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Abstract: Heat exchanger networks subject to fouling are an important example of dynamic systems
where performance deteriorates over time. To mitigate fouling and recover performance, cleanings
of the exchangers are scheduled and control actions applied. Because of inaccuracy in the models,
as well as uncertainty and variability in the operations, both schedule and controls often have
to be revised to improve operations or just to ensure feasibility. A closed-loop nonlinear model
predictive control (NMPC) approach had been previously developed to simultaneously optimize the
cleaning schedule and the flow distribution for refinery preheat trains under fouling, considering
their variability. However, the closed-loop scheduling stability of the scheme has not been analyzed.
For practical closed-loop (online) scheduling applications, a balance is usually desired between
reactivity (ensuring a rapid response to changes in conditions) and stability (avoiding too many large
or frequent schedule changes). In this paper, metrics to quantify closed-loop scheduling stability
(e.g., changes in task allocation or starting time) are developed and then included in the online
optimization procedure. Three alternative formulations to directly include stability considerations
in the closed-loop optimization are proposed and applied to two case studies, an illustrative one
and an industrial one based on a refinery preheat train. Results demonstrate the applicability of
the stability metrics developed and the ability of the closed-loop optimization to exploit trade-offs
between stability and performance. For the heat exchanger networks under fouling considered, it is
shown that the approach proposed can improve closed-loop schedule stability without significantly
compromising the operating cost. The approach presented offers the blueprint for a more general
application to closed-loop, model-based optimization of scheduling and control in other processes.

Keywords: closed-loop scheduling; scheduling stability; optimal control and scheduling; fouling;
heat exchanger networks

1. Introduction

In batch plants, continuous plants, and general manufacturing plants with multiple processing
units, multiple products or time-decaying performance, scheduling of production and maintenance is
essential to ensure a feasible and economically profitable operation. The aim of scheduling is to define
the production sequence, order, allocation, and timing for execution of all production and maintenance
tasks. For example, a closed-loop nonlinear model predictive control (NMPC) approach has been
developed to simultaneously optimize the cleaning schedule and the flow distribution for refinery
preheat trains under fouling [1]. Production scheduling and maintenance scheduling belong to the
same kind of problem (i.e., they follow the same principles, assumptions, and modeling approaches)
and, in some instances, have been integrated [2–4]. One of the main assumptions used to address
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these problems is a perfect knowledge of the current and future operating conditions, which includes
demand, unit performance, availability, and cost of resources.

However, all processes are by nature dynamic and subject to uncertainty and disturbances.
For example, in batch processing, unplanned events such as unit breakdown, new orders, changes in
order quantity, performance decay of the unit, and variation in costs and prices affect the performance
(technical and economic) and even feasibility of a schedule previously determined [5]. Therefore,
a re-evaluation of the scheduling decision is necessary and advantageous. Traditionally, two alternatives
schemes have been defined: (i) rescheduling, where the main objective is to recover feasibility of the
operation after a (significantly large) disturbance is observed, and (ii) online scheduling, where the
schedule is updated at regular intervals [6,7]. Rescheduling can be done via a full re-evaluation of the
scheduling problem, via partial modification of the previous scheduling decisions, or by postponing
the execution of some actions [8]. Typically, this is done over the same time horizon as the original
schedule and with no new decision variables. Most of the approaches for rescheduling are based on
heuristics and aim to do minimal, yet significant, modifications to recover feasibility [5]. Some others
are based on mathematical programming and solve a nonlinear programming (NLP), mixed integer
linear programming (MILP) or mixed integer nonlinear programming (MINLP) problem representing
a partial scheduling problem (i.e., with a subset of the decisions fixed based on the solution of
the initial schedule) [5,9]. In the above classification, online scheduling uses all available decision
variables, and aims to maximize the performance of the system at every evaluation so that it does not
just reject disturbances, but also generates improvements when the system dynamics allow so [10].
This alternative relies on the solution of optimization problems in a feedback loop using a receding
horizon approach (i.e., the time horizon of each schedule evaluation rolls forward and includes new
future decisions). The update interval may be fixed and constant, or conditional to the detection of
disturbances to the system.

Online scheduling, also referred to as closed-loop scheduling, aims to automate a production
and/or maintenance schedule of a plant despite disturbances and variability. However, it has been
noted that such a rolling update of the schedule can produce instability in the operation [10,11].
Schedule instability, also called schedule nervousness, may be loosely defined as changes in scheduling
decisions between consecutive updates which are undesired (the opposite defines schedule stability).
Such changes often have important consequences for the operation. For example, some tasks may not
be included in the scheduling model (or not included in sufficient detail) and a change in schedule
requires revising them as well. Some tasks may require manual intervention and some resources
may require a long procurement time. If scheduling decisions change too frequently or too suddenly,
there may not be sufficient time to implement those tasks or procure those resources. In addition,
from the operator perspective, too many and sudden schedule changes may be perceived as “erroneous”
and “nonintuitive”, leading the operator to manually overwrite some decisions. This in turn will most
likely generate delays in execution, introduce further disturbances to the operation that have to be
corrected later on, and negatively affect performance [5,8].

In principle, increasing schedule stability within the closed loop would often facilitate the
implementation of scheduling decisions, avoid other disturbances occurring in the long term,
and improve the closed-loop performance. This will, however, reduce the ability of the system
to react to disturbances. Ensuring a rapid schedule response to changes in conditions and schedule
stability are, therefore, both desired objectives.

Refining operations are an example of highly dynamic processes with a high energy demand
and environmental impact, which are also subject to many uncertainties and variability. They can
benefit from an online optimization of their operation to reduce energy consumption, operating
cost, and carbon emissions. A key section of a refinery is the preheat train, a large heat exchanger
network that recovers around 70% of the energy in the products of the main distillation column [12].
An efficient operation of this section ensures satisfying the production targets, while reducing energy
consumption. However, it is subject to a wide range of disturbances such as changes in flow rates,
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operating temperature, and crude blends processed (which occur on the timescale of hours or days),
as well as to efficiency losses, among which the most important is fouling. To maintain an efficient
operation of the preheat train in the presence of such disturbances and process variability, the flow
distribution through the network and the cleaning schedule of the units have to be optimized.

Usually, the cleaning scheduling and the flow distribution problems of preheat trains have
been considered independently, ignoring the inherent variability of the process, and solved using
heuristics [13–15]. This leads to suboptimal operations because key elements of the problem are
ignored, or to infeasible operations because operating limits (e.g., the firing limit of the furnace, the limit
capacity of the pumps) are reached, causing a need for emergency cleaning actions or a reduction
in production rates. It has been shown that, for these type of processes, integrating flow control in
the network and scheduling of exchanger cleaning is advantageous because of the strong synergies
between them [16,17]. Optimizing these two elements in a closed loop is, therefore, important to reject
disturbances and improve performance. A closed-loop nonlinear model predictive control (NMPC)
approach that does this has been developed [1]. However, to achieve a successful implementation of an
online cleaning scheduling and flow control of preheat trains, issues related to schedule stability have to
be addressed first. Schedule stability is of particular importance in this application because (i) the time
scale involved spans from weeks to years, which requires the integration of short-term and long-term
decisions, and (ii) the nature of the scheduling decisions (i.e., cleaning of units) requires planning ahead
of the specialized resources necessary (e.g., crews, cleaning equipment, cranes, usually contracted
out with long notices). Refinery operators, therefore, invariably demand some stability in the future
scheduling decisions. Schedule stability, disturbance rejection, and performance optimality are all
desired objectives for the problem at hand.

Several approaches have been proposed to balance this trade-off between schedule stability
and closed-loop schedule performance in various applications related to batch or manufacturing
processes. However, to our knowledge, they have not been proposed related to maintenance or cleaning
scheduling. Dynamic effects and variability have been considered by using heuristic algorithms to
modify the starting time of the task online [18], by solving an MILP problem that swaps the order
or allocation of the task to minimize wait time [19], and by using constraint programming to repair
the schedule [20]. All of these methods relay an incumbent schedule as a reference and ignore the
effects on economic performance. Other rescheduling approaches penalize in an objective function
the changes with respect to the incumbent schedule and may include penalties for reallocation of
tasks [21], penalties for changes in the starting time of tasks [22], or a more detailed discrimination of
all rescheduling costs (i.e., starting time deviation cost, unit reallocation cost, resequencing cost) as
penalties in the objective function [8]. As noted, most of these approaches are designed to be used
reactively to recover feasibility when large disturbances are observed and not online for closed-loop
optimization of a schedule. An early system for online scheduling (SuperBatch) dealt with highly
complex processing configurations (plant, recipes, orders, etc.) in batch manufacturing. Schedules
were updated every minute, adjusting for external and process variations on a rapid basis, using an
unpublished heuristic method evolved from [18]. The system was successfully applied industrially to
scheduling and design of very complex, large-scale food productions [23,24] (Figure 1).

In online or closed-loop scheduling, variability is considered explicitly on a rolling horizon. In this
case, the objective function or the constraints of the scheduling problem can be modified to additionally
include closed-loop schedule stability requirements. For instance, this may be done by retaining some
allocations from previous evaluations and promoting early task allocations as a penalty in the objective
function [25]. Another formulation minimizes the earliness/tardiness in the execution of the tasks and
the cost of flexible tasks [26]. More recently, a state-space representation of the scheduling problem
was proposed according to the nonlinear model predictive control (NMPC) paradigm, where the
scheduling problem is solved online and automatically includes the effect of disturbances [10,11,27].
The objective is economically driven but does not consider schedule stability.
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Figure 1. Top left: 14 day schedule of beer production (140 process units, 26 recipe families). Top right: 
5 day production schedule of chilled desserts for northern Europe (35 product families, daily changes) 
as of 4:00 a.m. on a Saturday morning. Bottom: Online rescheduling every minute; the red vertical 
line separates the historical schedule (as actually happened) from the predicted one (adapted from 
[23]). 
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different metrics for various rescheduling actions. Second, most of the rescheduling formulations 
have focused on just restoring feasibility while ignoring optimality and opportunities arising from 
the process dynamics and disturbances. Third, only certain sources of schedule instability have been 
considered, with no clear definition or guidelines for setting the penalty factors. Fourth, most 
methods so far do not include the possibility of optimizing continuous control decisions at the same 
time as discrete scheduling decisions. These methodological limitations result in practical barriers to 
the online optimization of flow distribution and cleaning scheduling in refinery preheat trains, as 
well as of other dynamic process systems with analogous features. 

Figure 1. Top left: 14 day schedule of beer production (140 process units, 26 recipe families). Top right:
5 day production schedule of chilled desserts for northern Europe (35 product families, daily changes)
as of 4:00 a.m. on a Saturday morning. Bottom: Online rescheduling every minute; the red vertical line
separates the historical schedule (as actually happened) from the predicted one (adapted from [23]).

The previous survey indicated that schedule stability for online scheduling is still an open issue,
and there is no single, general approach that optimizes the trade-off between closed-loop performance
and schedule stability. First, stability is not well defined and quantified, and there are different metrics
for various rescheduling actions. Second, most of the rescheduling formulations have focused on just
restoring feasibility while ignoring optimality and opportunities arising from the process dynamics
and disturbances. Third, only certain sources of schedule instability have been considered, with no
clear definition or guidelines for setting the penalty factors. Fourth, most methods so far do not include
the possibility of optimizing continuous control decisions at the same time as discrete scheduling
decisions. These methodological limitations result in practical barriers to the online optimization
of flow distribution and cleaning scheduling in refinery preheat trains, as well as of other dynamic
process systems with analogous features.

The aims of this paper are (i) to present a method for the online optimization of operational
schedules and continuous controls under high input and disturbance variability, while considering
schedule stability explicitly in the closed loop, and (ii) to demonstrate its application and benefits for
the online cleaning scheduling and flow distribution control of refinery preheat trains. The remainder
of the paper is structured as follows: Section 2 briefly presents the modeling framework used to
describe the dynamics of preheat trains under fouling and for online integration and optimization of
the flow distribution and cleaning scheduling considering disturbances. In Section 3, some metrics to
quantify schedule instability are presented and discussed. Section 4 introduces three alternative ways
to include schedule stability objectives within the closed-loop optimization formulation. Section 5
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introduces a small case study that is used to demonstrate the use of the instability metrics, and it
compares the performance (in terms of stability and total cost) of the various formulations aimed at
increasing schedule stability. Section 6 demonstrates the application of the framework to a realistic
industrial case study, using historical refinery data and the actual variability observed in the operation
of the preheat train. Lastly, the conclusions of the work are drawn in Section 7.

2. Closed-Loop Optimal Cleaning Scheduling and Control of Preheat Trains

The online optimization approach of the cleaning schedule and dynamic flow distribution of
preheat trains under fouling is based on an advanced nonlinear model predictive control (NMPC)
strategy, presented in detail in a previous study by the authors [1]. It defines two feedback control
loops, one for the fast dynamics of the process associated with flow distribution (of the order of
hours) and another for the slow dynamics associated with fouling and cleaning (of the order of weeks
and months). Figure 2 shows a simplified block diagram of the control loops, their components,
and interactions. In this figure, the plant block corresponds to the actual system or a representation of
it, the control layer refers to the advanced control and state estimator that defines the control elements
of the system for rejection of fast disturbances (its inputs are the set schedule, the current state of the
system, and disturbances, and the outputs are the control actions), and the scheduling layer refers to
the algorithm defining the online scheduling strategy and its corresponding state estimator (its inputs
are the current state of the system and a forecast of the disturbances, and the output is the schedule
for the current time). Each control loop has two components: a moving horizon estimator (MHE) to
update the model parameters and predict the current state of the system on the basis of the latest
plant data and a nonlinear model predictive controller (NMPC) to optimize the future operation
of the network. These two elements solve optimization problems using a realistically accurate and
representative mechanistic, dynamic model of the plant. In particular, the model describes heat transfer,
deposition rates, temperature changes, and hydraulic performance of the heat exchangers, as well as
their interactions within the network that constitutes the preheat train. A brief, general description of
the modeling components is given next, whereas a more detailed presentation of the model formulation
and assumptions can be found in [16].
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Figure 2. Simplified representation of the online, integrated optimal cleaning scheduling and control of
preheat trains subject to fouling and disturbances.

The preheat train model is based on a directed multigraph representation of the heat exchanger
network, where each graph corresponds to a stream (e.g., crude oil, naphtha, residue) and the nodes
are exchangers, furnace, sources, sinks, mixers, and splitters. At each node, mass and energy balances
must be satisfied to ensure network connectivity. The operation of the heat exchangers, all assumed to
be of shell and tube type, is represented using an axially lumped, but radially distributed model based
on the P-NTU concept [28,29], an explicit description of the heat transfer and temperature profiles in the
radial direction through different domains (shell, deposit layers, tube wall, tube), as well as hydraulic
relations for the tube side pressure drop. The semiempirical reaction fouling model of Ebert–Panchal,
Equation (1) [28], is used to characterize the evolution over time of the thermal resistance of the deposit
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in a unit. This affects the thermal performance of the unit and is related to the deposit thickness,
Equation (2), affecting its hydraulic performance (all variables are defined in the Nomenclature).
Experimental or plant data are required to estimate the parameters of the fouling model (α,γ, E f ). It has
been demonstrated that this model adequately captures the main effect of the operating variables of
the exchangers (e.g., surface temperature, velocity, shear stress) on the fouling rate [30]. In addition to
these modeling components, operational limits such as the maximum duty of the furnace, the pressure
drop limits in the network, bounds of flow split fractions to parallel branches, and pressure drop
equalization constraints over parallel branches are included in the form of inequalities in the problem
formulation. The resulting large set of nonlinear equality and inequality constraints is a sufficiently
accurate [31] yet compact dynamic model of each exchanger and the network.

dR fi

dt
= αiRe−0.66

i Pr−0.33
i exp

(
−

E f ,i

RT f .i

)
− γiτi, ∀i ∈ HEX. (1)

δi =
Din,i

2

[
1− exp

(
−
λdR f ,i

Din,i/2

)]
, ∀i ∈ HEX. (2)

This dynamic model for preheat trains under fouling is used in the MHE and NMPC problems in
both the scheduling and the control layers (labeled with subscript s and c, respectively) for parameter
estimation, as well as to simultaneously optimize the flow distribution in the network and the cleaning
schedule. It has been demonstrated, using actual refinery data, that this model has good predictive
capabilities over a wide range of operating conditions and long operating times, with an average
absolute prediction error in each exchanger of 0.9 ◦C for the tube-side exit temperature, 1.3 ◦C for the
shell-side exit temperature, and 0.05 bar for the tube-side pressure drop [1].

Table 1 summarizes the main components, assumptions, and considerations of each feedback
loop and their elements. In each layer, the MHE and NMPC formulations use the dynamic model
described above to represent the operation of the preheat train and the effects of fouling. In the NMPC
formulation of the scheduling layer, which includes binary decision variables, additional inequality
constraints are included to represent the changes in operating modes of the exchangers (i.e., “operating”
or “being cleaned”) and any conditions optionally imposed on the cleaning sequence (e.g., units to be
simultaneously cleaned, periods of no cleanings, exclusive cleanings).
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Table 1. Summary of the characteristics of each feedback loop for the online optimization of the cleaning scheduling and flow control. NMPC, nonlinear model
predictive control; MHE, moving horizon estimator.

Control Layer (C) Scheduling Layer (S)

NMPCC MHEC NMPCS MHES

Minimization of operating cost Minimization of error between data
and model

Minimization of operating and
maintenance cost

Minimization of error between
data and model

Objective function Equation (4) Equation (3) Equation (5) Equation (3)

Decision variables Flow rate profiles Fouling parameters of each
exchanger

Flow rate profiles Fouling parameters of each
exchangerAllocation of cleanings to exchangers

Starting time of the cleanings

Inputs (parameters)
Cleaning schedule Past actions Operating conditions Past actions

Operating conditions Past measurements Model parameters Past measurements
Model parameters

Time discretization Discrete time Discrete time Continuous time + orthogonal collocation Discrete time
Type of problem NLP NLP MINLP NLP

Sampling interval From hours to days From hours to days From weeks to months From weeks to months
Future prediction horizon (FPH) From days to weeks - From months to years -
Past estimation horizon (PEH) - From days to weeks - From months to years

Disturbances Forecast as constant current
value Explicit (past) Forecast as moving average of

past month Explicit (past)

Complicating aspects Nonlinearities of the model
Nonlinearities of the model Nonlinearities of the model Nonlinearities of the model
Large data set in the PEH Number of binary variables Large data set in the PEH

Interaction of control and
scheduling decisions
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The control layer deals with the fast dynamics, and its main objective is to reject disturbances
and minimize operating cost by manipulating flow split profiles, knowing the short-term cleaning
schedule to be executed. The objective of the MHEC is to determine the model parameters that best
explain the observations (i.e., temperature and pressure measurements from the plant) over a past
estimation horizon, as represented in Equation (3). The adjustable parameters are the deposition and
removal constants in the Ebert–Panchal model and the surface roughness, for each of the exchangers
in the preheat train. The resulting formulation is an NLP problem. Once the MHEC problem is
solved, the parameters thus obtained are used in the NMPCC problem (also formulated as an NLP) to
determine the optimal flow distribution over a future prediction horizon that minimizes the operating
cost, Equation (4). The latter includes the cost of the fuel consumed in the furnace and associated carbon
emissions. The prediction time horizon is discretized using a discrete representation. Although the
optimal solution covers a long horizon, only the first action is implemented in the plant; the remainder
are discarded, and the problem is solved again in the next sampling interval, in the usual MPC scheme.
The sampling (update) intervals are much shorter than the control prediction horizon. In this control
layer, a forecast is required of the disturbances (changes in input variables) over the future prediction
horizon. Here, each input variable (flowrate, temperature, and pressure of input streams) is forecast
to remain constant at its last measured value for the entire horizon. As control updates are frequent,
this is deemed to be adequate.

min
αi,γi,εi

∑
n∈PEHc

∑
i∈HEX

ωTt

(
Tti,n −

ˆTti,n

)2
+ωTs

(
Tsi,n −

ˆTsi,n

)2
+ωP

(
∆Pi,n − ˆ∆Pi,n

)2
. (3)

min
ma,t

∫ FPHc

0

(
P f Q f (t) + PcmcQ f (t)

)
dt. (4)

The scheduling layer deals with the slow dynamics of the process over long periods of operation.
It integrates scheduling and control decisions to minimize the operating cost and to define the future
cleaning actions. The MHES problem is similar to that of the control layer, and they share the same
objective. However, the past estimation horizon of the scheduling layer is longer than in the control
layer because more data is necessary to capture the slow dynamics of the system. On the other
hand, the NMPCS problem is significantly different from that of the control layer. First, the future
prediction horizon FPHS is much longer, as it must be able to schedule cleaning actions and quantify
their effects and benefits. Second, the objective function includes both operating cost and cleaning
cost, Equation (5). Third, the prediction time horizon is here discretized using a continuous rather
than a discrete representation, to reduce the number of binary variables of the scheduling problem.
Each period of variable length is further discretized using orthogonal collocation on finite elements in
order to accurately integrate the differential equations in the model. Fourth, in this scheduling layer,
a forecast is also required of the disturbances over the future prediction horizon. Here, each input stream
variable (flowrate, temperature, and pressure) is forecast to remain constant for the entire horizon,
but fixed at the value of its moving average over the past month, to account for recent variability.
Alternative forecasting estimates (e.g., reflecting predicted trends or known planned changes) could be
used. Lastly, the optimization problem involves binary decision variables associated with the operating
mode of the units at every time point, resulting in an MINLP instead of an NLP formulation. This is a
challenging optimization problem because of the large number of binary variables, few constraints on
the cleaning sequence, nonlinearities, nonconvexities, and the degeneracy of the objective function
(i.e., multiple solutions may have similar values). To solve the MINLP problem that integrates cleaning
scheduling and flow control, a reformulation using complementarity constraints is implemented,
which allows finding local optimal solutions online in reasonable computational times [32].

min
yi,t,ts,ma,t

∫ FPHs

0

(
P f Q f (t) + PcmcQ f (t)

)
dt +

∑
n∈FPHs

∑
i∈HEX

Pclyi,n. (5)
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The scheduling layer is not updated as frequently as the control layer because of the different
time scales involved. However, the two layers interact strongly so as to ensure that scheduling and
control decisions are properly integrated and their synergies exploited. The optimal scheduling actions
determined at the scheduling layer until the next schedule update are executed in the plant. They are
also sent to the control layer, which determines the best flow distribution according to those cleanings
and the disturbances observed. Other schedule decisions in the schedule prediction horizon beyond
this first interval are discarded.

For the purpose of this paper, the actual plant is simulated using the same predictive model as
used in the NMPC/MEH loops. However, its parameters are modified in order to create a controlled
degree of (parametric) model mismatch. The plant parameters are unknown to the feedback loops.

3. Closed-Loop Schedule Stability Metrics

Closed-loop schedule instability must be quantified to determine efficient strategies to reduce it,
but no single metric is adequate. In production scheduling, it has been quantified as the difference in the
overall quantity of a given product produced at a given time between two consecutive evaluations of
the schedule [33]. Other attempts have quantified the changes in starting time of the same task between
two consecutive solutions [34] or the changes in task allocations among the units [34,35]. Reference [30]
considered batch plants; thus, their criterion is not immediately applicable to the problem of interest
here, which is a type of maintenance scheduling for a continuous process. An analogous concept will
be developed later which is applicable to continuous processes. On the other hand, the differences
in the starting time of tasks (the cleanings) and in the task allocations (which exchanger is cleaned
and number of cleanings per exchanger) will be used to quantify schedule instability, according to
the notation in Figure 3.The figure shows the cleaning schedules for a five exchanger network at two
consecutive evaluations (at the top, schedule k − 1 evaluated at time tk−1; at the bottom schedule
k, evaluated at time tk) and a representation of the main schedule differences, including changes in
task allocations (which units are cleaned) and the starting time of the tasks (when cleanings start).
The schedule instability is defined taking into account those actions within the overlapping interval,
OI, in the future prediction horizons of the two consecutive schedules. With constant schedule update
interval and length of the scheduling prediction horizon, FPHs, the duration of this overlapping
interval is also constant and simply equal to their difference, FPHs − (tk − tk−1). With variable intervals,
the same definitions are indexed according to the schedule evaluation index, k, i.e., the overlapping
interval at evaluation k, OIk, has duration FPHs,k − (tk − tk−1).

Four metrics of schedule instability are defined next on the basis of these definitions: (1) task
time instability, (2) task allocation instability, (3) overall instability, and (4) overall weighted instability.
They are defined for consecutive schedule evaluations assuming a continuous time representation,
although they also apply with a discrete time representation. Instability metrics are generated every
time a schedule is updated, and, in an online application, their time evolution can be tracked on a
rolling horizon at each update.

The metrics defined here can provide useful insights into schedule stability regardless of how
the schedule is defined. The only condition for their application is the existence of two consecutive
evaluations or predictions of the schedule with a common period. The definition of these metrics is
based on the changes occurring within a common period shared by the schedule evaluations. Hence,
these metrics can be calculated for two consecutive instances even in cases where their control horizons,
scheduling horizons, or update frequencies are different.
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Figure 3. Representation of sources of scheduling instability and the elements used to quantify it.

The following definitions, sets, and indices are used to define the instability metrics for the online
scheduling problem:

• Units = {1, 2, . . . , NU}. Set of units.
• Tasks = {1, 2, . . . , NTS}. Set of tasks that can be allocated to the units.
• T = {1, 2, . . . , nT}. Set representing time in the FPH.
• SE = {1, 2, . . . , nSCH}. Set of schedules evaluated over time.
• yI,i, j,t,k ∈ {0, 1} ∀i ∈ Units, j ∈ Tasks, t ∈ T, k ∈ SE. Binary variable indicating the allocation of a task

j to a unit i starting at a time t in schedule k.
• t′k∀k ∈ SE. Time when schedule k is evaluated.

• T∗S,k = t′k − t′k−1∀k ∈ SE\{1}. Time interval between two consecutive schedule evaluations.

• τ′i, j,k =
{
t′k + t

∣∣∣∣yI,i, j,t,k = 1∧ 0 ≤ t ≤ FPHk−1 − T∗S,k∀t ∈ T
}
∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set of the

starting times of all tasks j allocated to unit i in schedule k and within the time interval OIk.

• τ0
i, j,k =

{
t′k−1 + t

∣∣∣∣yI,i, j,t,k−1 = 1∧ T∗S,k ≤ t ≤ FPHk−1∀t ∈ T
}
∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set of the

starting times of all tasks j allocated to unit i in a schedule evaluation k− 1 and within the operating
interval OIk OT − FPHk.

• τ∗i, j,k = argmin
{∣∣∣∣τ′i, j,k∣∣∣∣, ∣∣∣∣τ0

i, j,k

∣∣∣∣}∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set assigned to τ′i, j,k or τ0
i, j,k based on

which one has the minimum number of elements.
• τ∗Ci, j,k =

{
τ′i, j,k, τ0

i, j,k

}
− τ∗i, j,k∀i ∈ Units, j ∈ Tasks, k ∈ SE\{1}. Set defined as the complement of τ∗i, j,k.

Although, in this paper, fixed update intervals are used, the formulation is suitable for both fixed
and variable update intervals.
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For the application at hand, i.e., cleaning scheduling of preheat trains under fouling, it is assumed
that only one type of cleaning is available (i.e., mechanical cleaning) so that the set Tasks has a single
element, i.e., Tasks ={1}. Moreover, the set Units is the set of heat exchanges in the network, and the
variable yI defined here has the same role as variable y in the problem formulation detailed in [16],
which is associated with the cleaning state of the units over time (i.e., 1 for being cleaned, 0 for operating).
In this formulation, it is possible to assign multiple mechanical cleanings (i.e., multiple instance of the
same type of task) to a unit, at different times.

As the (in)stability of a schedule is a relative concept (i.e., it only applies with reference to a previous
one), all metrics apply from the second evaluation only (k ≥ 2) and are undefined (and arbitrarily set
to 0) for k = 1.

3.1. Task Timing Instability

A Task timing instability of schedule k, Its,k, is defined as the difference in the starting times of
all tasks j in units i which are common to schedules k and k − 1 over the overlapping interval, OIk.
Its mathematical representation is presented in Equation (6). Note that this includes only tasks j that
are defined in both schedules k and k− 1. If multiple executions of task j are included over OIk in both
schedules, the difference in their starting times is only relevant for the minimum number of instances of
task j predicted in either one. In addition, if in schedule k, or k− 1, there are no predicted executions of
task j in unit i, there is no contribution of this task-unit pair to the overall task timing instability metric.

Its,k =
1

FPHk

∑
i∈Units

∑
j∈Tasks

 ∑
t∈τ∗i, j,k

min
{
(t− t̂)2,∀t̂ ∈ τ∗Ci, j,k

}
1/2

, ∀k ∈ SE\{1}. (6)

This instability metric is divided by the future prediction horizon of the scheduling problem at
update k, FPHk, to transform it into a dimensionless quantity. The task timing instability takes a value
of zero when there is no difference in the predicted starting time of all the common tasks allocated to
all the units in two consecutive schedule evaluations, or when no task of the same type is allocated to
the same unit in two consecutive schedules (i.e., all the tasks allocated to a unit disappeared from the
schedule or were reallocated to another unit). The task timing instability increases when the difference
in the starting times of a task allocated to a unit in two successive schedules is large.

3.2. Task Allocation Instability

A Task allocation instability of schedule k, IT,k, is defined as the change in the total number
of executions of tasks j allocated to unit i in schedule k during the OIk, with respect to the total
number of executions of the same task in the same unit in the previous schedule, k − 1. This is
expressed mathematically in Equation (7). This expression assumes that all tasks have the same relative
importance for the stability and only considers their total number of executions. In the cleaning
scheduling application considered, this refers to the change in the total number of cleanings of each
exchanger within OIk, regardless of their starting time.

IT,k =
1∑

i∈Units
∑

j∈Tasks Nmax
i, j

∑
i∈Units

∑
j∈Tasks

 ∑
t∈T|t≤FPHk−1−T∗S,k

(
yI,i, j,t,k − yI,i, j,t+T∗S,k ,k−1

)2

, ∀k ∈ SE\{1}. (7)

This definition of instability is standardized by dividing it by the sum of the maximum number
of executions of task j that are allowed in unit i, Nmax

i, j .This is a parameter of the scheduling problem,
and is specified by the analyst. For example, in the cleaning scheduling problem of preheat trains
under fouling, it is the maximum number of cleanings per exchanger that can be executed in the future
prediction horizon, which is usually a constraint imposed by the operators.
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The task allocation instability becomes zero when there are no changes in the number of tasks of a
given type scheduled in each unit regardless of their starting time or when there are no tasks of a given
type scheduled in the future prediction horizon. This instability metric increases when one or more
instances of a task are added to or deleted from one or multiple units in the current schedule with
respect to the previous one.

3.3. Overall Schedule Instability

A metric of Overall schedule instability of schedule k, should consider all the changes from the
previous schedule k − 1, such as changes in the starting time of the tasks, changes in task allocation,
addition of new tasks, and disappearance of previous tasks. To compute it, the overlapping interval
OIk is discretized using a time step that is lower than or equal to the shortest duration of any of the
tasks present in either schedule. In the case of preheat trains, the sampling time of the process is used,
which is 1 day, as plant measurements are available as daily averages. With this time discretization,
a schedule matrix is defined representing a schedule, with NU rows, one per each unit, and ND columns,
each representing a snapshot of the tasks scheduled at each time step during the OIk. Each element
of the schedule matrix is referred to as x(i,j,k) where i is an index for the units (rows), j is an index
for the time instances in the discretized OIk (columns), and k is the schedule index. The entries in the
matrix are either 0, representing no task allocated, or 1, representing a task allocation. This definition
assumes that there is a single task type to be scheduled, as applicable to the single type of cleaning in
the scheduling of preheat trains discussed in this paper. However, it can be easily extended to a more
general formulation with multiple tasks, by associating different integer values to each task type or
different instability metrics for each task.

Figure 4 illustrates such a schedule matrix encoding for a simple example for schedule k − 1
evaluated at time tk−1 (top schedule in Figure 4) and schedule k, evaluated at time tk (bottom schedule
in Figure 4). The corresponding schedule matrices (on the right in Figure 4) have the same dimensions
because OIk, the sampling time, and the number of units do not change between evaluations. With this
encoding, it is possible to rapidly calculate the difference between two successive schedules on the
basis of the differences in individual elements of the corresponding schedule matrices.Processes 2020, 8, x FOR PEER REVIEW 13 of 34 
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The Overall schedule instability of schedule k, Iov,k, is defined in Equation (8), where the quadratic
difference between two consecutive schedule matrices, k and k− 1, is calculated element by element,
and all the differences are added up. This instability metric is standardized by dividing it by the size of
the schedule matrix (NUND). All schedule changes are assumed to have the same effect on the overall
schedule instability metric. They affect it by the same magnitude and do not differentiate between
schedule differences due to changes in the starting time of the tasks, time delays, or changes in task
allocations. Because this metric is standardized, it is bound between zero and one and increases with
the number of differences between consecutive schedule evaluations.

Iov,k =
1

NUND

ND∑
j=1

NU∑
i=1

(
xi, j,k − xi, j,k−1

)2
, ∀k ∈ SE\{1}. (8)

In the example presented in Figure 4, there are five changes in the schedule matrices between
schedules k and k − 1 (see columns 2, 4, 6, and 7 of the matrices in the figure). Then, applying
Equation (8), the overall schedule instability of schedule k is 0.125.

3.4. Time-Weighted Overall Schedule Instability

The above Overall schedule instability definition ignores when the difference in the schedules
occurs. For example, the values of the overall schedule instability for two different schedules can be
the same when changes in the schedule are observed at the beginning of the FPHS, which has large
implications on the operation because those are the actions to be executed in the current time step,
or at the end of the FPHS, when they may not be very important and are subject to future changes.
The metric described below addresses the case when changes in the schedule closer to the current
execution time are undesirable.

A Time-weighted overall schedule instability metric of schedule k, Iovw,k, is defined in Equation (9),
where weights are used to represent the relative importance of each difference in the schedules with
respect to time. This expression uses the same definitions of overall schedule instability, Equation (8),
which are based on a matrix representation of the schedule over OIk. Here, the weights are selected to
decrease linearly from one at the beginning of the overlapping interval OIk, to zero at is end, according
to Equation (10). In terms of the ND discretizations used in the schedule matrix, we have w j = 1 for
j = 0 and w j = 0 for j = ND. The differences in the schedules closer to the current time are, thus, given
a higher relative importance than those that occurring later in the prediction horizon.

Iovw,k =
1

NU
∑ND

j=1

(
w j

) ND∑
j=1

NU∑
i=1

w j
(
xi, j,k − xi, j,k−1

)2
, ∀k ∈ SE\{1}. (9)

w j = 1−
j− 1

ND − 1
, ∀ j ∈ {1, 2, . . . , ND}. (10)

Using weights to characterize the relative importance changes in the schedule with respect to
time was proposed to calculate schedule instability on the basis of the production quantity of different
products [33,36], but not for differences in task allocation and timing. Those studies used an exponential
decay function to define the weights as a function of time. This could also be used here without adding
complexity to the problem. The only difference is that the exponential decay function requires the
analysts to set a parameter for the rate of decay, which can be translated as a preference to ignore or
not schedule modifications occurring at a future time.

The time-weighted overall schedule instability metric explicitly accounts for the effects of time to
indicate that large variability close to the current time is undesirable, whereas that occurring later can
be tolerable. However, it does not distinguish whether the source of variability is due to changes in the
task allocation or starting time of the task.
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Applying the metric defined in Equation (9), the time-weighted overall schedule instability of
schedule k in Figure 4 is 0.136, which is higher than its overall schedule instability, 0.125. This happens
because most of the differences between the two consecutive schedules occurs close to the current time,
tk, which is reflected in a larger number of differences between the schedule matrices in columns with
low indices (columns 2 and 4 of the matrices in Figure 4). This example shows that the time-weighted
metric gives more importance to changes in the schedule that occur closer to the current time and that
may require an immediate action.

4. Including Stability Considerations in the Online Optimization Problem

There are various alternatives to improve the closed-loop stability of online scheduling, but their
actual benefits are not clear, nor is their effect on the overall economics of the process. Three alternatives
based on MPC theory and their practical implementation are evaluated here. They are (1) introducing
a terminal cost penalty with respect to a steady state in the objective function, (2) freezing or fixing a
subset of the scheduling decisions in the FPHS in consecutive schedules, and (3) penalizing changes in
scheduling decisions between consecutive evaluations. These alternatives are described next in the
context of online cleaning scheduling of preheat trains under fouling.

4.1. Terminal Cost Penalty

In MPC for continuous systems, the closed-loop stability properties have been widely studied
from practical and theoretical perspectives (as noted below, the stability definition for continuous
control is different from the schedule stability used in this paper). One alternative to ensure closed-loop
stability with a finite prediction horizon is to include a “terminal cost” in the objective function of the
optimization problem solved at every sampling time [37] in the form of Equation (11). This represents
a general objective function, Jk, where x are continuous variables, y are integer variables, and u are
manipulated variables, which are minimized in an MPC scheme at each sampling time. The function
V is the “running cost”, which, in tracking problems, is defined as the quadratic difference between the
states and their reference point. The function l is the “terminal cost”, and it is only a function of the
variables at the end of the prediction horizon, tFPHS (for example, the cost of missing a final target).
The parameter ρl represents a penalty on the terminal cost and indicates its relative importance with
respect to the running cost.

minJk = ρll
(
x
(
tFPHS

)
, y

(
tFPHS

))
+

∫ FPHS

0
V(x(t), y(t), u(t))dt, ∀k ∈ SE\{1}. (11)

In our case, the overall integral of the running cost, V, in Equation (11) is just the total operating
cost of the preheat train (i.e., the objective function of the online scheduling problem, defined in
Equation (5). There are, however, important differences between the general MPC formulation and that
for closed-loop scheduling that hinder the applicability of adding a “terminal cost” to improve stability.
First, the assumptions to guarantee stability in MPC state that the objective function must decrease
with the number instances evaluated; however, in the case of closed-loop scheduling, the objective is
economic, and this assumption may be violated. Second, the scheduling stability problem is nonconvex
and nonlinear; thus, global optimality cannot be guaranteed. Third, the maintenance/cleaning
scheduling problem considered does not have an obvious stable reference point to use in a tracking
function. The clean state of the network (ideal) is not achievable without infinite cleanings. A possible
reference for the problem on hand is proposed below. Fourth, the scheduling problem includes discrete
variables over a long time scale instead of continuous variables over short time scales. Lastly, stability
for MPC is defined according to whether the system remains in the same operating point (outputs of
the plant) regardless of small disturbances [37], while, for closed-loop scheduling, stability is defined
as a function of the intensity of the changes in scheduling variables (inputs to the plant) between
consecutive solutions.



Processes 2020, 8, 1623 15 of 33

Here, according to the rationale to avoid leaving the network unnecessarily clean at the end of the
scheduling horizon, the reference point for use in the terminal cost is defined as the operation where
each exchanger has reached its asymptotic or maximum fouling level or an operational constraint has
been reached. This limit operation is determined by performing a simulation of the system, assuming
average operating conditions and no mitigation actions. Alternatively, a stable reference operating
point could be defined on the basis of engineering judgement (i.e., a realistic, possible operating state
expected or observed in the past). Other scheduling problems may have cyclic solutions that can be
used as references for stability [38]. The terminal cost for the online optimization of flow distribution
and cleaning schedule is defined in Equation (12), as the sum for all streams in the network of the
quadratic difference between the stream temperature predicted at the end of the FPHS, Ta,t=FPHS , and
the corresponding one in the limit operation, T∞a . The set Arcs in Equation (12) is the set of all arcs
(streams) in the network.

l = ρy

∑
a∈Arcs

(
Ta,t=FPHS − T∞a

)2
(12)

4.2. Freezing Decisions

Fixing or freezing some of the scheduling decisions within the prediction horizon, i.e., retaining
those of a previous schedule, explicitly reduces scheduling instability [39,40]. Every time a scheduling
problem is solved, a fraction of the decisions from the previous schedule evaluation are frozen,
and the remainder are considered free. The fixed actions are defined as equality constraints in the
next scheduling optimization problem. The time intervals for online scheduling and the nature of
the decisions at each evaluation are schematically shown in Figure 5 for three successive updates.
The actions executed between sampling times are a mix of those frozen from the previous solution and
those obtained at the current evaluation. The length of the frozen interval and the scheduling decisions
included, such as task allocated and starting time of the tasks, give a trade-off between stability and
closed-loop performance.
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Figure 5. Schematic representation of freezing some scheduling decisions for improving closed-loop
schedule instability.

In the online cleaning scheduling and flow distribution problem of preheat trains, there are two
kind of decisions that can be kept constant between consecutive schedule updates: the assignment
of cleanings to periods and units and the starting time of the cleaning actions. Equality constraints
are introduced to fix the selected cleaning actions in the current schedule to the values calculated in
the previous one. Equation (13) shows this constraint for the binary decisions, where the asterisk
denotes the optimal value in the previous schedule. These equality constraints assign the cleanings
to the units and periods; however, because the periods have variable length (with a continuous time
representation), the starting time of the cleanings is not fixed. To allow more flexibility, inequality
constraints are introduced to restrict the variability of the cleaning starting time with respect to that
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of the previous optimal schedule. This is shown in Equation (14) which can be transformed into an
equality constraint if necessary.

yi,t(n),k = y∗i,T∗sch+t(n),k−1, ∀i ∈ HEX, n ∈ {1, . . . , Nz}, k ∈ SE\{1}. (13)

− ∆Tcl
≤ τcl

i,t(n),k − τ
cl∗
i,T∗sch+t(n),k−1 ≤ ∆Tcl , ∀ i ∈ HEX, n ∈ {1, . . . , Nz}, k ∈ SE\{1}. (14)

4.3. Penalizing Variability

Penalizing the change in scheduling decisions between two consecutive evaluations is another
alternative to improve closed-loop schedule stability. Instead of using constraints to reduce the
variability between consecutive schedule evaluations, the variability is penalized in the objective
function. The changes between two schedules are only penalized within their overlapping horizon
OIk, as detailed in Figure 3.

The schedule variability penalty is divided into two independent terms: one for the changes in the
allocation of tasks, Equation (15), which is related to the task allocation instability metric, and another
for the changes in the starting time of the tasks, Equation (16), which is related to the task timing
instability metric. Each of these expressions has a penalty parameter ρ that characterizes its importance
relative to the other and to the economic objective function of the scheduling problem. The final overall
objective function for each schedule update, Equation (17), shows the compromise between stability
and process economics. As noted, the integral of the running cost, V, is the total operating cost of the
preheat train, which is the objective function defined in Equation (5).

ly,k = ρy

∑
i∈Units

∑
j∈Tasks

∑
t∈T|t≤FPHk−1−T∗S,k

(
yI,i, j,t,k − y∗I,i, j,t+T∗sch,k−1

)2
, ∀k ∈ SE\{1}. (15)

lτ,k = ρτ
∑

i∈Units

∑
j∈Tasks

∑
t∈T|t≤FPHk−1−T∗S,k

[
tyI,i, j,t,k −

(
t + T∗sch

)
y∗I,i, j,t+T∗sch,k−1

]2
, ∀k ∈ SE\{1}. (16)

minJk = ly,k + lτ,k +

∫ FPHS

0
V(x(t), y(t), u(t))dt, ∀k ∈ SE\{1}. (17)

5. Comparing Alternatives and Metrics to Improve Closed-Loop Schedule Stability

This section evaluates all the instability mitigation approaches presented in Section 4 that utilse
the metrics in Section 3 for a simple, yet realistic, case study.

5.1. Case Study 1—Illustrative Example

The preheat train considered here consist of four heat exchangers, three of which are located on
parallel branches. This case study was adapted from [41,42], where all the details of the equipment,
costs, and operation can be found, although the most important ones, including the fouling model and
cost parameters, are summarized in Tables A1 and A3 (Appendix A). Figure 6 shows the structure
of the network, which is commonly found in refining operations with more units in the branches.
All exchangers are shell and tube and exhibit significant levels of fouling.

For this case study, a nominal operation was assumed (i.e., with constant inlet streams flow rates
and temperatures) with no model–plant mismatch; thus, the predictive models used in the feedback
loops perfectly represent the plant. These assumptions lead to a simpler problem than a real application
of the online approach, while they allow isolating the analysis of the stability of the online scheduling
from other aspects. This case also demonstrates that there can be schedule instability even under these
ideal conditions.



Processes 2020, 8, 1623 17 of 33

Processes 2020, 8, x FOR PEER REVIEW 17 of 34 

min 𝐽 = 𝑙 , + 𝑙 , + 𝑉(𝑥(𝑡), 𝑦(𝑡), 𝑢(𝑡))𝑑𝑡 , ∀𝑘 ∈ 𝑆𝐸\{1}. (17) 

5. Comparing Alternatives and Metrics to Improve Closed-Loop Schedule Stability 

This section evaluates all the instability mitigation approaches presented in Section 4 that utilse 
the metrics in Section 3 for a simple, yet realistic, case study. 

5.1. Case Study 1—Illustrative Example 

The preheat train considered here consist of four heat exchangers, three of which are located on 
parallel branches. This case study was adapted from [41,42], where all the details of the equipment, 
costs, and operation can be found, although the most important ones, including the fouling model 
and cost parameters, are summarized in Tables A1 and A3 (Appendix A). Figure 6 shows the 
structure of the network, which is commonly found in refining operations with more units in the 
branches. All exchangers are shell and tube and exhibit significant levels of fouling. 

 
Figure 6. Preheat train structure of the simple case study. 

For this case study, a nominal operation was assumed (i.e., with constant inlet streams flow rates 
and temperatures) with no model–plant mismatch; thus, the predictive models used in the feedback 
loops perfectly represent the plant. These assumptions lead to a simpler problem than a real 
application of the online approach, while they allow isolating the analysis of the stability of the online 
scheduling from other aspects. This case also demonstrates that there can be schedule instability even 
under these ideal conditions. 

5.2. Results and Discussion 

The online optimal control and cleaning scheduling problem was solved with the following 
settings: for the control layer, a control horizon 𝐹𝑃𝐻  of 10 days and update intervals of one day; for 
the scheduling layer, a scheduling horizon 𝐹𝑃𝐻   of 120 days, update intervals of 15 days, and 15 
periods of variable length in the scheduling horizon. The MHE problems were not solved in the 
feedback loops because there is no plant–model mismatch. These settings of the closed-loop scheme 
led to 25 solutions of the optimal cleaning scheduling problem over 1 year of operation. The schedules 
obtained were used to calculate the schedule instability metrics for 24 consecutive solutions after the 
first one. 

The closed-loop optimization was first performed with the usual economic objective function 
without including stability (base case). An example of changes in schedule between successive 
updates is shown in Figure 7 with reference to the predicted fouling state (in terms of fouling 
resistance) of exchanger HEX2B. At the update on day 91, no cleanings of HEX2B were scheduled 

HEX1

Crude

HEX2A

HEX2B

HEX2C

Sp Mx

Kero

LGO

VR

Furnace

Figure 6. Preheat train structure of the simple case study.

5.2. Results and Discussion

The online optimal control and cleaning scheduling problem was solved with the following
settings: for the control layer, a control horizon FPHC of 10 days and update intervals of one day; for the
scheduling layer, a scheduling horizon FPHS of 120 days, update intervals of 15 days, and 15 periods
of variable length in the scheduling horizon. The MHE problems were not solved in the feedback loops
because there is no plant–model mismatch. These settings of the closed-loop scheme led to 25 solutions
of the optimal cleaning scheduling problem over 1 year of operation. The schedules obtained were
used to calculate the schedule instability metrics for 24 consecutive solutions after the first one.

The closed-loop optimization was first performed with the usual economic objective function
without including stability (base case). An example of changes in schedule between successive updates
is shown in Figure 7 with reference to the predicted fouling state (in terms of fouling resistance) of
exchanger HEX2B. At the update on day 91, no cleanings of HEX2B were scheduled over the predicted
horizon (red line in Figure 7, top). At the day 106 update, a cleaning was introduced, scheduled for
day 120 (red line in Figure 7, bottom). Due to intervening variations in the plant, the cleaning was
eventually shifted and executed on day 170 (black line in Figure 7).
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Figure 8 presents the cleaning schedule predicted (red) at six successive sampling times each over
two time windows, together with the schedules eventually executed over the entire horizon (black).
Figure 9 shows the schedule instability metrics calculated at every cleaning schedule update. In all
updates, there are some changes in the optimal cleaning schedule with respect to the previous one,
and this is reflected in the evolution of the instability metrics. The peaks of task timing instability
occur when a cleaning was postponed, and the task allocation instability changes when cleanings
are included or removed from the predicted schedule. The overall instability and the time weighted
overall instability are good single indicators of instability as their behavior aligned with that of the
other metrics.Processes 2020, 8, x FOR PEER REVIEW 19 of 34 
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Figure 8. Case study 1, base case—evolution of the cleaning schedule as predicted (red) and executed
(black) at various sampling times (marked in the upper right corner): (a) from 65 to 136 days; (b) from
181 to 256 days.

The variation in scheduling instability metrics observed in Figure 9 can be explained by the
evolution of the cleaning schedule. For instance, the maximum value of task timing instability is
observed between 90 and 120 days of the operation because the starting time of the cleanings predicted
for HEX2A and HEX2B change significantly, and even their precedence order is reversed. As another
example, between the schedule evaluations at 65 days and 76 days, there is one additional cleaning
introduced, causing an increase in the task allocation instability. The final example relates to the
overall instability and the time-weighted overall instability metrics. Consider the consecutive schedule
solutions at 211 and 226 days, when two new cleanings are predicted and the starting time of the
HEX2A cleaning are shifted closer to the current time. The weighted overall instability metric is higher
than the overall instability because all the changes occur closer to the execution time.
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Next, the three alternatives proposed in Section 4 to improve closed-loop scheduling stability
were implemented, with the parameters varied as follows:

• In the terminal cost penalty (Equation (12)), ρl was varied between 1 × 10−1 and 1 × 10−9 on a
logarithmic scale.

• In the freezing horizon alternative (Equation (14)), the number of periods in which decisions
are kept constant, Nz, was varied between 2 and 10, and the maximum allowed variation in the
cleaning starting time, ∆Tcl, was varied between 1 day and 100 days.

• In the variability penalty alternative (Equations (15)–(17)), the penalty parameter of the cleaning
allocation variability, ρy, was evaluated between 1 × 10−3 and 1 × 102, while the penalty
parameter of the cleaning starting time variability, ρτ, was varied between 1 × 10−4 and 1 × 100.
The different ranges were due to the differences in the order of magnitude of the metrics.

Figure 10 shows the closed-loop economic performance and stability metrics obtained when
using the terminal cost alternative to reduce instability, for various values of the penalty parameters.
The bars in Figure 10b represent the standard deviation of each metric. Increasing the terminal cost
penalty improves the schedule stability but increases the operating cost. At the upper value of the
terminal cost penalty, ρl = 1 × 10−1, the closed-loop solution has no cleanings scheduled over the
entire horizon. This is the most stable solution, but also the most costly. Low penalties reduce the
total operating cost as they allow more variability and a higher reactivity in the scheduling actions.
For terminal cost penalties lower than 1 × 10−7, the total operating cost and the average of most
instability metrics do not change significantly, but the task timing instability changes. When large
variability in the scheduling decisions is allowed (low penalties), the effect of changes in the starting
time of the cleanings dominates over that of the assignment of cleanings to units. The results show
that proposed metrics may be used as good indicators of the overall closed-loop schedule stability.

Figure 11 illustrates the effect of freezing some scheduling decisions beyond the scheduling
sampling time. It shows the total cost and the average of the overall weighted schedule instability
as a function of the number of periods frozen and the maximum change allowed in the starting time
of cleanings (for clarity, only the average value is shown without indicating its variability). Only the
overall weighted instability is used from now on as it is the most comprehensive and illustrative
metric among those proposed. The total operating cost increases with the number of periods frozen,
while the schedule instability decreases, although no clear trend is observed, as the nonlinearities,
nonconvexities, and combinatorial nature of the problem potentially lead to local optimal solutions.
A higher number of periods frozen results in fewer degrees of freedom in the scheduling problem,
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limiting the opportunity to react optimally. When the range of changes in the cleaning starting time
is also restricted, it is observed that, for low values of this bound, the closed-loop schedule is more
stable than for high values, and its total operating cost is higher. For a cleaning starting time variability
bound greater than 10 days, there is no significant change in the schedule stability, but the operating
cost varies. In these scenarios, the total number of cleanings and their allocations have a higher impact
on the process economics than their starting time.
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Figure 11. Case study 1—effect of the number of frozen periods (Nz) and the maximum allowed
variation in the cleaning starting time (∆Tcl ) on the closed-loop performance: (a) total operating cost;
(b) average schedule overall weighted instability.

For the variability penalty alternative, which penalizes changes between consecutive schedules,
Figure 12 presents the effect of its parameters on the closed-loop performance and schedule stability.
Although no clear trend is observed, the total operating cost increases when the penalties on the
variability are higher, while the schedule instability decreases. For values of ρτ lower than 1 × 10−3

the schedule instability values did not change, but the operating cost could still vary, indicating that
the effect of cleaning starting times is not as significant as the cleaning allocation. Furthermore, the two
penalties in this alternative are correlated, and there are different combinations leading to similar
closed-loop performance of the overall system.
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All the alternatives presented to improve closed-loop schedule stability were effective in doing so.
In all scenarios considered, improving schedule stability came at the expense of the total operating
cost, demonstrating a trade-off between how fast the system reacts to disturbance and the long-term
predictability of the schedule. A data envelope analysis (DEA) [43,44] was used to evaluate this
trade-off for all the scenarios simultaneously considered in all the alternatives. Each point in the
DEA represents a solution of the closed-loop optimal scheduling problem, using any alternative to
improve stability and the specifications of its parameters. Hence, there are 71 points in total—one
base case, 10 for the terminal cost alternative, 30 for the freezing decisions alterative, and 30 for the
penalizing schedule variability alternative. The total operating cost and the average overall weighted
instability of each schedule were considered as “inputs” to the standard representation of the DEA,
while there were no “outputs”, and an “efficiency” was calculated for each point by solving a linear
programming problem.
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The results of the DEA are presented in Figure 13, where the points are classified according
to the closed-loop alternative used to improve stability, and the efficiency frontier was constructed
from the DEA. The points that lay on the frontier have a 100% efficiency (i.e., represent the best
combination of the inputs, and no other data point available can be as good or better) and all other
points underperform with respect to those. All the points for the terminal cost alternative lay inside the
frontier; thus, they are not as efficient as those defined by the other alternatives or even as the base case,
which did not consider stability in the online schedule optimization. This underperformance of the
terminal cost alternative is because the reference point used to ensure closed-loop stability, although
stable, correspond to the worst conditions to operate the preheat train. The freezing decisions and
variability penalty alternatives both improved the closed-loop schedule stability but compromised
the operational cost. For these data points, two clusters are observed: one for the freezing decisions
alternative that, on average, reduces the schedule instability without a large cost penalty and another
for the variability penalty alternative that, on average, achieves a larger improvement in stability
but with a larger increase in operating cost. Some of the data points of the two clusters overlap,
representing intermediate solutions.
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Figure 13. Case study 1—data envelope analysis (DEA) for all the closed-loop solutions of the
scheduling and control problem.

For this case study, the DEA suggests that the variability penalty method is the better approach
to reduce schedule instability, while still achieving a good economic performance. The terminal cost
alternative proved to be the least efficient, whereas freezing decisions in successive schedules increased
stability, but could be too restrictive in the presence of disturbances, such that not all the economic
benefits of implementing an online fouling mitigation strategy were achieved.

6. Closed-Loop Schedule Stability of an Industrial Preheat Train

This section analyzes the closed-loop performance and stability of the online optimal cleaning
scheduling and control of an industrial preheat train under dynamic and variable operation.

6.1. Case Study 2—Definition

This case study involves a network with five heat exchangers, four of which are double shells
(modeled as nine exchangers overall) in the hot end of a real refinery preheat train (Figure 14). It was
based on the network and operating conditions presented in [45,46]. There is one control degree of
freedom, as the flow split of crude oil through the parallel branches is not constrained but bound
between 20% and 80%. Plant measurements of flow rates and streams temperature were available as
daily averages over 1240 days. Figure 15 shows the flowrates and temperatures of the five inlet streams
to the network (crude oil and five recycle streams) which were used to characterize the variability of the
inlet streams. The design specifications of the heat exchangers are presented in Table A2 (Appendix A),
together with fouling and aging parameters, while cost parameters used are presented in Table A3
(Appendix A). A dynamic model of this preheat train was validated against the plant data in [1] with
excellent results and was used here as the “plant” model.

A controlled degree of model plant mismatch was introduced by modifying the fouling deposition
constants of each exchanger in the plant model at every sampling time. This aimed to mimic the effect
of processing different crudes or crude blends, as they have different fouling propensity. The deposition
constants in the plant simulation changed over time, but their actual value was unknown to all
predictive models used in the online optimization approach. The variability of the deposition constants
in each exchanger was modeled as a pseudo random process around their average values, estimated
using the actual measurements (i.e., outlet temperature of the tube side and shell side of each exchanger).
Because all exchangers process the same crude at a given time, their deposition constants are not
independent, and their correlation was captured when defining their variability. The average deposition
constant and its variability were different for each exchanger in the network. The box plots in Figure 16
show their median and ranges for all exchangers.
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Figure 16. Industrial case study 2—box plot representing the variability in the deposition constant for
each exchanger in the preheat train.

A closed-loop simultaneous optimization of the flow distribution and cleaning schedule was
carried out over 1240 days, starting with all exchangers in a clean state. The economic performance
optimization case, ignoring schedule stability (base case), was detailed in [1]. For this case, Figure 17
presents the cleaning schedule and a key temperature (the crude oil temperature at the entrance of the
furnace, CIT), as predicted and executed at three successive sampling times.
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Figure 17. Industrial case study 2—base case online optimization (no instability reduction). (a) Cleaning
schedule as predicted in three successive updates (red), and executed (black); (b) crude oil temperature
at the exit of the last exchanger/inlet to furnace (CIT) as estimated (blue), predicted (red), and eventually
observed (black), in three successive updates.

6.2. Results and Discussion

The online optimal cleaning scheduling and flow control problem was solved using the following
settings: for the feedback loops, a predictive control horizon FPHC of 10 days, an update frequency of
1 day, and a PEHC of 20 days for the control layer; for the scheduling layer, a PEHS of 120 days, an update
frequency of 90 days, and FPHS of 180 days. The variability penalty alternative to penalize changes
between consecutive schedules, described in Section 4.3, was used. The two penalty parameters
on task allocation, ρy, and on task timing, ρτ, were varied, defining different settings for the online
optimization. Results are compared against the base case, which did not consider instability, in terms
of schedule stability and total operating cost.

The closed-loop performance with the variability penalty formulation is presented in Figure 18
as the schedules and profiles of a key temperature (the crude oil temperature at the entrance of the
furnace, CIT) at three successive schedule updates.
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Figure 18. Industrial case study 2—online optimization: variability penalty with ρτ = 1 × 10−3 and
ρy = 1 × 10−1. (a) Cleaning schedule as predicted in three successive updates (red) and executed
(black); (b) crude oil temperature at the exit of the last exchanger/inlet to furnace (CIT) as estimated
(blue), predicted (red), and eventually observed (black), in three successive updates.

Figure 19a–c show the energy cost (a), the cleaning cost (b), and the total operating cost (c).
The closed-loop average overall time-weighted instability is presented in Figure 19d (without the
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variability bars in the metric for clarity). The scenarios with a task allocation penalty, ρy, of 1 × 10−1

have consistently a larger operating cost, up to 1.0 million USD, than the base case. This cost increase
is due to larger energy cost and fewer cleanings during the overall online operation. However,
these scenarios exhibit the lowest schedule instability. Fewer cleanings are predicted at every schedule
update because adding new cleanings to or removing some from a previous schedule are heavily
penalized. The predicted cleaning schedules, therefore, have minimal changes between updates.
This also inhibits the ability of the scheduling feedback loop to react to disturbances and introduce
operational changes to mitigate fouling and minimize the cost of the operation.

With values of the task allocation penalty parameter ρy < 1 × 10−1, the closed-loop performance is
not very different from the base case, and it could even improve it, reducing the total operating cost by
0.37 million USD in one case. In addition, the corresponding schedules have a lower instability than the
base case, meaning that they improved both the closed-loop performance and the closed-loop stability
at the same time. All scenarios with ρy < 1 × 10−1 have lower cost than the base case, but larger
closed-loop instability than those with ρy = 1 × 10−1. This observed simultaneous improvement in
the two metrics of closed-loop performance contradicts the expectations. A possible explanation is
that this case reflects a specific realization of the uncertainty, disturbances, variability in the operation,
and forecasting scenarios adopted. The input flow rates and stream temperature in the plant were assumed
to change constantly, while the predictive model of the scheduling layer uses at each evaluation only a
constant forecast for each input, defined as a time-moving average of recent past values.Processes 2020, 8, x FOR PEER REVIEW 26 of 34 
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The effect of the penalty parameter on the task timing instability is not as significant as that of
the penalty parameter on the task allocation instability. The operating cost increases only slightly
when the task timing penalty increases from 1 × 10−5 to 1 × 10−1, but this difference is no more
than 0.37 million USD for ρy < 1 × 10−1, while, for ρy = 1 × 10−1, the operating cost ranged from
38.4 million to 39.2 million USD, depending on the task timing penalty, ρτ. For the overall closed-loop
performance, the starting time of the cleanings is not as important as the allocation of cleanings to
heat exchangers. Under variable and uncertain operating conditions, modifying the starting time of
an already scheduled cleaning task for a given unit did not have a big potential to reduce the energy
cost, but could improve schedule stability. A reduction in schedule instability was observed between
ρτ = 1 × 10−5 and ρτ = 1 × 10−4, whereas the changes in instability were minimal when ρτ increases
further. The lowest penalty, ρτ, allowed the largest variability in the cleaning starting times between
consecutive schedules. For larger values of ρτ the changes in the predicted cleaning time were minimal,
and most of the schedule instability came from changes in the allocation of cleanings to the heat
exchanger as new cleanings were predicted.

Figure 20 compares the cleaning schedule obtained (as executed by the end of the 1240 day
operation) for three scenarios: (i) the base case without stability consideration, (ii) a variability
penalty case that achieved better closed-loop stability while increasing the operating cost
(ρy = 1 × 10−1,ρτ = 1 × 10−3), and (iii) a variability penalty case that improved both the closed-loop
stability and the operating cost with respect to the base case (ρy = 1 × 10−2 , ρτ = 1 × 10−3). The total
number of cleanings, indicated for the exchanger in the columns on the right of Figure 20, changes
significantly between the scenarios. The second scenario, with ρy = 1 × 10−1, resulted in fewer
cleanings and longer times between cleanings of the same exchangers, while the other two scenarios
had similar cleaning schedules. Although the final closed-loop schedules of the base case (i) and
scenario (iii) are similar, their generation in a receding horizon and their performance were different.
In the base case (i), the calculated instability value, 0.075, results mainly from adding to a predicted
schedule new cleanings that have to be immediately executed. This is not practical from a planning
perspective, if the response to cleaning decisions and supply of resources needed for their execution
is not immediate. In scenario (iii), such actions are penalized, thus occur less often, and most of the
schedule variability can be attributed to the changes in the starting time of the predicted cleanings.
A Pareto plot of all solutions explored is given in Figure 21.

Processes 2020, 8, x FOR PEER REVIEW 27 of 34 

loop performance, the starting time of the cleanings is not as important as the allocation of cleanings 
to heat exchangers. Under variable and uncertain operating conditions, modifying the starting time 
of an already scheduled cleaning task for a given unit did not have a big potential to reduce the 
energy cost, but could improve schedule stability. A reduction in schedule instability was observed 
between 𝜌 = 1  10  and 𝜌 = 1  10 , whereas the changes in instability were minimal when 𝜌  increases further. The lowest penalty, 𝜌 , allowed the largest variability in the cleaning starting 
times between consecutive schedules. For larger values of 𝜌  the changes in the predicted cleaning 
time were minimal, and most of the schedule instability came from changes in the allocation of 
cleanings to the heat exchanger as new cleanings were predicted. 

Figure 20 compares the cleaning schedule obtained (as executed by the end of the 1240 day 
operation) for three scenarios: (i) the base case without stability consideration, (ii) a variability penalty 
case that achieved better closed-loop stability while increasing the operating cost ( 𝜌 = 1  10  , 𝜌 = 1  10 ), and (iii) a variability penalty case that improved both the closed-loop stability 
and the operating cost with respect to the base case (𝜌 = 1  10  , 𝜌 = 1  10 ). The total 
number of cleanings, indicated for the exchanger in the columns on the right of Figure 20, changes 
significantly between the scenarios. The second scenario, with 𝜌 = 1  10 ,  resulted in fewer 
cleanings and longer times between cleanings of the same exchangers, while the other two scenarios 
had similar cleaning schedules. Although the final closed-loop schedules of the base case (i) and 
scenario (iii) are similar, their generation in a receding horizon and their performance were different. 
In the base case (i), the calculated instability value, 0.075, results mainly from adding to a predicted 
schedule new cleanings that have to be immediately executed. This is not practical from a planning 
perspective, if the response to cleaning decisions and supply of resources needed for their execution 
is not immediate. In scenario (iii), such actions are penalized, thus occur less often, and most of the 
schedule variability can be attributed to the changes in the starting time of the predicted cleanings. A 
Pareto plot of all solutions explored is given in Figure 21. 

In general, the penalization of schedule changes achieves more stable schedules, but reduces the 
ability of the system to react to changes. Due to the high variability and uncertainty of the operation 
(and possibly the existence of multiple local optima to the nonconvex MINLP scheduling problem), 
the trade-off between stability and performance is less clear. 

 
Figure 20. Industrial case study 2—final cleaning schedules as executed online for the base case (no 
schedule instability mitigation) and two schedule instability mitigation (variability penalty with 
penalty parameters 𝜌 = 1  10 and 𝜌 = 1  10 ). The columns on the right give the total 
number of cleanings of each exchanger in each case. 

Figure 20. Industrial case study 2—final cleaning schedules as executed online for the base case
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penalty parameters ρy = 1 × 10−1and ρy = 1 × 10−2). The columns on the right give the total number
of cleanings of each exchanger in each case.
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In general, the penalization of schedule changes achieves more stable schedules, but reduces the
ability of the system to react to changes. Due to the high variability and uncertainty of the operation
(and possibly the existence of multiple local optima to the nonconvex MINLP scheduling problem),
the trade-off between stability and performance is less clear.

7. Conclusions and Perspectives

The closed-loop schedule stability problem was addressed in this work with an application to the
online cleaning scheduling and control of refinery preheat trains under fouling. The various metrics
developed to quantify schedule instability for online scheduling account for distinct aspects, such as
changes in task allocation, task sequence, starting time of the task, and the earlier or later occurrence
of such changes in the future scheduling horizon. The results show that the metrics are useful to
characterize the stability of successive schedules, as well as to identify sources of instability and ways
to mitigate it. Further stability metric variations could be easily developed (for example, ways of
assigning weights to distinct contributions to a schedule change) on the basis of the methods proposed.

It was demonstrated that such stability considerations can be practically and, in a rather general
way, introduced in a closed-loop NMPC formulation of the optimal scheduling and control problem,
and solved online over a moving horizon, in terms of penalties in an economic objective or via
additional constraints. The result is a formulation which enables to specify both schedule stability and
performance requirements, explore the balance between schedule reactivity and disturbance rejections,
and establish the optimal trade-off between schedule stability and economic benefits.

The above methods were demonstrated for the online cleaning scheduling and flow control of
refinery preheat trains, a challenging application with significant economic, safety, and environmental
impact. An illustrative, small but realistic case study was followed by a demanding industrial case
study. Results show that, of the three alternatives evaluated, the terminal cost penalty proved to be
inefficient in this case. The other two (fixing some decision in the prediction horizon, and penalizing
schedule changes between consecutive evaluations) showed improvements in the closed-loop schedule
stability, against various degrees of economic penalties. The results highlight the importance of
including stability considerations in an economically oriented online scheduling problem, as a way to
obtain feasible solutions for operators over long operating horizons without sacrificing the benefits of
a reactive system to reject disturbances or take advantage of them.

Nevertheless, there are still open questions related to the definition of the penalties or bounds in
the schedule instability mitigation strategies, as well as the definition of acceptable ranges of schedule
stability or instability. Extensions of this work include dealing with multiple task types (as already
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outlined in the paper) and, for longer-term development, the use of global solution methods and
formally incorporating uncertainty in models and solutions.

Application of the metrics developed in this manuscript is not restricted to the specific closed-loop
NMPC scheduling implementation detailed here. They are useful to assess schedule stability in
general regardless of how schedules are calculated, only relying on the existence of two consecutive
evaluations or predictions of the schedule with a common period. The two consecutive instances
may have different control horizons, scheduling horizons, or update frequency. Lastly, although this
work dealt with a specific application (the optimization of refinery heat exchanger networks subject
to fouling), the formulations and solution approach demonstrated here should be applicable with
small modifications to other cases where closed-loop scheduling and control of dynamic systems is
important, such as batch and semi-continuous processes.
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Nomenclature

Subscripts Description
c Related to the control layer in the online optimization approach
d Deposit layer
ov Overall schedule instability
ovw Overall weighted schedule instability
s Related to the scheduling layer in the online optimization approach
ts Task timing instability
T Task allocation instability
Symbol Units Description
Din mm Tube inner diameter
E f J/mol Activation energy of fouling reaction
I - Schedule instability
l - Terminal cost in the objective function of MPC
mc ton CO2/MWh Carbon emission factor (0.015)
ND - Discrete points (columns) in a schedule representation
NU - Units (rows) in a schedule representation
P Pa Pressure
Pc $/ton Co2 Carbon price (30 USD/ton)
Pcl $ Cleaning cost per unit
P f $/MW Energy price (25 USD/MW)
Pr - Prandtl number
Q f MW Furnace duty
R J/molK Universal gas constant
Re - Reynolds number
R f m2K/W Thermal resistance of the deposit—fouling resistance
t days Time
T f K Film temperature
Ts K Shell temperature
Tt K Tube side temperature
V - Running cost in the MPC objective function
w - Decreasing sequence of weights for Iovw calculation
x - Single entry of a schedule matrix
y - Binary variable for cleanings (1, cleaning, 0 operating)
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α m2K/J Deposition constant
γ m2K/JPa Removal constant
δ mm Deposit thickness
∆Tcl days Bounds on the changes of cleaning times
λ W/mK Thermal conductivity
ρ - Penalty in objective functions
τ Pa Shear stress
τcl days Starting time of a cleaning action
T∗sch day Update interval of scheduling feedback loop
ω - Weights in the MHE objective function
HEN - Heat exchanger network
HEX - Set of heat exchangers
FPH days Future prediction horizon
NLP - Nonlinear programming
NMPC - Nonlinear model predictive control
MHE - Moving horizon estimator
MPC - Model predictive control
OT − FPH days Overlapping time in the future prediction horizon
PEH days Past estimation horizon

Appendix A

The model parameters and specifications for the simple case study are presented in Table A1,
while those for the industrial case study are presented in Table A2. Other costs and furnace efficiency
are given in Table A3.

Table A1. Exchanger, fouling model, and cleaning specifications for the simple case study.

HEX1 HEX2A HEX2B HEX2C

Shell diameter (mm) 1295 1400 1400 1400
Tube inner diameter (mm) 19.86 19.86 19.86 19.86
Tube outer diameter (mm) 25.40 25.40 25.40 25.40

Tube length (m) 6100 5800 5800 6100
Number of tubes 800 600 600 600
Number of passes 2 2 2 4

Baffle cut (%) 25 25 25 25
Tube layout (◦) 45 45 45 45

Number of baffles 8 6 6 7
Surface roughness 0.046 0.046 0.046 0.046

Deposition constant (m2 K/J) 0.0075 0.0085 0.0085 0.0065
Removal constant (m4 K/NJ) 4.5 × 10−12 4.0 × 10−12 4.0 × 10−12 4.5 × 10−12

Fouling activation energy (J/mol) 35,000 33,000 33,000 38,000
Ageing frequency factor (1/day) 0.00 0.00 0.00 0.00
Ageing activation energy (J/mol) 50,000 50,000 50,000 50,000

Cleaning time (days) 10 10 10 10
Cleaning cost (USD) 30,000 30,000 30,000 30,000
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Table A2. Exchanger, fouling model and cleaning specifications for the industrial case study.

E01A E01B E02A E02B E03A E03B E04 E05A E05B

Shell diameter (mm) 1245 1194 1397 1397 990 990 1270 1397 1397
Tube inner diameter (mm) 19.86 19.86 19.86 19.86 13.51 13.51 19.86 19.86 19.86
Tube outer diameter (mm) 25.40 25.40 25.40 25.40 19.05 19.05 25.40 25.40 25.40

Tube length (m) 6090 6090 6090 6090 6090 6090 6090 6090 6090
Number of tubes 764 850 880 880 630 630 888 880 880
Number of passes 2 2 4 4 2 2 4 4 4

Baffle cut (%) 25 22.5 25 25 25 25 17 25 25
Tube layout (◦) 45 45 45 45 45 45 45 45 45

Number of baffles 5 7 18 18 20 20 9 18 18
Surface roughness 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046

Deposition constant (m2 K/J) 0.0045 0.0041 0.0036 0.0036 0.0012 0.0014 0.0032 0.0040 0.0038
Removal constant (m4 K/NJ) 1.69 × 10−11 1.53 × 10−11 1.28 × 10−11 1.30 × 10−11 3.77 × 10−11 4.54 × 10−12 1.14 × 10−11 1.46 × 10−11 1.39 × 10−11

Fouling activation energy (J/mol) 28,500 28,500 28,500 28,500 28,500 28,500 28,380 28,500 28,500
Ageing frequency factor (1/day) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ageing activation energy (J/mol) 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000 50,000

Cleaning time (days) 9 9 10 10 8 8 9 16 16
Cleaning cost (USD) 27,000 27,000 30,000 30,000 24,000 24,000 27,000 48,000 48,000
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Table A3. Costs and furnace specifications.

Fuel cost (USD/MWh) 27
Production cost (USD/kg) 0.23

Carbon cost (USD/t) 30
Carbon emission factor (t CO2/MWh) 0.015

Furnace efficiency (%) 90
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