Supplementary Materials

Chemoenzymatic Synthesis of New Aromatic Esters of Mono- and Oligosaccharides

Alina Ramona Buzatu¹, August E. Frissen², Lambertus A. M. van den Broek², Anamaria Todea^{3*}, Marilena Motoc¹ and Carmen Gabriela Boeriu^{2,*}

- ¹ Department of Biochemistry and Pharmacology Discipline of Biochemistry," Victor Babeş" University of Medicine and Pharmacy, Eftimie Murgu Sq. no. 2, 300041 Timişoara, Romania
- ² Wageningen Food and Biobased Research, Bornse Weilanden 9, 6708WG, Wageningen, the Netherlands
- ³ Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica of Timişoara, Carol Telbisz 6, 300001, Timişoara, Romania
- * Correspondence: anamaria.todea@upt.ro (A.T.); carmen.boeriu@wur.nl (C.G.B.)

Figure S1. Chemical structures of aromatic compounds tested as substrates for lipases.

Carbohydrate	Biocatalyst	Conversion(%)
α-D-glucose	Pseudomonas fluorescens	2
	Candida antarctica B	1
	Thermomyces lanuginsous	6
sucrose	Pseudomonas fluorescens	1
	Candida antarctica B	< 1
	Thermomyces lanuginsous	4
lactose	Pseudomonas fluorescens	1
	Candida antarctica B	< 1
	Thermomyces lanuginsous	3
inulin	Pseudomonas fluorescens	1
	Candida antarctica B	< 1
	Thermomyces lanuginsous	4

Table S1. Transesterification reaction conversions of α -D-glucose, sucrose, lactose, inulin with methyl 3- (4-hydroxyphenyl) propionate (HPPME) catalyzed by native lipases after 72 hours of reaction.

Figure S2. MALDI-TOF MS spectrum of the reaction mixture from α -methyl-glucose acylation with HPPA catalyzed by Novozyme 435, after 72 h, containing the 6-O-[3-(4-hydroxyphenyl)propionyl] *methyl*- α -D-glucoside product.

Figure S3. MALDI-TOF MS spectrum of the reaction mixture from α -methyl-glucose acylation with HPPA catalyzed by Novozyme 435, after 72 h, containing *6-O-[3-(4-hydroxyphenyl) propionyl] octyl-\beta-D-glucoside (2), after 72 h.*

Figure S4. FT-IR spectra of α -methyl-glucose (a); HPPA (b) and 6-O-[3-(4-hydroxyphenyl) propionyl] *methyl*- α -D-glucoside (c). Insert is zoom in of the spectrum at wavenumber 2000–600 cm⁻¹.

Figure S5. FT-IR spectra of β -octyl-glucose (a); HPPA (b) and 6-O-[3-(4-hydroxyphenyl)propionyl] octyl- β -D-glucoside (c). Insert is zoom in of the spectrum at wavenumber 2000–600 cm⁻¹.

Figure S6. ¹H-NMR spectrum of 6-O-[3-(4-hydroxyphenyl) propionyl] methyl- α -D-glucoside (collected in DMSO-d₆).

Figure S7. ¹³C-NMR spectrum of 6-O-[3-(4-hydroxyphenyl) propionyl] methyl-α-D-glucoside (collected in DMSO-d₆).

Figure S8. 135DEPT-NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl] methyl- α -D-glucoside (collected in DMSO-d₆).

Figure S9. ¹H-NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl] octyl-β-D-glucoside (2).

Figure S10. ¹³C-NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl] octyl-β-D-glucoside (2).

Figure S11. 135DEPT-NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl] octyl-β-D-glucoside (2).

Figure S12. ¹H-NMR spectrum of 1,2-O-isopropylidene-glucofuranose.

Figure S13. ¹³C-NMR spectrum of 1,2-O-isopropylidene-glucofuranose.

Figure S14. 135DEPT-NMR spectrum of 1,2-O-isopropylidene-glucofuranose.

Figure S15. FT-IR spectra of glucose (a) *1,2-O-isopropylideneglucose* (b) *1,2:5,6-di-O-isopropylideneglucose* (c) Insert is zoom in of the spectrum at wavenumber 2000–600 cm⁻¹.

Figure S16. FT-IR spectra of D-glucose (a) isopropylidene-D-glucose (b) *6-O-[3-(4-hydroxyphenyl)propionyl]-1,2-O-isopropylidene-D-glucofuranose* (3). Insert is zoom in of the spectrum at wavenumber 2000–600 cm⁻¹.

Figure S17. MALDI TOF MS spectrum of the reaction mixture after acylation of *1,2-O-isopropylidene sucrose* with HPPA, catalyzed by Novozyme 435 after 72 h.

Figure S18. ¹³C-NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl]-1,2-O-isopropylidene-D-glucofuranose.

Figure S19. ¹H-NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl]-1,2-O-isopropylidene-D-glucofuranose.

Figure S20. 135DEPT NMR spectrum of 6-O-[3-(4-hydroxyphenyl)propionyl]-1,2-O-isopropylidene-D-glucofuranose.

Figure S21. FT-IR spectra of (a) sucrose; (b) 2,1':4,6-di-O-isopropylidene sucrose (4).

Figure S22. ¹³C-NMR spectrum of 2,1 ':4,6-di-O-isopropylidene sucrose (4).

Figure S24. 135 DEPT NMR spectrum of 2,1 ':4,6-di-O-isopropylidene sucrose (4).

2,3:5,6:4',6'-tri-O-isopropylidenelactose dimethyl acetal

2,3:5,6:3',4'-tri-O-isopropylidenelactose dimethyl acetal (5)

Scheme S1. Reaction scheme of 2,3: 5,6: 4 ', 6 '-tri-O-isopropylidene dimethyl lactose and 2,3: 5,6: 3 ', 4 '-tri-O-isopropylidene dimethyl lactose (5) synthesis by acetalization of lactose with 2,2- dimethoxypropane, in the presence of *p*-toluenesulfonic acid, at reflux, 24 h.

Figure S25. ¹³C-NMR spectrum of 2,3:5,6:3 ',4 '-tri-O-isopropylidene dimethyl lactose (5).

Figure S26. ¹H-NMR spectrum of 2,3:5,6:3 ',4 '-tri-O-isopropylidene dimethyl lactose (5).

Figure S27. 135DEPT NMR spectrum of 2,3:5,6:3 ',4 '-tri-O-isopropylidene dimethyl lactose (5).

Figure S28. MALDI-TOF MS spectrum of the reaction mixture after esterification of 2,3:5,6:3', 4'-*tri-O-isopropylidene dimethyl lactose* with HPPA, in *tert*-butanol at 60 ° C in the presence of Novozyme 435.