 6:1 was the area that gave the maximum amount of essential oil.
Therefore, the ratio at 5:1 was selected as the center of the study compass to develop and conduct an
experimental design in the next part. At this rate, the amount of obtained essential oil approximated
the maximum value.

Effect of extraction time on essential oil yield is demonstrated in Figure 1c, indicating that a longer
extraction yield was associated with improved oil yield. The peak oil yield was achieved at 0.95 g,
corresponding to the time of 40 min. However, if the extraction time was raised past 40 min, essential
oil yield decreased to 0.93 and 0.88 g at 50 and 60 min, respectively. This could be explained that the
denaturation of certain compounds in the oil was caused by prolonged contact with high temperatures.
As for the effects of microwave power, Figure 1d showed that an increase in microwave power gave a
better oil extraction yield, but only at a certain energy limit. It is known that elevated temperatures
generated by the movement of the molecules induced by microwave energy can affect the oil yield.
Although high temperatures can decrease the surface tension and the viscosity of water and allow heat
to be transferred more rapidly into the material, certain heat-labile compounds in the essential oil can
be degraded, undermining the extraction yield and quality [31]. In addition, heat elevation could also
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increase production cost due to higher energy consumption. Therefore, the extraction time of 40 min
and microwave power of 400 W were selected as optimal conditions for subsequent optimization.

In this report, we focused on optimizing the three main technological parameters of the essential
oil extraction process, which greatly influence the process: water/material ratio (v/w), extraction time
(minute), and microwave power (W).
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Figure 1. Single factor investigations showing effect of (a) size of the materials; (b) water-to-material
ratio; (c) time of extraction; and (d) microwave power on the efficiency of essential oil extraction.

3.2. Predicted Model and Statistical Analysis

The response surfaces displayed the interaction results of the technological factors on the target
function (the essential oil yield) using the MAHD process optimized by the central composite design.
Extraction time (min), water to material ratio (v/w), and microwave power (W) were selected as
independent variables. From the results of single investigation, we determined central values and
ranges of the technology parameters (Table 1). The dependent variable was the essential oil yield
(Y), which was determined by experiments as shown in the experimental design matrix in Table 2.
After obtained optimal conditions, an actual experiment attempt was performed, and its yield was
compared with predicted values to confirm model validity.

α was calculated by the following (2) mathematical formula [30]:

α4 + 2kα2
− 2k−1(k + 0.5 n0) = 0; k < 5 (2)

with + k as the number of technological factors, and + n0 as the number of experiments at the center of
the design.

On the basis of the single factor tests, a total of 15 runs were generated and conducted. The results
were then used to establish the quadratic model (Table 2). F-value, p-value, and R2 values were then
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used to evaluate model outcomes (Table 3). The ANOVA of the quadratic regression model indicated
that the model was well fit and highly significant. The F-value of Y was 34 and the p-value was as
low as 0.0006, indicating that the model was statistically significant (Table 3). The model coefficient
of determination (R2) was 0.9839, suggesting that most of yield variability could be explained by the
experimental data (Figure 2). These data support good prediction capability of the established model
in describing essential oil yield.

Table 3. ANOVA for the quadratic model.

Source Sum of Squares Df Mean Square F-Value p-Value Remarks

Model 0.33 9 0.037 34 0.0006 significant

Extraction time (A) 0.07 1 0.07 64.97 0.0005 significant

Water-to-material ratio (B) 0.089 1 0.089 82 0.0003 significant

Microwave power (C) 0.052 1 0.052 48.49 0.0009 significant

AB 1.596 × 10−3 1 1.596 × 10−3 1.48 0.2788 not significant

AC 4.095 × 10−3 1 4.095 × 10−3 3.78 0.1093 not significant

BC 2.485 × 10−3 1 2.485 × 10−3 2.30 0.1901 not significant

A2 0.057 1 0.057 52.83 0.0008 significant

B2 0.031 1 0.031 28.67 0.0031 significant

C2 0.023 1 0.023 21.38 0.0057 significant

Residual 5.410 × 10−3 5 1.082 × 10−3 - - -

Cor total 0.34 14 0.0027 - - -

SD 0.033 - R2 0.9839 - -

Mean 0.77 - Adjusted R2 0.9550 - -

C.V. % 4.25 - Predicted R2 0.8491 - -

PRESS 0.051 - Adeq. Precision 17.822 - -

p < 0.05, significant.
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Figure 2. Plots depicting (a) actual responses versus predicted responses and (b) normalized residuals
of experimental attempts.

ANOVA analysis results in Table 3 also show that the regression function Y (obtained oil content)
depended on six interaction factors including three univariate interactions: A (extraction time), B (water
to material ratio), C (microwave power), and three squared interactions: A2, B2, and C2. The objective
function did not show the influence of double interactions. Figure 2 shows that the actual values and
the predicted values according to the model were small differences and low model errors. This once
again confirms the high compatibility of the model between experiment and theoretical calculation.
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The regression equation for the objective function is described by the following mathematical
equation (3):

Y = 0.97 + 0.08A + 0.09B + 0.069C − 0.11A2
− 0.084B2

− 0.073C2 (3)

Among the three univariate interaction effects A, B, C, the influence level of technological factors
was ranked in the order of B > A > C, and with the three squared interaction effects, the influence level
of technological factors decreased in the order of A2 > B2 > C2.

3.3. Response Surface Analysis, Optimization, and Model Verification

The estimated quadratic model was then plotted in a three-dimensional space using Design
Expert software. The z-axis of the plot was reserved for the predicted response (oil yield) and x- and
y-axes represent two process parameters, resulting in three separate plots (Figure 3). In each plot,
one parameter was fixed at the central value and other two variables were allowed to vary. Visually,
all plots exhibited similar hill-shaped surfaces, which indicated the presence of a maximum response.
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To determine the optimal values of the independent variables, the second-degree regressive
equation was solved with respect to maximum total recovered essential oil. The importance level of
the response (Y) was selected as 4. Predicted values showed that the essential oil yield attained the
maximum when extraction time was 41.5 min, water/material ratio was 5.97/1 (v/w), and microwave
power was 439 W (Table 4 and Figure 4). At optimal conditions, the predicted value and the experimental
value of the amount of obtained essential oil were 1.0164 g and 1.02 ± 0.013 g, respectively. These two
values were approximately identical, suggesting that the constructed model was highly compatible.

3.4. GC-MS Results

The volatile content of C. candicans essential oil was then analyzed by GC-MS, and the
results are displayed in Table 5 and Figure 5. For comparison, when the essential oil was
extracted using conventional HD, 47 compounds were obtained, accounting for 93.17% of the oil.
The composition included 28 sesquiterpenes (69.84%), 12 oxidized derivatives of sesquiterpene (16.50%),
1 monosesquiterpene (0.24%), 1 oxidized derivative of monosesquiterpene (0.31%), 1 diterpenoid
(0.55%), 1 benzenoid (0.13%), and 3 undetermined compounds detected at RI 1626, 1653, and 1672,
accounting for 1.55%, 1.52%, and 2.53%, respectively. As shown in Table 5, a total of 46 compounds
were detected in the C. candicans essential oil extracted by MAHD in this study, constituting 93.99% of
the oil. The compounds belonged to three categories including 30 sesquiterpenes (72.35%), 15 oxidized
derivatives of sesquiterpene (20.07%), and 1 diterpenoid (1.57%). Some major components of C. candicans
essential oil extracted by MAHD were caryophyllene <b-> (10.45%), cadinene <d-> (10.28%), gurjunene
<a-> (8.95%), muurolene <g-> (8.92%), selinene <a-> (7.06%), selinene <b-> (5.59%), and copaene
<a-> (5.40%). In general, sesquiterpene compositions were similar between essential oils obtained by
MAHD and HD. However, some quantitative differences were noticed. For example, in conventional
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distillation, the gurjunene <a-> content was 21.31%, whereas the gurjunene <a-> content in MAHD
was 8.95%. Another example was the caryophyllene <E-> content obtained in MAHD being 4.13%
higher than that obtained in conventional HD. The MAHD method yielded fewer compounds with
lower polarity, whereas more polar compounds were recovered at higher yield because the microwave
mainly affects polarized compounds, rapidly increasing their temperature and allowing them to escape
the cell and diffuse into the water more easily [32]. Furthermore, when extracted by MAHD, some
compounds unobtainable with conventional HD were recovered, including muurola-3,5-diene <cis->,
muurola-4(14),5-diene <cis->, amorphene <d->, calacorene <b->, guaiol (champacol), corocalen <a->,
eudesmol <g->, and eudesmol <a->. These compounds were all either sesquiterpenes or oxidized
derivatives of sesquiterpene, having great value in creating the distinct aroma of the essential oil [33].

Table 4. The values of the independent variables and real variables.

Independent Variables Real Variables

A B C Extraction
Time (min)

Water to Material
Ratio (v/w)

Microwave
Power (W)

0.15 0.97 0.39 41.5 5.97 439
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Table 5. The chemical contents of Callicarpa candicans essential oil obtained by microwave-assisted
hydro-distillation (MAHD). RI: retention time indices (RI); HD: hydro-distillation.

# RI Chemical Name
%

MAHD HD

1 1348 Elemene <d-> 0.18 0.27

2 1360 Cubebene <a-> 0.33 0.40

3 1385 Ylangene <a-> 0.62 0.70

4 1389, 1390 Copaene <a-> 5.40 5.39

5 1400 Bourbonene <b-> 0.15 0.17

6 1425, 1427 Gurjunene <a-> 8.95 21.31

7 1437, 1438 Caryophyllene <E->
(caryophyllene <b->) 10.45 6.32
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Table 5. Cont.

# RI Chemical Name
%

MAHD HD

8 1445 Gurjunene <b-> (calarene) 1.55 0.94

9 1457 Aromadendrene 0.55 0.61

10 1466 Muurola-3,5-diene <cis-> 0.24 -

11 1472 Humulene <a-> 0.78 0.47

12 1476, 1488 Cadina-1(6),4-diene <trans-> 0.15 0.62

13 1480 Muurola-4(14),5-diene <cis-> 0.29 -

14 1491 Muurolene <g-> 8.92 5.66

15 1494 Amorphene <a-> 0.82 0.53

16 1498 Germacrene D 0.51 0.25

17 1505 Selinene <b-> 5.59 4.23

18 1509, 1510 Amorphene <g-> 1.36 1.25

19 1513, 1514 Selinene <a-> 7.06 5.71

20 1518 Bisabolene <b-> 0.48 0.56

21 1521 Amorphene <d-> 0.43 -

22 1530, 1531 Cadinene <g-> 3.15 2.17

23 1537, 1538 Cadinene <d-> 10.28 7.70

24 1539 Calamenene <cis-> 1.23 0.82

25 1548, 1549 Cadina-1,4-diene <trans-> 0.56 0.46

26 1553 Cadinene <a-> 0.61 0.46

27 1560, 1561 Calacorene <a-> 0.82 0.80

28 1581 Calacorene <b-> 0.19 -

29 1590 Ledol 0.70 1.30

30 1598 Spathulenol 0.44 0.43

31 1601 Axenol (gleenol) 0.33 0.21

32 1605 Caryophyllene oxide 1.56 1.25

33 1614 Guaiol (champacol) 0.22 -

34 1635 Cubenol <1,10-di-epi-> 0.81 0.65

35 1639 Corocalen <a-> 0.21 -

36 1647 Cubenol <1-epi> 2.09 2.51

37 1652 Eudesmol <g-> 1.73 -

38 1660 Cadinol <epi-a-> (T-cadinol) 1.50 1.40

39 1661, 1662 Muurolol <epi-a-> (T-muurolol) 1.62 1.42

40 1665 Muurolol <a-> (cadinol <d->) 0.87 0.75

41 1673 Eudesmol <b-> 1.50 -

42 1674, 1675 Cadinol <a-> 3.03 4.17

43 1676 Eudesmol <a-> 1.50 -

44 1678 Intermedeol <neo-> 2.17 1.98

45 1695 Cadalene 0.49 0.50
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Table 5. Cont.

# RI Chemical Name
%

MAHD HD

46 2118, 2120 Phytol 1.57 0.55

47 984 Pinene <b-> - 0.24

48 1103 Linalool - 0.31

49 1204 Methyl salicylate - 0.13

50 1446 Bergamotene <a-trans-> - 0.94

51 1479 Caryophyllene <9-epi-(E)-> - 0.39

52 1541 Zonarene - 0.21

53 1626 Unknown (109, 222, RI 1626) - 1.55

54 1653 Unknown (161, 222, RI 1653) - 1.52

55 1672 Unknown (162, 220, RI 1672) - 2.53

56 1691 Caryophyllene
<14-hydroxy-9-epi-(E)-> - 0.43

- - Total 93.99 93.17

- - Sesquiterpene 72.35 69.84

- - Oxidized derivatives of
sesquiterpene 20.07 16.5

- - Diterpenoid 1.57 0.55

- - Monosesquiterpene - 0.24

- - Oxidized derivative of
monosesquiterpene - 0.31

- - Benzenoid - 0.13

- - Unknown - 5.60

- - Total 93.99 93.17Processes 2020, 8, x FOR PEER REVIEW 11 of 15 
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3.5. Biological Activity of C. candicans Essential Oil

The biological activity of C. candicans essential oil obtained by MAHD and HD were evaluated
in terms of anti-proliferative activity on three cancer cell lines (HepG2, PC3, and A549), as well as
anti-microbial activity on eight strains of fungi, yeast, and bacteria. The results showed that the
dried C. candicans essential oil only exhibited mild activity on the Hep-G2 line (IC50 = 94.53 µg/mL).
The essential oil extracted by conventional HD did not express any activity on all tested cell lines.
In contrast, the C. candicans essential oil obtained by MAHD exhibited good activity on all three
tested cell lines, with IC50 values ranging from 14.65 µg/mL (Hep-G2 line) to 56.21 µg/mL (A549 line)
(Table 6). Similarly, MAHD-extracted essential oil also displayed better inhibitory activity on the fungi
Fusarium oxysporum compared to conventional HD samples (Table 7). These data indicate that MAHD
successfully recovered more important bioactive compounds in the C. candicans essential oil than by
the HD method. In addition, the findings support that C. candicans essential oil obtained by MAHD
has higher potential in a biological application.

Table 6. Anti-proliferation activity (IC50 values) of the C. candicans essential oil against three human
cancer cell lines.

Essential Oil Sample IC50 (µg/mL)

Hep-G2 PC3 A549

Dried C. candicans essential oil 94.53 >100 >100

C. candicans essential oil obtained
from MAHD method 14.65 23.87 56.21

C. candicans essential oil obtained
from traditional method >100 >100 >100

Positive control (paclitaxel) 4.03 ng/mL 3.48 ng/mL 3.69 ng/mL
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Table 7. Antimicrobial activity of C. candicans essential oil extracts.

Essential Oil Sample

MIC (µg/mL)

Escherichia coli Pseudomonas
aeruginosa Bacillus subtillis Staphylococcus aureus Aspergillus niger Fusarium

oxysporum
Saccharomyces

cerevisiae Candida albicans

Dried C. candicans essential oil >200 >200 >200 >200 >200 >200 >200 >200

C. candicans essential oil obtained by HD >200 >200 >200 >200 >200 200 >200 200

C. candicans essential oil obtained by MAHD >200 >200 >200 >200 >200 100 >200 200
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4. Conclusions

In this study, using RSM combined with CCD, we successfully optimized the extraction process
of essential oil from the leaves of C. candicans with the three experimental parameters including
extraction time (min), water to material ratio (v/w), and microwave power (W). The dependent variable
studied was the essential oil yield recovered after extraction. Accordingly, the optimized conditions
obtained were extraction time of 42 (min), water to material ratio of 6/1 (v/w), and microwave power of
440 (W). At the optimal conditions identified, the C. candicans essential oil yield was 1.02 ± 0.013 g.
GC-MS results revealed that C. candicans essential oil contained large amounts of sesquiterpenes and
sesquiterpene derivatives. Although the chemical profile and contents of essential oil obtained by
MAHD were not significantly different from those obtained by traditional HD, only the oil extracted
by MAHD exhibited the anti-proliferative activity on the tested cancer cell lines. The data demonstrate
that the difference in MAHD-extracted essential oil is important and indispensable to the biological
application of the oil.
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