

Correction

Correction: Vachaparambil, K.J. Comparison of Surface Tension Models for the Volume of Fluid Method. *Processes* 2019, 7, 542

Kurian J. Vachaparambil * and Kristian Etienne Einarsrud *

Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

* Correspondence: kurian.j.vachaparambil@ntnu.no (K.J.V.); kristian.e.einarsrud@ntnu.no (K.E.E.)

Received: 21 January 2020; Accepted: 22 January 2020; Published: 25 January 2020

Corrections:

In Equations (2) and (3), τ_{μ} and τ_{ρ} should be defined as $\mu_{avg}\Delta x/\sigma$ and $\sqrt{\rho_{avg}(\Delta x)^3/\sigma}$, respectively.

In Equation (9), $\overrightarrow{n_f}$ is the unit normal vector to the interface and $\overrightarrow{S_f}$ is the face surface area.

In Table 8 and Table 10, the kinematic viscosity of gas or phase 2 should be equal to 1.48×10^{-5} m²/s, as provided in the simulation case files available in the Supplementary Material.

The results reported in [1] are not affected by these typographical errors.

Conflicts of Interest: The authors declare no conflict of interest.

References

 Vachaparambil, K.J.; Einarsrud, K.E. Comparison of Surface Tension Models for the Volume of Fluid Method. *Processes* 2019, 7, 542. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).