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Abstract: Polyphenols, obtained from natural resources, may possess important pharmacological
effects. The polyphenolic profiles of the stem extracts of six Ferocactus species (sp.): F. gracilis, F. pottsii,
F. herrerae, F. horridus, F. glaucescens, and F. emoryi, were measured using high-performance liquid
chromatography (HPLC) with diode-array detection (DAD). Additionally, anticancer, antibacterial,
and antifungal activities were examined. Results showed the presence of high to moderate amounts
of polyphenols in the extracts (phenolic acids: Protocatechuic acid, 3,4-dihydroxyphenylacetic
acid, caffeic acid, and vanillic acid; flavonoids: Rutoside and quercitrin). The highest amounts of
3,4-dihydroxyphenylacetic acid were found in F. glaucescens ((132.09 mg 100 g−1 dry weight (DW)),
F. pottsii (75.71 mg 100 g−1 DW), and F. emoryi (69.14 mg 100 g−1 DW) while rutoside content was
highest in F. glaucescens (107.66 mg 100 g−1 DW). Maximum antiproliferative activities were observed
against HeLa and Jurkat cancer cells, with F. glaucescens, F. emoryi, and F. pottsii showing the highest
anticancer activity. Most bacteria were sensitive to Ferocactus sp. stem extracts. Escherichia coli and
Staphylococcus aureus were the most sensitive. Excellent antifungal effects were observed against
Aspergillus ochraceus and A. niger. However, Penicillium funiculosum, P. ochrochloron, and Candida
albicans were relatively resistant. This is the first study reporting novel sources of polyphenols in
Ferocactus sp. with anticancer and antimicrobial activities.
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1. Introduction

Polyphenols (e.g., phenolic acids, lignins, tannins, and flavonoids) represent a wide group of plant
secondary metabolites that play a crucial role in counteracting various types of stresses in plants, apart
from contributing to the organoleptic properties of plants and plant-derived food [1,2]. Polyphenols
are well known for their beneficial effects on human health, due to their antioxidant, anticancer,
cardioprotective, anti-inflammatory, and antimicrobial properties [3–7]. In addition, studies have
reported that polyphenols could improve some pathological conditions, such as neurodegenerative
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diseases, type 2 diabetes, and obesity [5,8–10]. The identification and discovery of new sources of
phenolic compounds will assist in the development of new treatment options for various human cancers.

Polyphenols are strong antioxidants that have an important role in controlling bacterial diseases.
Many polyphenolic compounds have shown antibacterial activities against several gram-positive
bacteria, such as Staphylococcus aureus, Bacillus subtilis, and Listeria monocytogenes, and gram-negative
bacteria, such as Escherichia coli and Pseudomonas aeruginosa [11–15]. The antifungal properties of
polyphenols have also been reported in several studies against plant pathogenic fungi, including Botrytis
cinerea and Fusarium oxysporum [16,17], as well as human pathogenic fungi, including Candida albicans
and others [13,18].

Ferocactus (Cactaceae) is a relatively small genus (30 species) consisting of barrel-shaped cacti with
small to large spines and small, colored flowers. The plants are native to Mexico and the United States
of America and are typically grown as ornamental plants in warmer regions. The family Cactaceae is
known for important economic genera such as Opuntia sp. (which are used as food and medicine) [19]
and Mammillaria [15]. However, no study has been performed to investigate the medicinal value of
Ferocactus species (sp.), such as F. gracilis, F. pottsii, F. herrerae, F. horridus, F. glaucescens, and F. emoryi
(Figure 1). Other Ferocactus sp., such as F. wislizeni, produce fruits that are used as lemons and
limes. In addition, the fruits and stems of F. hamatacanthus are used in making cactus candy [2]. The
plant extract of F. echidne has been used for the synthesis of silver nanoparticles owing to its strong
reducing properties [20]. The polyphenolic profile and biological activities of this genus have not been
studied before.Processes 2020, 8, x; doi: FOR PEER REVIEW 3 of 13 

 

 
Figure 1. Morphological appearances of the six Ferocactus sp. (A) F. emoryi, (B) F. glaucescens, (C) F. 
gracilis, (D) F. pottsii, (E) F. herrerae, (F) F. horridus. 

2. Results 

2.1. Chemical Profiles of the Ferocactus Polyphenolic Extracts 

Out of the 21 compounds screened, six polyphenols were identified in the stem extracts of the 
plants from the Ferocactus sp., using HPLC-DAD. These polyphenols included 4 phenolic acids: 
Protocatechuic acid, 3,4-dihydroxyphenylacetic acid, caffeic acid, and vanillic acid, and two 
flavonoids: Rutoside and quercitrin (Table 1 and Figure 2). The two major compounds found in all 
six plants of the Ferocactus sp. were 3,4-dihydroxyphenylacetic acid and quercitrin. The amounts of 
3,4-dihydroxyphenylacetic acid varied from 41.12 to 132.09 mg 100 g−1 dry weight (DW), and the 
highest amounts were found in F. glaucescens (132.09 ± 15.51 mg 100 g−1 DW), F. pottsii (75.71 ± 7.26 
mg 100 g−1 DW), and F. emoryi (69.14 ± 6.7 mg 100 g−1 DW). The quercitrin content varied from 24.08 
to 43.18 mg 100 g−1 DW, and the highest amount was detected in F. gracilis. The rutoside content 
varied from 7.83 to 107.66 mg 100 g−1 DW, and the highest amount was detected in F. glaucescens. The 
concentrations of protocatechuic acid, caffeic acid, and vanillic acid in the stem extracts were detected 
in smaller quantities, ranging from 1.53 to 8.59 mg 100 g−1 DW (Table 1). Based on these results, F. 
glaucescens can be considered as a rich source of polyphenols (Table 1). 
  

Figure 1. Morphological appearances of the six Ferocactus sp. (A) F. emoryi, (B) F. glaucescens, (C)
F. gracilis, (D) F. pottsii, (E) F. herrerae, (F) F. horridus.

Experimental data regarding the bioactivity of the stem of Ferocactus sp. is limited. In this study,
the polyphenolic profiles of six Ferocactus sp. were evaluated (qualitatively and quantitatively) for the
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first time using high-performance liquid chromatography with diode-array detection (HPLC-DAD)
method. The anticancer, antibacterial, and antifungal effects of stem extracts were also explored.

2. Results

2.1. Chemical Profiles of the Ferocactus Polyphenolic Extracts

Out of the 21 compounds screened, six polyphenols were identified in the stem extracts of the plants
from the Ferocactus sp., using HPLC-DAD. These polyphenols included 4 phenolic acids: Protocatechuic
acid, 3,4-dihydroxyphenylacetic acid, caffeic acid, and vanillic acid, and two flavonoids: Rutoside and
quercitrin (Table 1 and Figure 2). The two major compounds found in all six plants of the Ferocactus
sp. were 3,4-dihydroxyphenylacetic acid and quercitrin. The amounts of 3,4-dihydroxyphenylacetic
acid varied from 41.12 to 132.09 mg 100 g−1 dry weight (DW), and the highest amounts were found in
F. glaucescens (132.09 ± 15.51 mg 100 g−1 DW), F. pottsii (75.71 ± 7.26 mg 100 g−1 DW), and F. emoryi
(69.14 ± 6.7 mg 100 g−1 DW). The quercitrin content varied from 24.08 to 43.18 mg 100 g−1 DW, and the
highest amount was detected in F. gracilis. The rutoside content varied from 7.83 to 107.66 mg 100 g−1

DW, and the highest amount was detected in F. glaucescens. The concentrations of protocatechuic acid,
caffeic acid, and vanillic acid in the stem extracts were detected in smaller quantities, ranging from
1.53 to 8.59 mg 100 g−1 DW (Table 1). Based on these results, F. glaucescens can be considered as a rich
source of polyphenols (Table 1).

Table 1. Polyphenol compositions of Ferocactus sp. stem extracts (mg 100 g−1 DW ± SD).

F. gracilis F. pottsii F. herrerae F. horridus F. glaucescens

Protocatechuic acid 3.04 ± 0.24c 6.87 ± 0.57a 5.34 ± 0.49b 3.31 ± 0.31c 5.14 ± 0.5b
3,4-Dihydroxyphenylacetic acid 56.94 ± 5.26c 75.71 ± 7.26b 41.12 ± 4.96d 45.46 ± 4.65d 132.09 ± 15.51a

Caffeic acid 5.46 ± 0.48c 7.94 ± 0.66b 8.59 ± 0.81a 4.23 ± 0.55d 5.24 ± 0.55c
Vanillic acid 2.00 ± 0.2b 3.01 ± 0.29a 1.83 ± 0.17c 1.96 ± 0.23cb 3.06 ± 0.32a

Rutoside 7.83 ± 0.64b 12.69 ± 1.0b 10.69 ± 1.0b 9.23 ± 0.89b 107.66 ± 10.76a
Quercitrin 43.19 ± 3.82a 24.08 ± 2.1d 30.16 ± 0.49c 33.27 ± 2.9b 42.65 ± 4.06a

Different letters within a row indicate significant difference at p ≤ 0.05 (SD, standard deviation).
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Figure 2. HPLC-DAD (λ = 254 nm, UV spectra range 200–400 nm) chromatogram of F. glaucescens 
stem extract (1) protocatechuic acid, (2) 3,4-dihydroxyphenylacetic acid, (3) caffeic acid, (4) vanillic 
acid, (5) rutoside, (6) quercitrin (HPLC-DAD, high-performance liquid chromatography with diode-
array detection). 

2.2. Anticancer Activities of the Ferocactus Polyphenolic Extracts 

The stem extracts of the six plants from the Ferocactus sp. showed antiproliferative activities 
against human cancer cells, as shown in Table 2. The highest antiproliferative activities were observed 
against HeLa and Jurkat cancer cells. The highest anticancer activity was found in the extracts of F. 
glaucescens, F. emoryi, and F. pottsii. The anticancer activities of polyphenols were comparable in the 
F. glaucescens, F. emoryi, and F. pottsii extracts. The antiproliferative effects of 3,4-dihydroxy-
phenylacetic acid and rutoside against Human Colorectal Adenocarcinoma Cell Line (HT-29) did not 
show any significant difference compared to vinblastine sulfate. After 48 h of treatment with different 
extracts, the apoptotic assay showed high accumulation of necrosis in the early and late apoptotic 
cells when compared to the control (Figure 3). Treatment with 2- 3,4-dihydroxyphenylacetic acid and 
rutoside showed similar accumulation of necrotic cells, as seen in treatment with the stem extracts of 
F. glaucescens, F. emoryi, and F. pottsii.  
  

Figure 2. HPLC-DAD (λ = 254 nm, UV spectra range 200–400 nm) chromatogram of F. glaucescens stem
extract (1) protocatechuic acid, (2) 3,4-dihydroxyphenylacetic acid, (3) caffeic acid, (4) vanillic acid, (5)
rutoside, (6) quercitrin (HPLC-DAD, high-performance liquid chromatography with diode-array detection).

2.2. Anticancer Activities of the Ferocactus Polyphenolic Extracts

The stem extracts of the six plants from the Ferocactus sp. showed antiproliferative activities against
human cancer cells, as shown in Table 2. The highest antiproliferative activities were observed against
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HeLa and Jurkat cancer cells. The highest anticancer activity was found in the extracts of F. glaucescens,
F. emoryi, and F. pottsii. The anticancer activities of polyphenols were comparable in the F. glaucescens,
F. emoryi, and F. pottsii extracts. The antiproliferative effects of 3,4-dihydroxy-phenylacetic acid and
rutoside against Human Colorectal Adenocarcinoma Cell Line (HT-29) did not show any significant
difference compared to vinblastine sulfate. After 48 h of treatment with different extracts, the apoptotic
assay showed high accumulation of necrosis in the early and late apoptotic cells when compared to
the control (Figure 3). Treatment with 2- 3,4-dihydroxyphenylacetic acid and rutoside showed similar
accumulation of necrotic cells, as seen in treatment with the stem extracts of F. glaucescens, F. emoryi,
and F. pottsii.

Table 2. In vitro antiproliferative activity inhibitory concentration (IC50 (µg/mL)) of Ferocactus sp. stem
extracts (mg mL−1) and the main identified compounds on different cancer cell lines. Values are
presented as means of three replicates. Different letters within a column indicate significant differences
at p ≤ 0.05.

HeLa Jurkat T24 MCF-7 HT-29 HEK-293

Control 6.6 ± 0.1c 24.0 ± 0.3a 93.4 ± 3.8a 20.6 ± 1.6a 121.9 ± 4.2a >200
F. gracilis 8.4 ± 0.3a 16.3 ± 0.8c 26.9 ± 1.3c 18.2 ± 0.5b 53.2 ± 2.1d >200
F. pottsii 4.1 ± 0.3e 9.1 ± 0.3e 21.2 ± 0.8d 13.5 ± 0.7c 41.2 ± 1.1e >200

F. herrerae 7.8 ± 0.10b 18.8 ± 0.3b 56.9 ± 2.7b 18.1 ± 0.4b 68.2 ± 1.8c >200
F. horridus 7.7 ± 0.20b 15.7 ± 0.7d 57.2 ± 0.3b 17.9 ± 0.3b 74.7 ± 3.2b >200

F. glaucescens 3.3 ± 0.2f 8.2 ± 0.2e 18.4 ± 0.8 7.77 ± 0.3d 37.5 ± 0.1e >200
F. emoryi 5.7 ± 0.1d 9.2 ± 0.5e 19.7 ± 0.7d 9.0 ± 0.2d 42.6 ± 5.1e >200

3,4-Dihydroxy-phenylacetic acid 3.0 ± 0.1f 5.7 ± 0.1f 10.8 ± 0.5e 6.6 ± 0.2e 21.2 ± 0.2f >200
Rutoside 4.1 ± 0.2e 4.1 ± 0.1g 11.2 ± 0.6e 5.1± 0.1f 18.1 ± 1.1f >200

Vinblastine sulfate 2.2 ± 0.06g 0.1 ± 0.01h 61.9 ± 2.7b - 20.2 ± 0.7f 48.7 ± 0.9
Taxol - - - 0.09 ± 0.004g - -
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Figure 3. Apoptotic cell population (IC50) using flow cytometry.

2.3. Antibacterial Activities of the Ferocactus Polyphenolic Extracts

The stem extracts of the different Ferocactus sp. showed remarkable antibacterial activities against
Pseudomonas aeruginosa, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Mariniluteicoccus flavus, and
Staphylococcus aureus, as shown in Table 3. The highest antibacterial activities were observed in the stem
extracts of F. glaucescens, F. emoryi, and F. pottsii. Polyphenol standards of 3,4-dihydroxyphenylacetic
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acid, rutoside, and quercitrin showed comparable or higher activities than those of the extracts. Most
bacteria were sensitive to different Ferocactus sp. stem extracts; especially, E. coli and S. aureus were
found to be most sensitive, as demonstrated by low minimum inhibitor concentration (MIC) values.

Table 3. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of
Ferocactus sp. stem extracts (mg mL−1) and the main identified compounds. Values are presented as
mean of three replicates.

P. aeruginosa
MIC
MBC

B. cereus
MIC
MBC

L. monocytogenes
MIC
MBC

E. coli
MIC
MBC

M. flavus
MIC
MBC

S. aureus
MIC
MBC

F. gracilis 0.18 ± 0.01 0.35 ± 0.03 0.28 ± 0.01 0.26 ± 0.02 0.21 ± 0.01 0.21 ± 0.01
0.45 ± 0.03 0.70 ± 0.03 0.63 ± 0.03 0.54 ± 0.03 0.42 ± 0.02 0.46 ± 0.03

F. pottsii 0.10 ± 0.01 0.23 ± 0.02 0.19 ± 0.02 0.22 ± 0.01 0.17± 0.01 0.17 ± 0.01
0.22 ± 0.02 0.45 ± 0.03 0.50 ± 0.03 0.46 ± 0.03 0.38 ± 0.02 0.35 ± 0.00

F. herrerae
0.16 ± 0.01 0.33 ± 0.03 0.25 ± 0.01 0.27 ± 0.01 0.22 ± 0.01 0.21 ± 0.02
0.38 ± 0.03 0.36 ± 0.01 0.53 ± 0.03 0.65 ± 0.02 0.43 ± 0.02 0.42 ± 0.01

F. horridus
0.17 ± 0.01 0.38 ± 0.02 0.22 ± 0.01 0.28 ± 0.01 0.23 ± 0.01 0.20 ± 0.01
0.42 ± 0.03 0.72 ± 0.05 0.52 ± 0.03 0.67 ± 0.03 0.45 ± 0.03 0.43 ± 0.03

F. glaucescens 0.09 ± 0.01 0.15 ± 0.01 0.17 ± 0.02 0.13 ± 0.01 0.10 ± 0.01 0.15 ± 0.01
0.20 ± 0.03 0.31 ± 0.01 0.39 ± 0.03 0.28 ± 0.02 0.23 ± 0.02 0.31 ± 0.01

F. emoryi 0.10 ± 0.01 0.20 ± 0.02 0.20 ± 0.01 0.25 ± 0.02 0.18 ± 0.01 0.19 ± 0.01
0.21± 0.02 0.43 ± 0.03 0.55 ± 0.03 0.57 ± 0.03 0.37 ± 0.03 0.39 ± 0.02

3,4-Dihydroxy-
phenylacetic acid

0.06 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 0.15± 0.02 0.15 ± 0.01
0.13 ± 0.01 0.17 ± 0.01 0.19 ± 0.01 0.20 ± 0.02 0.31 ± 0.02 0.31 ± 0.02

Rutoside
0.05 ± 0.01 0.11± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.12 ± 0.01 0.11 ± 0.01
0.10 ± 0.02 0.21 ± 0.01 0.19 ± 0.01 0.25 ± 0.01 0.23 ± 0.02 0.23 ± 0.02

Quercitrin 0.06 ± 0.01 0.13 ± 0.01 0.15 ± 0.01 0.14 ± 0.01 0.13 ± 0.01 0.17 ± 0.01
0.11 ± 0.01 0.27 ± 0.02 0.32 ± 0.02 0.29 ± 0.02 0.31 ± 0.02 0.32 ± 0.03

Streptomycin 0.08 ± 0.01 0.08 ± 0.01 0.14 ± 0.01 0.12 ± 0.01 0.11 ± 0.01 0.17 ± 0.01
0.16 ± 0.02 0.16 ± 0.01 0.30 ± 0.02 0.24 ± 0.01 0.21 ± 0.02 0.31 ± 0.01

2.4. Antifungal Activities of the Ferocactus Polyphenolic Extracts

Ferocactus stem extracts showed good antifungal properties against the selected fungi, as shown
in Table 4. The MIC and minimum fungicidal concentration (MFC) values were generally low for all
the Ferocactus sp. Excellent antifungal effects were observed against Aspergillus ochraceus and A. niger.
However, Penicillium funiculosum, P. ochrochloron, and Candida albicans were relatively more resistant.
The activities of the extracts matched those of the commercial reagent ketoconazole (KTZ). The
antifungal activities of phenolic standards, 3,4-dihydroxyphenylacetic acid, rutoside, and quercitrin,
were comparable to those of F. glaucescens, F. emoryi, and F. pottsii extracts.

Table 4. Minimum inhibitory (MIC) and minimum fungicidal concentration (MFC) of Ferocactus sp.
stem extracts (mg mL−1) and the identified compounds. Values are presented as mean of three replicates.

A. flavus
MIC
MFC

A. ochraceus
MIC
MFC

A. niger
MIC
MFC

C. albicans
MIC
MFC

P. funiculosum
MIC
MFC

P. ochrochloron
MIC
MFC

F. gracilis 0.28 ± 0.02 0.27± 0.01 0.21 ± 0.01 0.37 ± 0.02 0.31± 0.01 0.37± 0.02
0.62 ± 0.03 0.52 ± 0.03 0.43 ± 0.03 0.80 ± 0.05 0.63 ± 0.03 0.68 ± 0.03

F. pottsii 0.21 ± 0.02 0.18 ± 0.01 0.12 ± 0.01 0.27 ± 0.05 0.24 ± 0.01 0.19 ± 0.02
0.46 ± 0.01 0.39 ± 0.02 0.31 ± 0.03 0.61 ± 0.10 0.51 ± 0.03 0.41 ± 0.03

F. herrerae
0.27 ± 0.02 0.27 ± 0.01 0.20 ± 0.01 0.73 ± 0.10 0.29 ± 0.01 0.35 ± 0.01
0.637 ± 0.01 0.48 ± 0.03 0.41 ± 0.02 1.31 ± 0.13 0.69 ± 0.02 0.61 ± 0.03

F. horridus
0.28 ± 0.02 0.26 ± 0.03 0.19 ± 0.01 0.39 ± 0.01 0.30 ± 0.02 0.38 ± 0.01
0.65 ± 0.04 0.45 ± 0.03 0.35 ± 0.03 0.82 ± 0.03 0.65 ± 0.03 0.77 ± 0.01

F. glaucescens 0.19 ± 0.01 0.16 ± 0.01 0.11 ± 0.01 0.25 ± 0.01 0.20 ± 0.01 0.17 ± 0.03
0.40 ± 0.03 0.33 ± 0.01 0.27 ± 0.01 0.54 ± 0.03 0.41 ± 0.03 0.32 ± 0.01

F. emoryi 0.23 ± 0.01 0.21 ± 0.01 0.18 ± 0.01 0.23 ± 0.01 0.25± 0.02 0.20 ± 0.02
0.50 ± 0.03 0.43 ± 0.01 0.35 ± 0.03 0.54 ± 0.03 0.53 ± 0.03 0.44 ± 0.01

3,4-Dihydroxy
-phenylacetic acid

0.20 ± 0.01 0.15 ± 0.01 0.14 ± 0.01 0.23 ± 0.01 0.17 ± 0.01 0.19 ± 0.03
0.42 ± 0.01 0.31 ± 0.01 0.29 ± 0.01 0.53 ± 0.03 0.39 ± 0.02 0.40 ± 0.01

Rutoside
0.18 ± 0.01 0.17 ± 0.01 0.13 ± 0.01 0.28 ± 0.01 0.18 ± 0.01 0.15 ± 0.03
0.35 ± 0.02 0.38 ± 0.01 0.27 ± 0.03 0.62 ± 0.03 0.33 ± 0.01 0.34 ± 0.01

Quercitrin 0.17 ± 0.01 0.18 ± 0.01 0.12 ± 0.01 0.27 ± 0.01 0.27 ± 0.01 0.20 ± 0.03
0.32 ± 0.01 0.41 ± 0.03 0.25 ± 0.03 0.56 ± 0.03 0.51 ± 0.01 0.44 ± 0.01

KTZ
0.21 ± 0.01 0.21 ± 0.01 0.10± 0.01 0.22 ± 0.01 2.00 ± 0.11 0.21 ± 0.01
0.40 ± 0.01 0.42 ± 0.03 0.22 ± 0.01 0.44 ± 0.02 3.69 ± 0.08 0.40 ± 0.03
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3. Discussion

The qualitative and quantitative HPLC-DAD analyses of the stem extracts of six Ferocactus sp.,
F. gracilis, F. pottsii, F. herrerae, F. horridus, F. glaucescens, and F. emoryi, indicated the presence of six
polyphenolic compounds, namely protocatechuic acid, 3,4-dihydroxyphenylacetic acid, caffeic acid,
vanillic acid, rutoside, and quercitrin. The highest concentrations of detected polyphenols were
confirmed in F. glaucescens (Table 1). The major polyphenols found in high concentrations in all the
studied Ferocactus sp. were 3,4-dihydroxyphenylacetic acid, rutoside, and quercitrin. Protocatechuic
acid, caffeic acid, and vanillic acid were detected in smaller quantities, ranging from 1.53 to 8.59 mg
100 g−1 DW (Table 1). The highest concentration of 3,4-dihydroxyphenylacetic acid was found in
F. glaucescens (132.09 mg 100 g−1 DW) and this value was several times higher than that found in
the other species (Table 1). The abundant availability of 3,4-dihydroxyphenylacetic acid in a natural
plant source is not common. Dihydroxyphenylacetic acid has been reported to be found in much
lower concentrations in Eucalyptus globulus bark [21]. On the other hand, quercitrin is not as rare as
3,4-dihydroxyphenylacetic acid. It is commonly found in vegetables and fruits [22]. Similarly, rutoside
is common in foods and has important therapeutic potential [23].

The stem extracts of different Ferocactus sp. showed obvious antiproliferative effects against
various cancer cells, especially against HeLa and Jurkat cancer cells. The extracts of F. glaucescens,
F. emoryi, and F. pottsii showed highest antiproliferative effects. This could be attributed to the
abundant presence of specific bioactive polyphenol compounds, such as 3,4-dihydroxyphenylacetic
acid, rutoside, quercitrin, and protocatechuic acid in these extracts. The 3,4-Dihydroxyphenylacetic
acid was found to have apoptotic effect on human colon adenocarcinoma cells [24]. The extracts
of F. gracilis, F. herrerae, and F. horridus showed moderate antiproliferative activities against most
cancer cells. Previous investigations on other genera of Cactaceae, such as the famous genus Opuntia
sp., revealed antiproliferative activities of the plant juice against HT-29 cells [25]. Cell cycle arrest
in the apoptotic assay at the G1, G2/M, and S was reported. These effects were attributed to the
phytochemical composition (betacyanins, isorhamnetin derivatives, and ferulic acid) of these plants. In
Cereus peruvianus Mill (Cactaceae), antiproliferative activity was observed, owing to a high composition
of unsaturated fatty acids [26].

The apoptotic activity of 3,4-dihydroxybenzoic acid (protocatechuic acid) has been reported in
human gastric carcinoma cells [27] by the induction of JNK/p38 activity in protocatechuic acid
(PCA)-responsive cell lines. Rutoside (3,3′,4′,5,7-pentahydroxyflavone-3-rhamnoglucoside) is a
flavonol, commonly found in plants, and has cytoprotective, antioxidant, and anticarcinogenic
activities against several cancer cell types [23]. Rutoside induces G2/M cell cycle arrest and activates
apoptosis in human neuroblastoma cancer cells [28]. In another study, rutoside acted against cancer
cells through antioxidant mechanism [29]. Quercitrin has shown strong anticancer activities owing to
apoptosis-inducing effects [30]. Similar to earlier studies, accumulation of necrotic cells in the cell cycle
was observed in this study.

Antibacterial effects were observed in the stem extracts of the six Ferocactus sp. The highest
antibacterial activities were observed in the stem extracts of F. glaucescens, F. emoryi, and F. pottsii.
Further, polyphenol standards of 3,4-dihydroxyphenylacetic acid, rutoside, and quercitrin showed
comparable or higher values than those observed in the extracts, thus implying that these polyphenols
were responsible for the antibacterial effects. Rutoside has been implicated in antibacterial activities
against B. cereus and Salmonella enteritidis [31] and S. aureus [32]. Quercitrin and other flavonoids
have also shown antibacterial activities against several bacteria [33]. Polyphenols, in general, are
known for their antibacterial activities [34]. Furthermore, Ferocactus stem extracts showed good
antifungal properties. Excellent antifungal effects were observed against Aspergillus ochraceus and
A. niger. However, the antifungal activities were lower against Penicillium funiculosum, P. ochrochloron,
and Candida albicans. Several reports have indicated that rutoside, quercitrin, protocatechuic acid, and
vanillic acid have antifungal activities [3,4,35,36].



Processes 2020, 8, 138 7 of 11

4. Materials and Methods

4.1. Chemicals

The following standards were used for the qualification and quantification of phenolic acid:
Benzoic acid and its derivatives (3,4-dihydroxyphenylacetic acid, ellagic acid, gallic acid, gentisic acid,
p-hydroxybenzoic acid, protocatechuic acid, salicylic acid, syringic acid, and vanillic acid), cinnamic
acid and its derivatives (caffeic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, ferulic acid,
hydrocaffeic acid, isoferulic acid, and sinapic acid), and depsides (chlorogenic acid, neochlorogenic
acid, and rosmarinic acid). To quantify flavonoids, aglycone (kaempferol, luteolin, myricetin, quercetin,
and rhamnetin) and glycoside (apigetrin, cynaroside, hyperoside, isoquercetin, quercitrin, robinin,
rutoside, trifolin, and vitexin) standards were used. To quantify the catechins derivatives, epicatechin,
epicatechin gallate, epigallocatechin, epigallocatechin gallate, and catechin were used. All the chemicals
were acquired from Sigma-Aldrich, Darmstadt, Germany.

4.2. Preparation of Polyphenolic Extracts

The stems of Ferocactus sp. (F. gracilis H.E.Gates, F. pottsii (Salm–Dyck) Backeb, F. herrerae J.G.Ortega,
F. horridus Britton and Rose, F. glaucescens (DC) Britton and Rose, F. emoryi Engelm, Orcutt) were
sampled from commercial nurseries in Alexandria, Egypt, and identified by Hosam Elansary. Voucher
specimens were deposited at Alexandria (Hosam 0001020–1027). The stem samples were dried by
lyophilization (Labconco, USA) and then powdered. Three replicates of the dried samples (0.5 g DW
each) were put in 15 mL tubes and subjected to extraction with 10 mL methanol (Chempur, Poland)
by sonication (2 × 30 min at 30 ◦C) in an ultrasonic bath (Sonic-2, POLSONIC, ultrasonic power 2 ×
100 W, 40 kHz, water bath dimensions 150 × 135 × 100 mm). The extracts were filtered using Whatman
paper and left in crystallizers to evaporate methanol at room temperature (25 ◦C). The dry residue
was dissolved in 1 mL methanol (Merck, HPLC grade purity) [37]. Obtained extracts were filtered
through sterilized syringe filters (0.22 µm, Millex®GP, Millipore, Burlington, Mississippi, USA) prior
to HPLC analyses. The samples were stored for future bioassays (−80 ◦C). For bioassays, methanol
was totally removed by evaporation using a rotary evaporator. Analytical/HPLC grade chemicals were
used (Sigma Aldrich, Germany) for the bioassays. The bacterial and fungal cultures were obtained
from the Faculty of Agriculture, Alexandria, Egypt.

4.3. HPLC Analysis of Phenolic Compounds

Analyses of the polyphenolic content in the stem extracts of Ferocactus sp. were performed
by the HPLC method, [37,38] using the Merck-Hitachi liquid chromatograph (LaChrom Elite) with
a DAD detector L-2455. A Purospher RP-18e (250 × 4 mm, 5 µm, Merck, Darmstadt, Germany)
column was used and the temperature was set at 25 ◦C. The mobile phase consisted of A, methanol;
B, methanol: 0.5% acetic acid 1:4 (v/v). The gradient was as follows: 100% B for 0–20 min, 100–80%
B for 20–35 min, 80–60% B for 35–55 min, 60–0% B for 55–70 min, 0% B for 70–75 min, 0–100% B for
75–80 min, 100% B for 80–90 min, with a flow rate (1 mL min−1). The injection volume was 20 µL
and the compounds of interest were detected at 254 nm. The applied HPLC method was previously
validated by our group [37,38]. The parameters tested were as follows: Accuracy, precision at three
levels of standard substance concentrations in solution (50%, 100%, and 150%), linearity, limit of
detection (LOD), and limit of quantification (LOQ) [37,38]. Identification of compounds was performed
either by comparison with UV spectra and retention times (tR) of reference substances or using
co-chromatography. The compounds were quantified using the calibration curve method [37–40]. Data
for detected compounds was as follows: Protocatechuic acid, tR = 6.63, λmax = 220,260,294, LOD = 0.024
(mg/mL), LOQ = 0.072 (mg/mL), y = 1357.761x − 2.599, R2 = 0.999; 3,4-dihydroxyphenylacetic acid,
tR = 7.32, λmax = 218,280, LOD = 0.019 (mg/mL), LOQ = 0.058 (mg/mL), y = 65.047x − 1.219, R2 = 0.999;
caffeic acid, tR = 15.27, λmax = 218,235,323, LOD = 0.029 (mg/mL), LOQ = 0.087 (mg/mL), y = 598.118
− 1.456, R2 = 0.999; vanillic acid, tR = 17.66, λmax = 219,260,292, LOD = 0.025 (mg/mL), LOQ = 0.065
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(mg/mL), y = 1276.874x − 1.682, R2 = 0.990; rutoside, tR = 44.63, λmax = 256,355, LOD = 0.011 (mg/mL),
LOQ = 0.041 (mg/mL), y = 594.207x − 0.665, R2 = 0.999; and quercitrin, tR = 50.41, λmax = 256,349,
LOD = 0.014 (mg/mL), LOQ = 0.032 (mg/mL), y = 579.112x − 14.468, R2 = 0.998.

4.4. Cell Cultures and Treatments

Cell cultures of breast adenocarcinoma (MCF-7), cervical adenocarcinoma (HeLa), T-cell
lymphoblast like (Jurkat), colon adenocarcinoma (HT-29), HEK-293 (human normal cells), and urinary
bladder carcinoma (T24) were purchased from American Type Culture Collection (ATCC).

4.5. MTT Assay

Cytotoxic activities of stem extracts were tested on MCF-7, HeLa, Jurkat, HT-29, and T24, in addition
to HEK-293 (human normal cells), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) method [3,17]. This colorimetric method measured the reduction of MTT, a yellow
tetrazolium salt to purple formazan by the action of mitochondrial dehydrogenase enzyme present in
the living cells [41].

The percentage inhibition of antiproliferative activity (IAA) was calculated in triplicates:

IAA =
(AB570nm)C − (AB570nm)s

(AB570nm)C
× 100 (1)

where (AB570nm)C and (AB570nm)s are Abs.570 nm of control and sample, respectively.

4.6. Apoptotic Assay

The inhibitory concentration IC30 and IC50 values were determined in the apoptotic cell population
using a flow cytometry (FAC Scan, Becton Dickinson, Iowa, USA) [3,17,42].

4.7. Antibacterial Activity

Antibacterial activity of the stem extracts against B. cereus (ATCC 14579), L. monocytogenes (clinical
isolate), E. coli (ATCC 35210), M. flavus (ATCC 10240), S. aureus (ATCC 6538), and P. aeruginosa
(ATCC 27853) were investigated using the microdilution method [18,43–45]. The optical density was
determined at a wavelength of 655 nm. The positive and negative controls used were streptomycin
(0.01–10 mg/mL) and dimethyl sulfoxide (DMSO, 1%), respectively.

4.8. Antifungal Activity

Antifungal activity of the stem extracts against economically important fungi, including C.
albicans (ATCC 12066), A. flavus (ATCC 9643), P. ochrochloron (ATCC 48663), A. ochraceus (ATCC 12066),
A. niger (ATCC 6275), and P. funiculosum (ATCC 56755), was determined using the microdilution
method [18,42,43]. The positive and negative controls used were ketoconazole (1–3500 µg/mL) and
DMSO (1%), respectively.

4.9. Statistical Analyses

The least significant difference (LSD) was computed using the SPSS software (version 22.0).
Experiments were repeated twice. The standard deviation (SD) of means of three replicates was used.

5. Conclusions

To our knowledge, this is the first report that explored the presence of polyphenols in the stem
extracts of six Ferocactus sp., and investigated their respective bioactivities as anticancer, antibacterial,
and antifungal raw materials. Six polyphenols were identified (phenolic acids: Protocatechuic acid,
3,4-dihydroxyphenylacetic acid, caffeic acid, and vanillic acid and flavonoids: Rutoside and quercitrin).
The major compounds found in all the six species were 3,4-dihydroxyphenylacetic acid and quercitrin.
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Rutoside was present in highest concentration in F. gracilis. The stem extracts of Ferocactus sp. showed
antiproliferative activities against human cancer cell lines, with the highest antiproliferative effects
observed against Hela and Jurkat cell lines. The apoptotic assay revealed accumulation of necrotic
cells in the early and late stages. The highest antiproliferative activities were found in the stem
extracts of F. glaucescens, F. emoryi, and F. pottsii. It was observed that, among the tested bacteria, E.
coli and S. aureus were the most sensitive to Ferocactus sp. stem extracts, as demonstrated by low
MIC values. Ferocactus sp. stem extracts showed good antifungal properties against selected fungi.
Excellent antifungal effects were reported against A. ochraceus and A. niger. In summary, Ferocactus
sp. stem extracts could be utilized as a novel source of polyphenols and may be recommended as
valuable sources of antimicrobial and anticancer from natural materials. Further investigations should
be conducted to evaluate the activity of these extracts against other pathogens. The phytochemical
analysis conducted in this study was a partial analysis of the selected compounds in the extract. For
fingerprinting purposes, a more sophisticated analysis should be used.

Author Contributions: Conceptualization, H.O.E., A.S., H.E., and A.A.B. Data curation, H.O.E., A.S., and F.A.A.-M.
Formal analysis, H.O.E., A.S., M.K.-S., and H.E. Funding acquisition, A.S., F.A.A.-M., and A.A.B. Investigation,
H.O.E., A.S., M.K.-S., F.A.A.-M., and A.A.B. Methodology, H.O.E., M.K.-S., and A.A.B. Project administration,
H.E. Resources, H.E. Visualization, A.S. Writing—original draft, H.O.E., A.S., and F.A.A.-M. Writing—review and
editing, H.O.E. and A.S. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by King Saud University through Researchers Supporting Project number
(RSP-2019/118).

Acknowledgments: The authors extend their appreciation to King Saud University, Researchers Supporting
Project for funding this work through research group (RSP-2019/118).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Di Mauro, M.D.; Giardina, R.C.; Fava, G.; Mirabella, E.F.; Acquaviva, R.; Renis, M.; D’Antona, N. Polyphenolic
profile and antioxidant activity of olive mill wastewater from two Sicilian olive cultivars: Cerasuola and
Nocellara etnea. Eur. Food Res. Technol. 2017, 243, 1895–1903. [CrossRef]

2. Elansary, H.O. Tree bark phenols regulate the physiological and biochemical performance of Gladiolus flowers.
Processes 2020, 8, 71. [CrossRef]

3. Elansary, H.O.; Szopa, A.; Kubica, P.; Al-Mana, F.A.; Mahmoud, E.A.; El-Abedin, T.K.A.Z.; Mattar, M.A.;
Ekiert, H. Phenolic compounds of Catalpa speciosa, Taxus cuspidata, and Magnolia acuminata have antioxidant
and anticancer activity. Molecules 2019, 24, 412. [CrossRef] [PubMed]

4. Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.;
Zin El-Abedin, T.K.; Yessoufou, K. Polyphenol profile and pharmaceutical potential of Quercus spp. bark
extracts. Plants 2019, 8, 486. [CrossRef]

5. Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: Potentials and
pitfalls. Ageing Res. Rev. 2012, 11, 329–345. [CrossRef]

6. Di Mauro, D.M.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, G.M.; Centonze, G.; Maggiore, R.;
D’Antona, N. Polyphenolic fraction from olive mill wastewater: Scale-up and in vitro studies for ophthalmic
nutraceutical applications. Antioxidants 2019, 8, 462. [CrossRef]

7. Acquaviva, R.; Genovese, C.; Amodeo, A.; Tomasello, B.; Malfa, G.; Sorrenti, V.; Tempera, G.; Addamo, A.P.;
Ragusa, S.; Rosa, T.; et al. Biological activities of Teucrium flavum L., Teucrium fruticans L., and Teucrium
siculum rafin crude extracts. Plant Biosyst. 2018, 152, 720–727. [CrossRef]

8. Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and
type 2 diabetes: Human study and clinical trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [CrossRef]

9. Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel
insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18. [CrossRef]

10. Abdal Dayem, A.; Choi, H.Y.; Yang, G.M.; Kim, K.; Saha, S.K.; Cho, S.G. The Anti-Cancer Effect of polyphenols
against breast cancer and cancer stem cells: Molecular mechanisms. Nutrients 2016, 8, 581. [CrossRef]

http://dx.doi.org/10.1007/s00217-017-2893-3
http://dx.doi.org/10.3390/pr8010071
http://dx.doi.org/10.3390/molecules24030412
http://www.ncbi.nlm.nih.gov/pubmed/30678123
http://dx.doi.org/10.3390/plants8110486
http://dx.doi.org/10.1016/j.arr.2012.01.006
http://dx.doi.org/10.3390/antiox8100462
http://dx.doi.org/10.1080/11263504.2017.1330773
http://dx.doi.org/10.1080/10408398.2018.1492900
http://dx.doi.org/10.1016/j.jnutbio.2013.09.001
http://dx.doi.org/10.3390/nu8090581


Processes 2020, 8, 138 10 of 11

11. Elansary, H.O.; Mahmoud, E.A. In vitro antioxidant and antiproliferative activities of six international basil
cultivars. Nat. Prod. Res. 2015, 29, 2149–2154. [CrossRef] [PubMed]

12. Elansary, H.O.; Mahmoud, E.A. Egyptian herbal tea infusions’ antioxidants and their antiproliferative and
cytotoxic activities against cancer cells. Nat. Prod. Res. 2015, 29, 474–479. [CrossRef] [PubMed]

13. Elansary, H.O.; Salem, M.Z.M.; Ashmawy, N.A.; Yessoufou, K.; El-Settawy, A.A.A. In vitro antibacterial,
antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod.
Res. 2017, 31, 2927–2930. [CrossRef] [PubMed]

14. Elansary, H.O.; Mahmoud, E.A. Basil cultivar chemotyping still favored over genotyping using core barcodes
and possible resources of antioxidants. Essent. Oil Res. 2015, 27, 82–87. [CrossRef]

15. Elansary, H.O.; Szopa, A.; Klimek-Szczykutowicz, M.; Jafernik, K.; Ekiert, H.; Mahmoud, E.A.; Barakat, A.A.;
El-Ansary, D.O. Mammillaria Species—polyphenols studies and anti-cancer, anti-oxidant, and anti-bacterial
activities. Molecules 2019, 25, 131. [CrossRef] [PubMed]

16. Aguirre-Joya, J.A.; Pastrana-Castro, L.; Nieto-Oropeza, D.; Ventura-Sobrevilla, J.; Rojas-Molina, R.;
Aguilar, C.N. The physicochemical, antifungal and antioxidant properties of a mixed polyphenol based
bioactive film. Heliyon 2018, 4, e00942. [CrossRef]

17. Yessoufou, K.; Elansary, H.O.; Mahmoud, E.A.; Skalicka-Wozniak, K. Antifungal, antibacterial and anticancer
activities of Ficus drupacea L. stem bark extract and biologically active isolated compounds. Ind. Crop Prod.
2015, 74, 752–758. [CrossRef]

18. Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Ali, H.M.; Elshikh, M.S.; Abdel-Salam, E.M.; El-Esawi, M.;
El-Ansary, D.O. Bioactivities of traditional medicinal plants in Alexandria. Evid. Based Complement.
Altern. Med. 2018, 2018, 1463579. [CrossRef]

19. Brinker, F. Prickly pear as food and medicine. J. Diet. Suppl. 2009, 6, 362–376. [CrossRef]
20. Shah, A.T.; Din, M.I.; Bashir, S.; Qadir, M.A.; Rashid, F. Green synthesis and characterization of silver

nanoparticles using Ferocactus echidne extract as a reducing agent. Anal. Lett. 2015, 48, 1180–1189. [CrossRef]
21. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of

phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid
chromatography–mass spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [CrossRef] [PubMed]

22. Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.;
Nagata, T.; Akasaka, H.; et al. Estimated daily intake and seasonal food sources of quercetin in Japan.
Nutrients 2015, 7, 2345–2358. [CrossRef]

23. Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164.
[CrossRef] [PubMed]

24. Rosa, L.; Jordão, N.; da Costa Pereira Soares, N.; deMesquita, J.; Monteiro, M.; Teodoro, A. Pharmacokinetic,
antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro
and in silico approaches. Molecules 2018, 23, 2569. [CrossRef] [PubMed]

25. Serra, A.T.; Poejo, J.; Matias, A.A.; Bronze, M.R.; Duarte, C.M.M. Evaluation of Opuntia spp. derived products
as antiproliferative agents in human colon cancer cell line (HT29). Food Res. Int. 2013, 54, 892–901. [CrossRef]

26. Jacomini, D.; Sinzker, R.C.; Mangolin, C.A.; Grande, P.A.; Nocchi, S.R.; Nakamura, C.V.; de Oliveira, A.J.B.;
Gonçalves, R.A.C. Lipid profile and antiproliferative activity of callus cultures of Cereus peruvianus Mill. Ind.
Crop Prod. 2015, 69, 408–414. [CrossRef]

27. Lin, H.H.; Chen, J.H.; Huang, C.C.; Wang, C.J. Apoptotic effect of 3,4-dihydroxybenzoic acid on human
gastric carcinoma cells involving JNK/p38 MAPK signaling activation. Int. J. Cancer 2007, 120, 2306–2316.
[CrossRef]

28. Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-tumor effect of rutin on human
neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci. World J.
2013, 2013, 269165. [CrossRef]

29. Saleh, A.; ElFayoumi, H.M.; Youns, M.; Barakat, W. Rutin and orlistat produce antitumor effects via
antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 165–175. [CrossRef]

30. Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.;
Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and apoptosis-inducing effects of quercetin
in vitro and in vivo. Oncol. Rep. 2017, 38, 819–828. [CrossRef]

31. Arima, H.; Ashida, H.; Danno, G.-I. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus
and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 2002, 66, 1009–1014. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/14786419.2014.995653
http://www.ncbi.nlm.nih.gov/pubmed/25554015
http://dx.doi.org/10.1080/14786419.2014.951354
http://www.ncbi.nlm.nih.gov/pubmed/25141946
http://dx.doi.org/10.1080/14786419.2017.1303698
http://www.ncbi.nlm.nih.gov/pubmed/28299978
http://dx.doi.org/10.1080/10412905.2014.982874
http://dx.doi.org/10.3390/molecules25010131
http://www.ncbi.nlm.nih.gov/pubmed/31905725
http://dx.doi.org/10.1016/j.heliyon.2018.e00942
http://dx.doi.org/10.1016/j.indcrop.2015.06.011
http://dx.doi.org/10.1155/2018/1463579
http://dx.doi.org/10.3109/19390210903280280
http://dx.doi.org/10.1080/00032719.2014.974057
http://dx.doi.org/10.1021/jf201801q
http://www.ncbi.nlm.nih.gov/pubmed/21761864
http://dx.doi.org/10.3390/nu7042345
http://dx.doi.org/10.1016/j.jsps.2016.04.025
http://www.ncbi.nlm.nih.gov/pubmed/28344465
http://dx.doi.org/10.3390/molecules23102569
http://www.ncbi.nlm.nih.gov/pubmed/30297681
http://dx.doi.org/10.1016/j.foodres.2013.08.043
http://dx.doi.org/10.1016/j.indcrop.2015.02.034
http://dx.doi.org/10.1002/ijc.22571
http://dx.doi.org/10.1155/2013/269165
http://dx.doi.org/10.1007/s00210-018-1579-0
http://dx.doi.org/10.3892/or.2017.5766
http://dx.doi.org/10.1271/bbb.66.1009
http://www.ncbi.nlm.nih.gov/pubmed/12092809


Processes 2020, 8, 138 11 of 11

32. Amin, M.U.; Khurram, M.; Khattak, B.; Khan, J. Antibiotic additive and synergistic action of rutin, morin
and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Altern. Med. 2015, 15, 59.
[CrossRef]

33. Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant
flavonoids. Phytochem. Rev. 2019, 18, 241–272. [CrossRef]

34. Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.;
Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative
Structure–Activity Relationship) models. Front. Microbiol. 2019, 10. [CrossRef] [PubMed]

35. Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and rutin as potential agents antifungal
against Cryptococcus spp. Braz. J. Biol. 2016, 76, 1029–1034. [CrossRef] [PubMed]

36. Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. J. ISRN Pharmacol.
2014, 2014, 9. [CrossRef]

37. Sulkowska-Ziaja, K.; Maslanka, A.; Szewczyk, A.; Muszynska, B. Physiologically active compounds in four
species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [CrossRef]

38. Szopa, A.; Kokotkiewicz, A.; Bednarz, M.; Luczkiewicz, M.; Ekiert, H. Studies on the accumulation of
phenolic acids and flavonoids in different in vitro culture systems of Schisandra chinensis (Turcz.) Baill.
using a DAD-HPLC method. Phytochem. Lett. 2017, 20, 462–469. [CrossRef]

39. Szopa, A.; Kokotkiewicz, A.; Kubica, P.; Banaszczak, P.; Wojtanowska-Krośniak, A.; Krośniak, M.;
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