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Abstract: Ultrafiltration is a powerful method used in virtually every pharmaceutical bioprocess.
Depending on the process stage, the product-to-impurity ratio differs. The impact of impurities on
the process depends on various factors. Solely mechanistic models are currently not sufficient to
entirely describe these complex interactions. We have established two hybrid models for predicting
the flux evolution, the protein rejection factor and two components’ concentration during crossflow
ultrafiltration. The hybrid models were compared to the standard mechanistic modeling approach
based on the stagnant film theory. The hybrid models accurately predicted the flux and concentration
over a wide range of process parameters and product-to-impurity ratios based on a minimum set of
training experiments. Incorporating both components into the modeling approach was essential to
yielding precise results. The stagnant film model exhibited larger errors and no predictions regarding
the impurity could be made, since it is based on the main product only. Further, the developed hybrid
models exhibit excellent interpolation properties and enable both multi-step ahead flux predictions
as well as time-resolved impurity forecasts, which is considered to be a critical quality attribute in
many bioprocesses. Therefore, the developed hybrid models present the basis for next generation
bioprocessing when implemented as soft sensors for real-time monitoring of processes.

Keywords: semi-parametric model; neural network; tangential flow filtration; downstream processing;
advanced process monitoring

1. Introduction

Membrane separation is a unit operation used in virtually all bioprocesses. One prominent
type, crossflow ultrafiltration, is widely used from cell harvest and virus clearance approaches to
product concentration steps. In downstream processing of biopharmaceuticals, ultrafiltration (UF)
is commonly applied for concentration and buffer exchange after the capture step. It is also applied
after virus filtration in single-pass mode to concentrate the sample before it is loaded onto the
polishing chromatography, or after polishing to reach the final conditions for product formulation [1].
These process steps entail varying ratios of process and impurities to product concentration.

Modeling of process steps is of increasing importance for bioprocesses. Such process models
increase understanding of processes, facilitate the discovery of optimal process conditions and are
indispensable for model predictive control. The latter is a cornerstone of Quality by Design and
Process Analytical Technology, which is recommended by authorities for biopharmaceutical production.
The right balance of model complexity and usability is crucial to employ such models effectively for
different unit operations.
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To simplify the modeling of downstream processes, a common assumption is to reduce the overall
sample composition down to a single target molecule. Coefficients and parameters used in mechanistic
models, such as mass transfer models, are often approximated, taking only the target molecule into
account. Such models may be limited if the sample contains high levels of impurity.

For some process steps, such as polishing chromatography [2] or ultra/diafiltration [3,4] before
formulation, this assumption of one-component solutions is realistic, since the product is already of high
purity at this process stage. For earlier process steps, however, this simplification deviates substantially
from reality and can lead to erroneous models, e.g., for filtration steps after the capture step. Here,
the neglected presence of host cell proteins [5], DNA [6], or protein aggregates [7] can strongly distort
the prediction of the model, since effects like membrane fouling and interactions between the product
and impurities are not considered. In more complex mechanistic models, if the impurities are well
characterized, such effects can be considered. For example, for crossflow filtration, a hard sphere-based
mixture model, including multiphase computational fluid dynamics and concentration polarization,
was applied to a whey protein solution, leading to a permeate flux prediction error within 20% [8].
Other work has shown that mechanistic models of pore blockage and cake filtration can also predict
filter fouling during virus filtration, as a function of the protein of interest, virus and membrane [9].
The initial and late stage of the filtration, however, was dominated by different mechanisms, rendering it
difficult to build a valid model for the entire process. The influence of two components on (crossflow)
UF was found to affect the process in different ways, from strong [10] to weak [11] to varying [5,12–14]
protein-protein (or protein-membrane) interactions. To account for the highly different effects of
all components on the process, the experimental part of data generation to estimate the parameters
for mechanistic models might become very labor-intensive and the calculations rather complex.
Further, if the overall behavior of the process changes because of varying concentrations of impurities,
the assumptions of mechanistic models might not hold, to the detriment of the prediction.

One advantage of machine learning supported modeling approaches is that the effects of the
impurity on flux and membrane fouling do not need to be fully quantified by the operator [15].
The quantification of these phenomena is performed by machine learning tools, such as an artificial
neural network (ANN) [16]. Hybrid models combine the advantages of data-driven black box models
(such as ANNs), correlating input with output variables (such as the concentration of impurity with
the decrease in flux) with knowledge-based mechanistic models (white box models) derived from
conservation of kinetic laws [17]. Hybrid models have been applied to bioprocesses for upstream [18]
and downstream applications [19,20].

To compare the predictive power of a model concerning the training space, two terms are often used:
interpolation and extrapolation. Interpolation allows the model to make predictions for parameters that
lie within the range of training experiments. A model with good interpolation capabilities can make
predictions with fewer training observations, since it is able to make reliable estimates of the spaces
between the observations. A model with poor interpolation capabilities requires more granular coverage
of the training space to make accurate predictions of test experiments. Extrapolation (also called
range extrapolation) describes the extent to which a model can make predictions if the tested input
parameters are outside the training space. A model with good extrapolation capabilities can make
accurate predictions for parameters beyond the training space. A detailed explanation of interpolation
and extrapolation in hybrid modeling is given in [21].

Recently, we have shown the benefits of hybrid modeling for the prediction of UF flux evolution.
However, this previous model was only established for a one-component system [22]. In the present
study, we extended the hybrid model to describe the impact of a modeled protein impurity on the
decrease of the permeate flux over time in crossflow UF including the rejection behavior of the product
and the impurity. This enables the operator to gain a more detailed understanding of the process.
In addition, the impurity concentration is a critical quality attribute (CQA) in almost all manufacturing
bioprocesses and if it is too high, the produced batch must be discarded. The presented hybrid models
can predict the impurity concentration up front, and potentially minimizes the risk of batch rejection.
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Product and impurity were mimicked with different ratios of bovine serum albumin (BSA) to
lysozyme concentrations in the starting solution. BSA and lysozyme exhibit different physicochemical
properties to facilitate separation and quantification. While BSA was fully retained by the membrane,
lysozyme was only partially retained, rendering the predictions of the permeate flux over time even
more complex. In a first assessment, we compared the abilities of the well-established mechanistic
stagnant film model (SFM) and the recently established one-component hybrid to predict the filtration
progress of a two-component solution. Further, we presented two hybrid model structures to predict
the evolution of permeate flux and protein concentration of product and impurity by multi-step
ahead predictions. One hybrid model included a static lysozyme rejection factor (RLys), while the
other updated RLys dynamically in an iterative way. These model outputs were influenced by the
transmembrane pressure (TMP), crossflow velocity (CF), the initial BSA concentration cB,BSA and
lysozyme bulk concentration cB,Lys. Finally, these novel hybrid model structures were compared to the
SFM regarding flux and concentration prediction.

2. Materials and Methods

2.1. Equipment and Chemicals

All UF experiments were performed on an ÄKTA Crossflow system (Cytiva, Marlborough,
MA, USA) controlled by UNICORN 5.31 software. The reservoir tank held up to 1100 mL of
bulk solution. The system featured an inline pH probe and UV monitor on the permeate side and a
pressure-based reservoir level sensor. The experiments were performed with a Sartocon Slice Hydrosart
Cassette hydrophilic, stabilized cellulose-based membrane (Sartorius AG, Göttingen, Germany) with
a membrane area of 200 cm2. The model proteins were BSA and lysozyme (A2153 and L6876,
both purchased from Sigma-Aldrich, St. Louis, MO, USA). The molecular weight cutoff (MWCO) of the
membranes was 30 kDa, chosen so that BSA (66 kDa) was fully retained and lysozyme (14 kDa) was
partially retained. BSA and lysozyme were chosen to mimic the protein of interest and process-related
impurities, respectively. A filtration buffer of 50 mM phosphate-buffered saline (PBS), pH 8, was used.

2.2. Training and Test Data Generation

For the training experiments, the bulk reservoir was filled with 1000 mL of the lowest bulk BSA
and/or lysozyme concentration cB,BSA and cB,Lys (see Table A1). The following two steps were then
alternated. First, the TMP and CF were increased stepwise, while the permeate was redirected to
the feed reservoir to keep the protein concentration cB constant. For each combination of TMP and
CF, the permeate flux was recorded. Second, the sample was concentrated until the next desired
cB was reached. These two steps were repeated at all concentrations given in Table A1. A total of
90 equilibrium fluxes were recorded for different concentrations and combinations of TMP and CF.
Our previous work with a one-component system [22] showed that this training set size was sufficient
to develop a well-trained hybrid model with accurate flux predictions. A detailed summary of all
scouted TMPs, CFs, cBs and recorded fluxes is given in Table A1. Samples were taken after each
concentration step for offline measurement. A more detailed description of the methodology for the
training experiment is given in an earlier publication [22].

During the test experiments, samples were taken from the retentate and permeate. The measured
retentate and permeate concentrations were used to calculate the rejection factor R of the model
proteins. A summary of the performed test sets is provided in Table A2.

2.3. Concentration Polarization Correction

When concentrating the sample throughout the training experiments, we observed that the
measured cB,BSA was lower than the expected concentration calculated from permeate volume (VP)
and mass balance. The difference between observed and calculated concentration increased with
concentration (see Figure A3B). This was because the concentration polarization (CP) layer—the
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protein gradient that forms on the surface of the membrane—increased with cB,BSA. This deviation
was considered for the test experiments by employing a quadratic polynomial function (Equation A1)
and used to correct the calculated cB,BSA.

2.4. Protein Quantification

BSA and lysozyme concentrations were determined with an analytical high-performance
size-exclusion chromatography (SEC-HPLC) using a TSKgel G3000SWXL column (5 µm, 7.8 × 300 mm;
TOSOH, Shiba, Tokyo, Japan). The separation was performed under isocratic conditions with 50 mM
sodium phosphate, 200 mM NaCl, pH 6.5 as running buffer at a flow rate of 0.4 mL/min. Samples were
diluted to a final concentration of 0.1 to 1.0 g/L using 50 mM PBS, pH 8 and filtered through a 0.22 µm
Millex-GV Filter (Merck Millipore, Billerica, MA, USA) prior to analysis. The injection volume was
10 µL per sample. Due to the difference in the size of BSA and lysozyme, the peaks were fully
separated and could be quantified independently, using standard calibrations from BSA and lysozyme
stock solutions.

2.5. Hybrid Modeling

2.5.1. Black Box Model

The black box inside the first hybrid model (HM 1) aimed to predict the flux based on the
combination of inputs parameters: TMP, CF and the bulk protein concentrations of BSA and lysozyme,
cB,BSA and cB,Lys, respectively. In the second hybrid model (HM 2), an additional black box was
employed to predict the rejection factor of lysozyme RLys (Figure 1B). An ANN was utilized for this
purpose and optimized by varying the number of hidden nodes from 1 to 7. The ANN was set up with
the feedforwardnet function and trained with the trainbr function, using MATLAB 2018b. A detailed
description is the ANN structure and optimizer function is given in the Appendix A.

2.5.2. White Box Model

The white box model is the mechanistic part of the hybrid model and consisted of a mass balance.
The incrementally decreasing bulk volume (dVB in Equation (1)) was derived from the permeate
flux (J), which is the output of the black box, and the membrane area (A). The rejection factor R for
component i was calculated with Equation (2), considering the concentration of i in both the retentate
(cR; in crossflow filtration cR is equal to cB) and the permeate (cP). Equation (1) and Equation (2) were
used to predict cB of each component and Equation (3) to calculate the VB after dt.

dVB

dt
= −A·J (1)

Ri = 1−
cP,i

cR,i
(2)

d(cB,i·VB)

dt
= (A·J·cB,i)

Ri (3)

2.5.3. Training and Test Data

RLys was calculated from the training set with the UV absorbance at 280 nm on the permeate
side. A separate lysozyme training run was performed to correlate the UV signal at 280 nm with the
permeate concentration determined by SEC-HPLC. The correlation curve (Figure A3A) with an R2 of
0.97 was used to calculate cP,Lys, and subsequently RLys for all observations of the training set was used
to train the black box.
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The observed flux and RLys were compared to the predictions of the hybrid models using the
normalized root-mean-square error (NRMSE)

NRMSE = 100·

√
1
n
∑n

i=1

(
yi − ŷi

)2

ymax − ymin
(4)

where n is the number of overserved fluxes yi and the corresponding predicted fluxes ŷi.
The normalization ymax−ymin allows a fair comparison of various fluxes due to different concentrations
and process parameters.

Figure 1. Schematic representation of the two hybrid model and mechanistic model structures,
with implementation in the multi-step ahead model. (A) Hybrid model 1 (HM 1) using static,
average RLys from the training set, (B) hybrid model 2 (HM 2) with two separate black boxes for flux and
dynamic RLys prediction, (C) stagnant film model (SFM). (D) Multi-step ahead hybrid model structure.

2.5.4. Multistep-Ahead Hybrid Model

The structures of the investigated hybrid model are given in Figure 1. The first and simplest HM 1
(Figure 1A) assumed a constant RLys of 0.77 for all test sets based on the weighted average of all permeate
and retentate concentrations samples taken throughout the training experiment. The weighted average
considered the variation in cB,Lys and sample intervals using trapezoid rule integration. For the second
HM 2 structure (Figure 1B), the flux and RLys were predicted separately, using two different black
box models. The flux and RLys were fed into the same white box model, which yielded the predicted
cB,BSA and cB,Lys after a defined time increment. The developed hybrid model is capable of predicting
multiple steps ahead, as depicted in Figure 1D. The multi-step ahead structure uses HM 1, HM 2 or
the SFM to predict cB,BSA and cB,Lys for a time increment (dt). The concentrations of the first iteration
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were used to calculate future fluxes and cBs of the second iteration, and so on. Multiple iterations were
performed until the desired stop criterion was reached. In our case, the stop criterion was the final
retentate volume.

The presented hybrid models were used to predict the evolution of flux and RLys throughout the
UF process. Furthermore, the models yielded a prediction for the final cB,BSA and cB,Lys. The final
cB,BSA and cB,Lys predictions were compared to the final cB,BSA and cB,Lys measured by SEC-HPLC.
The model errors were compared using the NRMSE.

Figure 2 shows a flowchart of the hybrid model methodology applied for crossflow filtration.
Training experiments were performed by variations in the parameters that are expected to influence
the flux. Following this, the model was trained on this training set with a defined experimental
design space. The established models were applied to a validation data set that was not used for
training. The model structure was optimized by varying the tuning parameters, e.g., number of nodes
in an ANN and adding or removing training parameters. The model with the tuning parameters
that led to the lowest error in the validation set was then applied to independent test runs with static
process conditions.

Figure 2. Flowchart of the hybrid model methodology for application in crossflow filtration.

2.5.5. Stagnant Film Theory

The presented hybrid models were compared to the established SFM. The SFM derives
predictions from the mass transfer model described by convective transport toward the membrane and
back-diffusion caused by the concentration gradient [23]. According to the SFM, the flux J is related to
the bulk concentration cB of a single component by

J = k· ln
(

cG

cB

)
(5)

where cG is the gel layer concentration at the membrane surface and k is the mass transfer coefficient
that depends on the diffusion coefficient and the thickness of the gel layer [23]. The SFM is valid in the
pressure-independent region of the filtration. Since k and cG cannot be adjusted directly during the
filtration, a correlation between the adjustable parameters TMP and CF, and k and cG was required.
When plotting the flux versus log(cB) for a constant TMP and CF, k and cG are estimated by the slope
of linear regression and cG was estimated by extrapolating the regression line to the intersection with
the abscissa (Figure A6). It has been shown that this way of calculating k yields more accurate results
than the Sherwood correlation [24–26] and more solid predictions compared to the osmotic pressure
model [27] for similar settings. To compare the SFM to the hybrid models, the black box was replaced
by the SFM in Equation (5) using the parameters k and cG instead of TMP and CF (Figure 1C). In test
runs, where the TMP and CF conditions were not covered in the training set, k and cG were estimated
using linear interpolation.

3. Results and Discussion

3.1. Training Data Description

The data sets for training the hybrid models were generated from filtering BSA and lysozyme with
a 30 kDa MWCO cellulose-based membrane (Hydrosart). A total of three training sets were generated
covering three CFs (100, 200 and 300 mL/min) and five TMPs (0.8, 1.3, 1.8, 2.3 and 2.8 bar). The three
training sets containing BSA, lysozyme and a combination of both are shown in Figure 3. In the
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combined training set, the protein concentration of BSA cB, BSA ranged from 3.77 g/L to 77.93 g/L and of
lysozyme cB, Lys from 0.28 g/L to 3.81 g/L. The concentration ranges for all training sets are summarized
in Table A1. For a better comparison of Figure 3A–D, the x-axis of Figure 3C,D are reduced. The entire
graphs are given in Figure A2.

Figure 3. Training data sets including different protein concentrations and different TMPs at CF
200 mL/min: two-component training set containing (A) BSA and (B) lysozyme in the same solution
(blue); one-component solution of (C) BSA (red) and (D) lysozyme (green).

Generally, increasing bulk concentrations cB led to lower fluxes, while increasing TMP and CF led
to higher fluxes in all training sets. This is in accordance with the underlying mechanisms: higher bulk
concentrations lead to higher concentrations in the boundary layer and a more prominent effect of the
back diffusion along the concentration gradient. An increased TMP leads to higher convective flow
towards the membrane, but also to a faster accumulation of the protein at the boundary layer. High CF
decreases the thickness of the concentration polarization layer by rectangular displacement. The training
set obtained from experiments using only BSA exhibited higher fluxes then the two-component training
set. Additionally, the flux decreased faster during filtration of the two-component solution (Figure 3B)
compared to the filtration of lysozyme only (Figure 3D). This indicated an increased membrane
resistance through the fouling effect on the Hydrosart membrane caused by lysozyme. Being smaller
than the pores, lysozyme adsorbed at the inner pore channels [28,29] and reduced its diameter and
subsequently the flux through the membrane and the membrane’s selectivity.

The two-component training set (Figure 3A,B) was used to train the black box of the hybrid models
and to obtain the mechanistic model parameters k and cG. The data set with lysozyme solely (Figure 3D)
was used for two reasons: first, to investigate the effect of TMP and CF on the permeability of lysozyme
and whether RLys had to be recalculated for varying input parameters (Figure A5); second, to correlate
the permeate lysozyme concentration with the UV signal on the permeate side. This correlation was
used to calculate RLys (Equation (2)) for each observation of the combined training set (Figure 3A,B),
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using solely the permeate UV signal. Another training experiment was performed with BSA solely
(Figure 3C). The observed fluxes and estimated SFM parameters k and cG were used to investigate
model behavior and error when lysozyme was present in the test set but absent in the training set.

3.2. Comparison of the Hybrid Models to the Stagnant Film Theory

The optimal ANN structure in the hybrid models was determined by varying the number of
hidden nodes from one to seven and recording the average error of 20 repetitions on the training
set. The ANN with four hidden nodes yielded the lowest NRMSE for both HM 1 and HM 2, with an
average of 3.4% NRMSE. Higher numbers of hidden nodes led to an error increase due to training set
overfitting (Figure A1).

With the SFM, the flux can only be modeled for a one-component system; no adaptations for a two-
or multi-component system have been published in the literature so far. In the following, BSA was
assumed to be the only component since its concentration was four to 46 times higher than lysozyme
in the test runs (Table A2). The k and cG values of BSA, however, change in the presence of lysozyme.
To allow a fair comparison between the hybrid models (which can incorporate multiple components as
inputs) and the SFM, both sets of k and cG were evaluated. Both experiments were carried out with
BSA alone. The combination of BSA with lysozyme was used for flux prediction and the results were
compared to the prediction of the hybrid models.

The hybrid model trained solely on BSA (Figure 4, red dotted line) and the SFM using k and cG

based solely on BSA (Figure 4, dark grey dot-dashed line) were able to predict a UF process with only
BSA present (Figure 4A, black line), but failed to predict the UF flux of BSA and lysozyme (Figure 4B,
black line). The latter failed due to membrane fouling by lysozyme and therefore the reduced flux and
prolonged process times could not be described by any of these models.

Figure 4. Comparing flux prediction of the test set containing (A) BSA (TMP 1.8 bar, CF 200 mL/min,
initial cB,BSA 6.68 g/L) and (B) BSA with lysozyme (TMP 2.1 bar, CF 250 mL/min, initial cB,BSA 3.71 g/L,
initial cB,Lys 0.38 g/L), with: hybrid model HM 1 trained on BSA solely (red dotted line) and the BSA
and two-component training set (blue dashed line); SFM based on BSA solely (dark grey dot-dashed
line) and two-component training set (light grey dot-dot-dashed line).

In contrast, the hybrid model trained with BSA (Figure 3C) and BSA with lysozyme (Figure 3A,B)
training runs (Figure 4, blue dashed line) were able to predict both UF processes: BSA solely and BSA
with lysozyme (Figure 4, black lines). These results showed that already low amounts of lysozyme
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drastically changed the initial flux and flux evolution of the UF process and that incorporating both
components in the model was essential for accurate predictions. On the contrary, SFM based on the
training run containing BSA with lysozyme was also able to predict the two-component test run well
(Figure 4B, light grey dot-dot-dashed line), but showed a drastic offset when predicting a test run with
only BSA (Figure 4A, light grey dot-dot-dashed line). The k values from the two-component training
set (Table A5) were generally lower than those calculated from solely BSA, since membrane fouling
due to lysozyme was assumed. In the absence of lysozyme, however, no membrane fouling occurred
and the flux for the same cB,BSA was higher.

In summary, the HM could predict both scenarios, since the varying concentration of lysozyme
and its influence on the membrane fouling was integrated into the black box. However, the SFM only
predicted one scenario well, depending on which k and cG were used. For the following two-component
predictions, the SFM parameters were based on the two-component training set.

3.3. Comparison of Hybrid Model Performance

To further investigate both the interpolation and extrapolation capability of both HMs and the
SFM model, a series of test runs were conducted under conditions that were partially not covered by
the training sets. To test the hybrid models based on the two-component training set, additional test
runs on BSA solutions spiked with lysozyme were performed. The two established hybrid model
structures were compared for their RLys, flux and final cB predictions individually. RLys effects the
in-process cB,Lys prediction and subsequently the flux and final cB,Lys. Additionally, the two hybrid
models were compared to the SFM in terms of flux and cB,BSA prediction. cB,Lys, and RLys could not be
compared, since SFM can be applied to one-component only.

The test data consisted of nine UF runs performed at different TMP, CF, initial cB,BSA and cB,Lys

conditions. Test runs 1−4 were performed within the training space. This meant that TMP and CF
were within the training parameters (Figure 5A, blue area) and the initial cB,BSA, and cB,Lys was higher
than the initial training concentrations (Figure 5B, blue area). The test runs 1, 2 and 9 were performed
in the center of the TMP and CF training space (Figure 5A), with test run 9 containing no lysozyme.
Test run 3 was performed at the outer limit of the TMP and CF training space, to investigate how
the predictions of the hybrid models changed at the border. Test run 4 was performed under TMP
and CF conditions not covered by the training set but within the training space, to investigate the
interpolation capabilities of the model. Test runs 5, 6, 7 and 8 were performed under conditions that
were partially outside the training space, such as initial cB,Lys (8), initial cB,Lys (5, 6) and CF (7), to test
the extrapolation capabilities. The test run parameters are summarized in Figure 5 and Table A2.

3.3.1. Flux Prediction

Regarding the prediction of the flux evolution, the two hybrid models performed similarly
(Figures 6A,C,E, 7A,C,E and A4A,C,E). Most test run predictions exhibited a small initial offset. At the
beginning of the test experiments, the membrane was clean, while during the training set the membrane
exhibited some lysozyme fouling and equilibrium of the concentration polarization layer due to the
long training process time. This led to an initially underestimated flux. The offset became more
pronounced when initial cB,Lys was higher than 0.3 g/L (test runs 2, 3, 4, 5 and 8; Figures 6C,E, 7A and
A4A,C), indicating a stronger membrane fouling at this concentration. Even though all hybrid models
were trained with cB,Lys higher than 0.3 g/L, the timely increasing membrane resistance due to fouling
reached an equilibrium only after several minutes. After this point, the flux was predicted correctly.
The highest initial offset was given in test run 8 (Figure A4A), which exhibited the highest initial cB,Lys

and therefore more fouling. Test run 7 (Figure 7E) was performed at CF 350 mL/min, which was outside
the training space. Both hybrid models predicted the flux of test run 7 (Figure 7E) well, indicating
that the models were not necessarily limited by the training space and showed good extrapolation
capabilities of the input parameter CF. Test runs 4, 5 and 6 (Figures 6C,E and 7C) exhibited TMPs and
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CFs within the training space parameters and all predicted well. The good flux predictions of these
test runs showed the excellent interpolation capabilities of the ANN-aided hybrid models.

Figure 5. Schematic depiction of the training space (blue area) for: (A) TMP and CF of training runs
(white dots) and test runs (grey dots); (B) initial to final cB,BSA and cB,Lys of the test runs (grey dots with
grey solid lines) and the covered concentration range of the three training runs (white dots with black
solid lines).

The SFM predicted the initial flux and flux evolution inside the training space well (test runs 1,
3 and 4; Figures 6A,C, and A4C). However, for the test runs outside the training space, higher errors
were exhibited (test runs 5, 6 and 8; Figures 6E, 7C and A4A). Outside the training space, k and cG

were extrapolated from the training data, which potentially increased flux prediction uncertainty.
Furthermore, high lysozyme concentrations also led to higher errors due to stronger fouling over time
and not being able to incorporate the second component in the SFM. Here, the SFM underestimated the
initial flux drastically (test runs 2 and 8; Figures 7A and A4A). For test run 9 (Figure A4E)—only BSA,
no lysozyme—the SFM with k and cG were exceptionally based on BSA training data (Figure 3C) to
allow fair comparison. In this case, the SFM yielded good initial flux predictions, but deviations at the
end of the process, while HM 1 and 2 both showed excellent flux prediction over the entire process. On
average, the flux prediction error of SFM was 6% NRMSE, while the error of the two hybrid models
was 4.1% and 3.9% NRMSE (Figure 8A).

3.3.2. Rejection Factor Prediction for Lysozyme

The rejection factor for lysozyme RLys increased throughout the UF run, from around 0.6 to almost
1.0, as shown in Figures 6, 7 and A4. The pores became increasingly blocked throughout the UF
process, most probably because lysozyme was absorbed in their inner wall, increasing the rejection
factor. Results showed that there was no consistent correlation between the TMP and RLys, or CF and
RLys (Figure A5). Therefore, the influence of TMP and CF on cP,Lys was neglected when creating the
calibration between UV absorbance and lysozyme permeate concentration. The rejection factor of BSA
was 1 for all experiments. The model errors are given in Figure 8B.



Processes 2020, 8, 1625 11 of 24

Processes 2020, 8, x FOR PEER REVIEW 11 of 26 

 

prediction over the entire process. On average, the flux prediction error of SFM was 6% NRMSE, 
while the error of the two hybrid models was 4.1% and 3.9% NRMSE (Figure 8A). 

 
Figure 6. Comparison of observed and predicted flux and RLys. (A) The flux over time of test run 1, 
(B) RLys over permeate volume of test run 1, (C) the flux over time of test run 4, (D) RLys over permeate 
volume of test run 4, (E) the flux over time of test run 5, (F) RLys over permeate volume of test run 5. 

Figure 6. Comparison of observed and predicted flux and RLys. (A) The flux over time of test run 1,
(B) RLys over permeate volume of test run 1, (C) the flux over time of test run 4, (D) RLys over permeate
volume of test run 4, (E) the flux over time of test run 5, (F) RLys over permeate volume of test run 5.
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Figure 7. Comparison of observed and predicted flux and RLys. (A) The flux over time of test run 2,
(B) RLys over permeate volume of test run 2, (C) the flux over time of test run 6, (D) RLys over permeate
volume of test run 6, (E) the flux over time of test run 7, (F) RLys over permeate volume of test run 7.
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Figure 8. Summary of the prediction errors of HM 1, HM 2 and SFM in terms of (A) flux, (B) RLys,
(C) final cB,Lys for test runs 1 to 4 with all parameters—TMP, CF, initial cB,BSA and cB,Lys—inside the
training space and (D) final cB,Lys for test runs 5 to 8 performed partly outside the training space.

Hybrid Model 1: Constant Lysozyme Rejection Factor

In HM 1 the rejection factor for lysozyme RLys was assumed to be constant over time for all
test runs, where lysozyme was present and therefore exhibited the largest RLys error (38% NRMSE)
compared to HM 2 (see Figure 8A). All test runs (Figures 6, 7 and A4) show that HM 1 overestimated
RLys at the beginning of all UF runs and underestimated it at the end. The average RLys based on
training data fitted all independently generated test data very well but lacked the ability to adjust to
the increasing RLys.

Hybrid Model 2: Dynamic Lysozyme Rejection Factor

In contrast to keeping the rejection factor constant, as in HM 1, a second black box was introduced
in HM 2 to predict RLys dynamically. This prediction was independent of the flux prediction but was
based on the same four input parameters, namely TMP, CF, initial cB,BSA and initial cB,Lys. The NRMSE
of the newly introduced black box was evaluated by comparing the observed RLys values to the
predicted RLys. Since the correlation of RLys and VP is quite simple, an ANN with one hidden node
was used for RLys prediction (Figure A1C). For comparison, a multiple linear regression (MLR) model
was also tested as an alternative black box, resulting in a less complex hybrid model that required less
computation time and facilitated easier interpretability. However, the ANN with one node was chosen
instead of the MLR, because of the lower prediction error regarding RLys and final cB,Lys (see Table A4).

HM 2, with an average RLys NRMSE of 14%, performed better than HM 1. The improvement
was achieved as HM 2 considered the increasing RLys over the process, which subsequently strongly
influenced the final cB,Lys prediction (Section 3.3.3). In test runs 5 and 6 (Figures 6F and 7D) the
prediction from HM 2 overestimated RLys. These test runs exhibited a low TMP and high cB,BSA.
The hybrid model assumed that the CP layer of BSA and fouling due to lysozyme were at an equilibrium,
at which the lysozyme transmission was lower than in the test runs, where the CP layer was still
building up. Low TMP additionally prolonged the time to reach flux steady state. RLys of the other test
runs 1, 2, 4, 7 and 8 (Figures 6B,D, 7B,F and A4B) were predicted accurately with HM 2.

Even though HM 2 performed better than HM 1 in RLys prediction, the flux predictions were
almost identical (NRMSE 3.9 and 4.1 %). This indicated that they were not affected by small variations
or changes in cB,Lys.

3.3.3. Endpoint Bulk Concentration

Since RBSA was 1, all models—HM and SFM—predicted the same cB,BSA at the final retentate
volume, with an average error of 4.2% (Table A3). BSA did not show membrane fouling and was
quantitatively recovered at the end of the process. The predictions of the final cB,Lys varied because
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of the different RLys predictions. The discussion for cB,Lys prediction was divided into the test runs
performed strictly inside and outside the training space, since the hybrid models performed differently.

Within the training space—test runs 1−4—HM 1 and HM 2 performed in accordance with the
RLys predictions (Figure 8C). HM 1 exhibited the highest error of 9% since RLys was not adjusted over
the processing time. HM 2 recalculated RLys with every iteration; its cB,Lys predictions were in good
accordance with the measured concentrations, with an NRMSE of 4% and superior to HM 1. Similarly
to the RLys, the accuracy of the final cB,Lys prediction benefited from two separately trained black boxes.

In cases where at least one input parameter was outside of the training space—test runs 5−8—HM
1 performed best with an average NRMSE of 4% (Figure 8D). In comparison, HM 2 yielded worse final
cB,Lys predictions, exhibiting a three-fold increase in NRMSE (12%). Even though RLys was updated in
HM 2, it was overestimated throughout most of the test runs, leading to higher cB,Lys prediction and a
cumulated NRMSE that increased with the duration of the process. In contrast, using HM 1 the initial
RLys over-prediction and under-prediction balanced out and yielded acceptable final cB,Lys predictions.

In summary, the more complex HM 2 showed superior performance within the trained space,
which is the case for most modeling applications. It can predict the flux, RLys and therefore the
concentration, of both components at any time point of the process. For predictions outside the trained
space, the simpler and more robust HM 1 performed better, giving accurate predictions on flux and the
fully retained main component BSA. It can offer valuable insights when exploring parameter ranges if
the desired optimal process conditions are not met in the trained space, before it is expanded and used
to retrain new hybrid models.

4. Conclusions

UF modeling increases process understanding which is key for predicting process performance.
The interactions of various components means that mechanistic modeling approaches for
multi-component solutions might become very complex and require many experiments.

We developed and compared hybrid models to predict flux, rejection behavior and concentrations
for UF of two-component solutions. The models were trained on training experiments that were
generated in less than eight hours and tested on independently performed UF runs with varying
product and impurity concentrations, TMPs and CFs. We showed that the hybrid model HM 2,
with a dynamic impurity rejection factor containing two black boxes, exhibited the best predictions
for impurity rejection behavior and final concentration within the trained parameter space and had
excellent interpolation properties. The simpler HM 1 yielded stable predictions beyond the trained
space, rendering it a valuable tool for extrapolation. Both hybrid models performed similarly well in
predicting flux and mimicked product concentration. The SFM with mechanistic parameters exhibited
higher flux prediction errors than both hybrid models and could not predict the lysozyme rejection
factor and final concentration, since it can only assume a one-component system. Our results show that
it is crucial to quantify and incorporate all components, including the impurities, to gain accurate and
reliable process models. These variations can be included more easily in the hybrid model approach
than in mechanistic models such as SFM, with low experimental effort and no mechanistic parameter
adaption required.

A limitation of the presented models is the time-dependent fouling of the mimicked impurity at high
initial concentrations. However, at the expected concentration ranges, e.g., after the chromatography
capture step, the effect can be neglected.

The proposed hybrid model structure can be used not only for the reliable prediction of
final product concentrations, but also of the concentration of various quantifiable classes of
impurities. Since impurities are a critical quality attribute (CQA) in many manufacturing bioprocesses,
time-resolved concentration predictions help to better understand the process’s outcome upfront.
Furthermore, by taking adequate measures a potential batch rejection due to high impurity concentration
can be avoided. The product and impurities can be measured with online sensors or correlated with
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offline analytics using soft sensors. In combination, with closed-loop process controllers, these hybrid
models are a valuable tool for increased process understanding and advanced process control.
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Symbols and Abbreviations

ANN artificial neural network
BSA bovine serum albumin
CF cross-flow velocity
CP concentration polarization
HM hybrid model
MWCO molecular weight cutoff

NRMSE normalized root-mean-squared error
SEC size exclusion chromatography
SFM stagnant film model
TMP transmembrane pressure
UF ultrafiltration

A membrane area [m2]
cB bulk concentration [g/L]
cG gel layer concentration [g/L]
cP permeate concentration [g/L]
cR retentate concentration [g/L]
dt time increment [s]
J permeate flux [LMH] or [m/s]
k mass transfer coefficient [LMH]
RLys lysozyme retention coefficient [-]
VB bulk/reservoir volume [mL]
Vp permeate volume [mL]

Appendix A

Appendix A.1. Neural Network Model Optimization

To choose the best-suited ANN structure, varying numbers of hidden nodes were tested. Each ANN was
trained on the combined training set and validated. Figure A1A gives an overview of the optimal ANN structure
including the inputs TMP, CF, cB,BSA, cB,Lys, and the output permeate flux (in HM 2 a second ANN with RLys
as output was added) with four hidden neurons. The input and output parameters were scaled between 0
and 1 before optimizing the ANN. This step is necessary to have the parameters on the same scale rendering
them comparable. Each node in the hidden and output layer in Figure A1A forms a linear equation. As an
example, the first hidden node x21 is the sum of each multiplication of an input (TMP, CF, cB,BSA, cB,Lys) and the
corresponding weight (w1

11, w1
21, w1

31, w1
41) multiplied with the bias (b1) of the entire hidden layer.

x21 = b1
(
w1

11TMPscaled + w1
21CFscaled + w1

31cB,BSA,scaled + w1
41cB, Lys,scaled

)
To determine the values for the weights and biases that result in the desired prediction the model is optimized

in multiple epochs. As a first step, the weights and biases are randomly chosen and the first prediction with
inputs from a given training set is performed. Since the weights and biases are not optimized the flux prediction
will be of poor quality and the prediction error will be high. Using the desired output from the training set,
the ANN is calculated backward which results in inputs parameters that fit the prediction. The error between the
real and the backward calculated inputs is estimated and used to update the according to weights and biases.
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This optimization can be performed with different algorithms—in this publication we chose MATLAB’s trainbr
function which employs Bayesian regularization, which is an adaptation of the Levenberg-Marquardt optimizer
and minimizes the squared errors and weights. Once the weights and biases are optimized, the ANN structure is
defined and applied to the test sets and will predict the same results for a given set of inputs.

The presented ANN structure (Figure A1A) was determined after screening a wide number of nodes in the
hidden layer from one to seven, with the corresponding NRMSE being recorded and averaged. We chose an ANN
with four hidden nodes for all hybrid model structures (Figure A1B) because it exhibited the lowest average error
and standard deviation. Structures with less than four nodes resulted in under-fitted models. More hidden nodes
led to an over-fitting of the training data and higher prediction error and standard deviation. In HM 2 the RLys
black box ANN was optimized in the same way with 1 hidden node yielding the lowest error. The tested ANNs
consisted of one hidden layer with a sigmoid activation function and linear activation functions in both the input
and output layer. The inputs were normalized between 0 and 1.

Figure A1. (A) Structure of the ANN including input, output and hidden layer, number of hidden
nodes and activation functions. (B,C) Optimization of the ANN structure. (B) The NRMSE is plotted
over the number of neurons in the hidden layer of the ANN of the permeate flux predicting black box.
(C) The NRMSE of the RLys black box HM 2.
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Appendix A.2. Experimental Data Summary

Table A1 gives a summary of the measured cB,BSA, and cB,Lys for the three training sets containing BSA with
lysozyme, only BSA and only lysozyme. Training set 2 and 3 consisted of two parts with different starting cBs to
cover a wide cB space. For each cB the TMP and CF were increased stepwise in three minutes intervals. Afterward,
cB was increased by concentrating the sample and removing the generated permeate from the reservoir.

Table A1. Summary of all training data including measured cB,BSA, cB,Lys, and observed flux.

Training Set Observation cB,Lys
[g/L]

cB,BSA
[g/L]

Flux at TMP
0.8 bar [LMH]

Flux at TMP
1.3 bar [LMH]

Flux at TMP
1.8 bar [LMH]

Flux at TMP
2.3 bar [LMH]

Flux at TMP
2.8 bar [LMH]

1

100

0.28 3.77 87.6 113.3 121.0 121.5 119.1
0.5 8.48 78.0 93.3 96.3 95.6 93.4

0.76 14.38 70.1 80.5 81.6 80.0 77.7
1.51 24.68 60.7 67.5 67.5 65.9 63.9
2.3 48.72 46.8 50.7 50.1 48.6 47.1

3.81 77.93 34.0 36.6 36.2 35.1 34.0

200

0.28 3.77 92.9 136.3 157.6 164.5 164.2
0.5 8.48 89.3 121.2 131.9 132.7 130.3

0.76 14.38 82.8 106.5 112.3 111 108.3
1.51 24.68 74.2 91.1 93.5 91.6 88.8
2.3 48.72 59.2 68.6 69.2 67.1 64.7

3.81 77.93 43.3 49.3 49.4 47.8 46.2

300

0.28 3.77 92.0 143.4 178.3 194.8 199.8
0.5 8.48 90.2 133.8 155.6 161.5 161.1

0.76 14.38 85.6 121.5 135.2 136.9 134.7
1.51 24.68 78.8 106.2 114.0 113.4 110.7
2.3 48.72 65.1 82.2 85.1 83.2 80.6

3.81 77.93 48.4 59.2 60.4 58.9 56.9

2a

100

3.19 - 97.6 150.1 195.1 232.6 260.6
4.73 - 97.9 146.5 186.1 218.2 244.8
8.11 - 97.6 144.7 181.1 209.5 235.8
11.99 - 96.8 142.2 176.8 205.2 231.8
23.79 - 95.0 137.5 171.0 199.1 221.8
32.95 - 85.7 124.9 152.3 172.4 187.2

200

0.39 - 98.3 151.9 196.6 233.6 264.2
0.44 - 99 150.8 192.2 224.3 252.4
0.53 - 98.3 148.7 187.9 218.9 244.8
0.72 - 98.3 146.9 184.7 215.3 241.6
0.9 - 96.8 143.3 178.9 208.4 232.9

1.48 - 89.3 128.9 160.9 186.5 204.1

300

3.19 - 97.2 152.28 198.36 236.52 267.84
4.73 - 97.56 150.84 195.48 229.68 258.12
8.11 - 96.84 149.4 192.24 225 252.36
11.99 - 96.84 148.32 189.36 222.12 249.84
23.79 - 96.12 145.08 183.6 215.28 240.84
32.95 - 86.76 129.96 165.6 192.6 212.76

2b

100

3.19 - 86.0 113.8 121.0 115.6 105.5
4.73 - 67.3 81.0 84.2 82.4 79.9
8.11 - 59.8 69.8 71.6 70.6 68.8
11.99 - 55.1 62.6 63.4 61.9 60.5
23.79 - 45.7 50.0 49.7 47.9 46.8
32.95 - 36.0 37.8 36.4 35.3 34.2

200

3.19 - 88.2 121.7 135.7 137.9 134.3
4.73 - 74.5 96.1 105.8 108.4 108.0
8.11 - 67.7 85.7 92.9 94.3 93.6
11.99 - 63.0 78.5 83.9 84.2 82.8
23.79 - 54.0 64.8 67.0 65.5 63.4
32.95 - 43.9 50.0 49.7 47.9 46.8

300

3.19 - 85.0 121.0 140.0 148.7 151.2
4.73 - 74.9 102.6 117.7 125.6 128.5
8.11 - 69.5 93.2 105.8 111.6 113.0
11.99 - 65.5 87.5 97.6 100.8 100.8
23.79 - 57.2 73.8 79.2 79.6 78.1
32.95 - 50.0 62.6 64.8 - -
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Table A1. Cont.

Training Set Observation cB,Lys
[g/L]

cB,BSA
[g/L]

Flux at TMP
0.8 bar [LMH]

Flux at TMP
1.3 bar [LMH]

Flux at TMP
1.8 bar [LMH]

Flux at TMP
2.3 bar [LMH]

Flux at TMP
2.8 bar [LMH]

3a

100

- 3.65 90.8 119.6 131.9 136.5 138.3
- 7.45 84.9 106.8 114.8 117.4 117.2
- 14.65 76.6 92.4 97.0 97.3 96.4
- 20.06 68.2 82.1 85.5 85.1 83.3
- 24.4 67.2 78.7 82.0 82.0 80.8
- 44.78 53.2 61.4 63.2 62.9 61.6

200

- 3.65 97.9 144 171.7 185.4 191.5
- 7.45 96.1 135 154.4 162 164.5
- 14.65 90.4 119.9 132.1 135.7 135
- 20.06 81.4 108.4 118.4 119.9 118.1
- 24.4 82.1 104.8 113 114.5 113
- 44.78 67.3 82.4 86.8 86.8 85

300

- 3.65 98.4 151.4 190.8 214.9 228.5
- 7.45 98.6 147.2 178.4 194.4 201.0
- 14.65 93.8 134.4 155.9 164.9 167.2
- 20.06 87.5 124.9 143.4 149.2 149.0
- 24.4 87.6 120.8 136.0 141.1 141.3
- 44.78 74.6 97.9 106.1 107.9 106.8

3b

100

- 70.12 40.7 46.4 47.3 46.6 45.5
- 80.15 39.4 45.5 46.9 46.6 45.8
- 131.69 24.0 28.8 29.9 29.6 29.0
- 179.95 13.6 18.1 19.6 19.7 19.7
- 231.67 6.3 10.9 13.1 13.8 13.7
- 277.25 0.0 5.5 7.7 8.8 9.4

200

- 70.12 53.6 64.1 66.2 65.5 63.4
- 80.15 50.8 61.2 63.7 63.4 62.6
- 131.69 31.8 38.9 40.3 40 39.2
- 179.95 17.3 23.5 25.7 26 25.7
- 231.67 7.2 13.8 16.3 17.4 17.5
- 277.25 5.9 9.4 10.8 - -

300

- 70.12 62.6 79.0 83.3 82.6 63.5
- 80.15 58.2 73.3 78.0 78.3 62.5
- 131.69 37.1 46.8 49.5 49.3 39.2
- 179.95 19.5 27.5 30.3 30.9 25.7
- 231.67 - - - - 17.5
- 277.25 - - - - -

Table A2 summarized the parameters chosen for the test experiments: TMP, CF, initial cB, and measured
final cB of BSA and lysozyme.

Table A2. Summary of the test sets with varying initial cBs, CF, and TMP.

Test Set
Number TMP [bar] CF

[mL/min]
Initial

cB,BSA [g/L]
Final

cB,BSA [g/L]
Initial cB,Lys

[g/L]
Final cB,Lys

[g/L]

1 1.8 200 4.00 78.11 0.28 4.36
2 1.8 200 3.79 62.48 0.50 6.16
3 2.8 300 3.82 54.95 0.32 4.35
4 2.5 280 4.56 97.59 0.28 3.52
5 1.6 230 5.97 132.81 0.15 1.96
6 1.4 270 8.80 162.45 0.19 2.79
7 2.0 350 3.62 73.62 0.34 4.65
8 1.8 260 2.38 45.42 0.57 6.82
9 1.8 200 6.68 132.70 0.00 0.00

Figure A2 gives the entire training data sets at CF 200 mL/min.
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Figure A2. Training data sets including different protein concentrations, TMP at CF 200 mL/min.
(A,B) Multi-component training set containing BSA and lysozyme (blue) in the same solution and one
component solution of (C) BSA (red) and (D) lysozyme (green).

Figure A3 gives the correlation curve to calculate RLys from the UV absorbance at 280 nm using Equation (2).
The curve was calculated using the lysozyme training data (Table A1, Training set 2) and exhibits a correlation
coefficient of 0.97.

Figure A3. (A) Calibration of UV absorbance at 280 nm on the permeate side of the membrane versus
cP,Lys of the lysozyme training set measured with HP-SEC (R2 = 0.97). (B) Deviations between calculated
and measured cB,BSA with an R2 of 0.9997, including the identity line (dotted line). The concentration
steps were performed at TMP 1.8 bar and CF 200 mL/min.
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The applied polynomial function to correct for the CP layer was:

cmeas,B,BSA = −0.0012 · ccalc,B,BSA
2 + 1.0063 · ccalc,B,BSA (A1)

This function is specific to the protein and the membrane and must be adapted for new
protein-membrane combinations.

Appendix A.3. Further Modeling Results

Figure A4 gives the flux predictions of all three model structures for test runs 8, 3, and 9.

Figure A4. Comparison between observed and predicted flux and RLys. (A) The flux of test run 8 over
time, (B) RLys over permeate volume of test run 8, (C) the flux over time of test run 3, (D) RLys over
permeate volume of test run 3, (E) the flux over time of test run 9.
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Table A3 contains the prediction errors of HM 1 and 2 regarding flux, RLys, and final cB,BSA, and cB,Lys
prediction. The cB,BSA predictions are identical for both hybrid models because RBSA is 1. Test run 9 contained
no lysozyme, therefore no RLys and cB,Lys error was calculated. The HM 2 NRMSE for final cB,Lys show clear
differences between test run 1−4 (input parameters inside the trained space) and test run 5−8 (at least one input
parameter outside the trained space).

Table A3. Summary of the test sets with varying initial cBs, CF, and TMP, and the number of samples
taken to calculate the observed R.

Test Set
Number

NRMSE Flux [%] NRMSE RLys [%] NRMSE final cB,Lys [%] NRMSE Final cB,BSA [%]

HM 1 HM 2 SFM HM 1 HM 2 HM 1 HM 2 HM 1 HM 2 SFM

1 2.3 ± 0.3 2.1 ± 0.3 5.3 32.5 ± 0.0 6.2 ± 0.2 7.4 ± 0.0 4.1 ± 0.0 4.6 4.6 4.6
2 4.3 ± 0.2 4.1 ± 0.1 7.2 39.7 ± 0.0 14.7 ± 2.2 7.9 ± 0.0 4.9 ± 0.3 3.8 3.8 3.8
3 3.6 ± 0.2 3.2 ± 0.2 3.0 40.3 ± 0.0 20.4 ± 0.5 13.0 ± 0.0 4.3 ± 0.0 2.2 2.2 2.2
4 3.9 ± 0.3 3.7 ± 0.2 5.0 34.9 ± 0.0 6.9 ± 0.6 6.7 ± 0.0 3.4 ± 0.2 0.7 0.7 0.7
5 4.8 ± 0.3 4.9 ± 0.4 8.5 32.6 ± 0.0 25.7 ± 1.3 3.2 ± 0.0 11.9 ± 0.5 8.7 8.7 8.7
6 3.4 ± 0.3 3.3 ± 0.5 9.3 45.3 ± 0.0 24.5 ±1.3 7.6 ± 0.0 12.1 ± 0.4 0.1 0.1 0.1
7 4.7 ± 0.3 4.5 ± 0.4 4.4 40.6 ± 0.0 6.2 ±0.7 3.9 ± 0.0 9.4 ± 0.3 6.6 6.6 6.6
8 8.2 ± 0.2 8.0 ± 0.3 6.3 35.6 ± 0.0 10.0 ±2.0 1.9 ± 0.0 13.0 ± 1.6 7.2 7.2 7.2
9 1.7 ± 0.5 1.7 ± 0.4 4.9 0.0 0.0 0.0 0.0 4.6 4.6 4.6

Figure A5 showed that there was no consistent correlation between the TMP and RLys, and CF and RLys.

Figure A5. RLys and CF 100, 200, and 300 mL/min versus TMP for increasing bulk concentrations (A)
3.19 g/L, (B) 4.73 g/L, (C) 8.11 g/L, (D) 11.99 g/L, and (E) 23.79 g/L of the lysozyme training set.

In Table A4 two HM 2 models employing different black box types for RLys prediction were compared.
An ANN with one hidden node in one hidden layer performed better than MLR with linear and interaction terms
when assessed for to final cB,Lys and RLys predictions. Regarding flux prediction, both models perform equally.

Table A4. HM 2 black box for RLys prediction. Comparison between an ANN with one hidden node
and MLR regarding, final cB,Lys, RLys and flux prediction error.

Test Run
Number

NRMSE Final cB,Lys [%] NRMSE RLys [%] NRMSE Flux [%]

1-node ANN MLR 1-node ANN MLR 1-node ANN MLR

1 4.1 5.7 6.2 9.9 2.1 2.3
2 4.9 6.4 14.7 26.9 4.1 3.9
3 4.3 4.3 20.4 20.9 3.2 3.3
4 3.4 4.7 6.9 21.1 3.7 3.8
5 11.9 6.4 25.7 34.5 4.9 5.1
6 12.1 11.6 24.5 69.4 3.3 3.5
7 9.4 16.1 6.2 20.0 4.5 4.4
8 13.0 38.4 10.0 55.5 8.0 7.5

Average 7.9 11.7 14.3 32.3 3.9 4.0

Table A5 summarized the mass transfer coefficient k and gel concentration cG for flux prediction using the
SFM. The SFM can be set up for a one-component solution only and since the BSA concentration was 4 to 46
times higher than the lysozyme concentration, BSA was chosen as the modeled component. k and cG for BSA
were calculated for a BSA one-component solution (Table A5 left) and two-component solution (Table A5 right)
containing BSA with lysozyme. k from two-component solution was generally lower than for one-component
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due to the fouling properties of lysozyme on the cellulose-based membrane, which reduced the transmembrane
mass transfer.

Table A5. Mass transfer coefficient k and gel concentration cG for SFM based on BSA (left) and BSA
with lysozyme (right).

k based on BSA k based on BSA with lysozyme

Feedflow [mL/min] Feedflow [mL/min]
100 200 300 100 200 300

TMP
[bar]

0.8 47.36 36.23 31.63
TMP
[bar]

0.8 17.61 33.84 14.03
1.3 54.67 41.97 32.33 1.3 25.03 36.12 27.92
1.8 54.51 42.14 30.13 1.8 27.59 36.75 39.06
2.3 53.40 41.63 28.99 2.3 28.11 38.22 44.73
2.8 53.75 42.97 27.95 2.8 27.70 38.58 46.84

cG based on BSA cG based on BSA with lysozyme

Feedflow [mL/min] Feedflow [mL/min]
100 200 300 100 200 300

TMP
[bar]

0.8 277.83 303.41 279.25
TMP
[bar]

0.8 665.40 280.12 4421.42
1.3 302.79 330.45 323.30 1.3 355.06 312.56 887.24
1.8 322.39 345.88 355.30 1.8 288.49 277.52 419.22
2.3 332.29 353.74 369.46 2.3 264.69 273.21 304.56
2.8 323.99 327.45 378.28 2.8 256.72 252.80 263.97

Figure A6 shows an exemplary plot to graphically calculate k (negative slope) and cG (intercept with
the abscissa):

J = −k·cB + k·cG

with −k (negative mass transfer rate) being the slope and k · cG being the intercept with the ordinate. The latter is
divided by k, resulting in the gel layer concentration cG.

At the lowest two TMPs (0.8 and 1.3 bar) the flux-ln(cB,BSA)-curve is not linear, since the is in the
pressure-dependent region. In this case, only the points in the linear range were taken for calculating k
and cG. For low TMPs and high CFs the flux is pressure dependent. In these cases, the SFM flux prediction will
always overestimate the flux. The test runs, however, were performed at a TMP of 1.4 bar or higher, and therefore
in the pressure independent flux region.

Figure A6. Permeate flux vs. logarithmic cB,BSA to estimate the mass transfer coefficient k and gel
concentration cG for the stagnant film theory (SFM). Data recorded at CF 200 mL/min.
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