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Abstract: This paper presents a novel design of the automatic pressure balancing valve, used in
the in-line balanced pressure (ILBP) proportioner for the foam firefighting system, at a required
percentage of solution. Featured in a four-chamber configuration with a double-acting diaphragm
actuator, it can automatically maintain the foam concentrate pressure with the pressure in the supply
water pipeline, within a precision level of 0.02 MPa (or 1.3%), under the design operating condition.
The static characteristics at the equilibrium state have been discussed in terms of poppet displacement
with reference to the geometrical dimensions and operating pressures of the valve. The dynamic
response of the valve during the startup has been examined through building the mathematical
model of the forces on the valve and solving it numerically using MATLAB. The results show that the
response time of the valve is always less than 0.01 s, which fully satisfies the stability and hysteresis
requirement. The prototype has been tested in the laboratory, which agrees well with the numerical
results. It was then successfully put into production, forming the first series of ILBP foam pump
firefighting system in China.

Keywords: automatic pressure balancing valve; foam firefighting system; in-line balanced pressure
(ILBP) proportioner; mathematical model; simulation

1. Introduction

Protein-based firefighting foams provide a robust foam blanket for Class B fire and vapor
suppression. The in-line balanced pressure (ILBP) proportioner for the foam firefighting system
is widely used in areas of flammable and combustible liquids, which are bulk stored, processed,
or handled [1]. A complete ILBP foam firefighting system is shown in Figure 1, which consists of
the ILBP proportioner, an atmospheric foam concentrate storage tank(s), positive foam concentrate
pump(s), pump controller(s) and valves, piping, etc. The ILBP proportioning system uses a positive
pressure foam injection, requiring the foam concentrate to be supplied by the foam pump at a higher
pressure (P0) than the water supply (P1), i.e., P0 > P1. During real applications, however, P1 may vary,
thus requiring a valve to automatically adjust the foam concentrate pressure. As the key device in
the ILBP proportioner, the role of the automatic pressure balancing valve is to automatically adjust
the incoming foam concentrate pressure (P0) to an output value (P2) that keeps consistent with P1,
before entering the foam proportioning mixer to produce a foam solution with a proper concentration
to extinguish fire efficiently.

This type of firefighting system with a foam concentrate pump has several advantages, including:
(1) The foam concentrate can be pumped longer distances with the pressure balancing valve being
kept adjacent to the proportioner; and (2) the foam supply can be replenished on-the-run by adding
to the atmospheric tank [1]. There are several ILBP system suppliers, such as Chemguard [2] and
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Ansul [3], however, there is no ILBP manufacturer in China, while there are increasing concerns about
risks related with flammable liquids (e.g., GB 30000.7-2013) [4]. The ILBP proportioner, together with
other devices in the firefighting system, should be designed properly according to the requirement
of specific applications (including flow capacity, output pressure, response time, percentage of foam
water solution, etc.), which may vary case by case. Among these devices, the pressure balancing valves
with high accuracy and reliability are crucial. This paper presents our design of a pressure balancing
valve catered for a relatively large capacity (up to 12 L/s foam concentrate or 200 L/s foam solution)
and high operating pressure (P0 = 1.76 MPa, P1 = 1.6 MPa).
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restoring force; and the (upper) double-acting actuator, in which the upward/downward motion of 
the diaphragm is controlled by the hydraulic pressure difference in the two chambers connecting to 
the water supply (𝑃ଵ) and the valve outlet (𝑃ଶ), respectively. Following the guiding techniques for the 
design of poppet valves [8], a prototype based on this design has been manufactured and tested in 
the laboratory. Unfortunately, the valve could not satisfy the requirement in that the difference 
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spring-loaded poppet valves—the instability issue [9]. Researchers have conducted many 
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consequence. Funk [10] claimed that instability is caused by an interaction between the poppet 
spring-mass system and line dynamics. Hayashi [9] suggested that it is important to examine valve 
motions with a small valve lift and hysteresis of flow forces, while some researchers (e.g., Han et al. 
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Two of the most common designs for pressure control valves are the poppet- and spool-type.
The present study adopts the poppet type due to the following considerations. Poppet valves,
as compared to spool valves, require less stringent machining tolerances, are less susceptible to
contamination problems, have very low leakage, which make it possible to eliminate two separate
supply lines [5] and hence, have been widely used for pressure relief [6,7]. It is natural to design the
valve as the diaphragm-spring-poppet configuration as shown in Figure 2a, which is flow-to-open,
spring-to-close. It consists of two distinct parts: The (lower) body with springs to provide the restoring
force; and the (upper) double-acting actuator, in which the upward/downward motion of the diaphragm
is controlled by the hydraulic pressure difference in the two chambers connecting to the water supply
(P1) and the valve outlet (P2), respectively. Following the guiding techniques for the design of poppet
valves [8], a prototype based on this design has been manufactured and tested in the laboratory.
Unfortunately, the valve could not satisfy the requirement in that the difference between P1 and P2

exceeds the allowable limit. This is attributed to the long-standing drawback of spring-loaded poppet
valves—the instability issue [9]. Researchers have conducted many simulations and experimental
studies to investigate the underlying mechanism of instability and its consequence. Funk [10] claimed
that instability is caused by an interaction between the poppet spring-mass system and line dynamics.
Hayashi [9] suggested that it is important to examine valve motions with a small valve lift and
hysteresis of flow forces, while some researchers (e.g., Han et al. [11]) reported that cavitation also
plays a role. In more recent years, there is a trend of using the computational fluid dynamics (CFD) tool
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to simulate the dynamic behavior of poppet valves (e.g., Gomez et al. [12]) and using the experimental
visualization method to directly capture the valve vibrations [13,14]. Instability is an inherent issue for
the spring-loaded poppet valves, which cannot be eliminated completely. Therefore, a novel design
of the pressure balancing valve is proposed, as shown schematically in Figure 2b. In this design,
the spring has been completely removed. Rather, an additional chamber, called the cushion chamber,
is created above the poppet (tapered plug). Hence, it is featured in a four-chamber configuration with
a double-acting diaphragm actuator. Details about its working principle and design considerations
will be discussed in the next section.
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2. Mathematical Model of Valve Motion

Forces acting on the proposed four-chamber poppet valve are provided in Figure 3. The differential
pressure force on the two sides of the diaphragm drives the motion of the valve (stem and poppet)
along the valve axis (X-direction). Originally, the poppet remains on the seat in the closed position.
When there is a sudden supply of water in the main pipeline (with pressure P1), the diaphragm will be
pushed upward, and thus the poppet is lifted off from the seat with a displacement (X), forming an
orifice (which is the valve opening in the ring shape) through which the pressurized foam concentrate
(with pressure P0) passes from the supply chamber to the outlet port (with pressure P2). Meanwhile,
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as the poppet moves upward, the fluid trapped in the cushion chamber is squeezed and the pressure
inside (PX) begins to build up, generating the reaction force to deaccelerate the motion of the poppet.
Note that both P2 and PX are a function of time. In order to avoid a rather abrupt change in P2 or PX,
there are four diversion holes (with diameter d2) through the poppet and a narrow gap between the
poppet and the cage, which connects the cushion chamber with the supply chamber and with the
outlet port, respectively. The interlinkage of fluid domains serves as a buffer for the valve motion,
leading to a more gradual yet fast enough response until the steady state (equilibrium) is reached.
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According to Figure 3, the static forces acting on the valve when reaching the equilibrium satisfy:

P0A0 + P1A′1 = PXAX + P2A1 + mgsinθ+ Fs (1)

where A0, AX, A1, and A′1 are the cross-sectional areas of two sides of the poppet and diaphragm
subjective to the fluid pressure; m is the mass of the valve; g is the gravitational acceleration;
θ (=60◦) is the inclined angle of the valve axis with respect to the horizontal direction; and Fs is the
steady-hydrodynamic fluid force acting on the poppet, which is a function of the poppet geometry,
pressure drop through the valve opening ∆P (= P0 − P2), and the poppet displacement (X).

The re-arrangement of Equation (1) leads to the equations for the outlet pressure (P2) and the
difference between P2 and P1:

P2 =
A′1
A1

P1 +
P0A0 − PXAX

A1
−

mgsinθ+ FS

A1
(2)

∆P1,2 =
A′1 −A1

A1
P1 +

P0A0 − PXAX

A1
−

mgsinθ+ FS

A1
(3)

It can be seen from Equation (3) that with the other parameters kept constant, a higher value of
A1 (or larger diaphragm) is beneficial to reduce ∆P1,2. Since A′1 = A1 −πd2 (where d is the diameter
of the valve stem), A′1 < A1 holds so that the first term on the right-hand side of Equation (3) is
always negative. The same is with the third term, whereas the only positive term is the second term.
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Therefore, it is required to carefully choose the structural parameters to ensure that the arithmetic sum
of the three terms approaches zero [15]. For instance, in order to decrease the magnitude of the first
term, it is desirable to reduce the diameter of the valve stem d. On the other hand, if d is too small,
the stem would be too weak to withstand the hydraulic pressure force that can be as high as the order
~104 N. The design of the valve needs to be considered comprehensively from both the functional and
structural perspectives.

In addition to the static characteristics, an even more important consideration for assessing the
performance of the valve is its dynamic characteristics [5], including the fluctuation range of the output
pressure (P2) and the time taken to reach equilibrium (called response time or time lag). The dynamic
characteristics are affected by many factors, including the geometric parameters of the valve and the
operating conditions. Physical modeling with hardware and prototypes can be effective, but it is very
time consuming and costly. The model-based design is an alternative to creating physical prototypes
for evaluating the dynamics of the proposed system. Several rounds of numerical optimization had
been conducted before building the physical prototype, which was tested in the laboratory as shown
in Figure 4. The main structure parameters of the prototype are provided in Table 1.
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Table 1. Main structure dimensions of the valve.

Symbol Physical Quantity Values Selected

A0 Flow area of the valve seat (m2) 2.9 × 10−3

AX Sectional area of the upper side of the poppet (m2) 2.8 × 10−3

A1 Sectional area of the upper side of the diaphragm (m2) 9.6 × 10−3

A′1 Sectional area of the lower side of the diaphragm (m2) 9.4 × 10−3

A2 Sectional area of the diversion hole (m2) 5 × 10−5

D Diameter of the poppet (m) 0.064
D1 Diameter of the diaphragm (m) 0.11
d Diameter of the stem (m) 0.016
d2 Diameter of the diversion hole (m) 0.008
H Height of the cushion chamber (m) 0.02
h Thickness of the gap between the poppet and the cage (m) 0.00005
L Length of the gap between the poppet and the cage (m) 0.01

VX Volume of the cushion chamber (m2) 6 × 10−5

∅ Half angle of the poppet (◦) 30
θ Incline angle of the valve axis (◦) 60

Dynamic models of the pressure balancing valves have added complexity due to their non-linear
nature, inherent hysteresis, and compressibility of the fluid media. This added complexity makes
existing predefined modeling software packages less than ideal for developing hydraulic system
simulations. In order to simplify the analysis, the following assumptions are made: (i) The working
fluid is water with constant density (ρ) and bulk modulus (K); (ii) the gap width between the poppet
and the cage is uniform, since the non-uniform gap would induce the lateral force and hence, lateral
vibration of the poppet [16]. The following are the mathematical models built for this valve:

(1) Flow equation through the valve opening:

qX = αDXπDXsin∅
√

2∆P/ρ = b1
√

∆PX (4)

where qX is the flow rate, ∆P (=P0− P2) is the pressure difference between the supply chamber and the
outlet port, and αDX (=0.6) is the discharge coefficient. Hence, we can calculate the lumped coefficient
as b1 = αDXπDXsin∅

√
2/ρ.

(2) Flow discharge equation for the four diversion holes through the poppet:

q2 = 4Cd2A2

√
2(P0 − PX)

ρ
= 4b3

√
P0 − PX (5)

where A2 (=
πd2

2
4 ) is the cross-sectional area of the diversion hole, Cd2 (=0.65) is the discharge coefficient,

and b3 (= Cd2A2
√

2/ρ) is the lumped coefficient.
(3) Flow equation for leakage through the gap between the poppet and the cage:

q1 = Kv(PX − P2) (6)

where Kv is the leakage flux coefficient, Kv =
πD(2h)3

96µL +πDhu = C1 +C2
dX
dt , and C1 and C2 are constants.

(4) Continuity equation for flow in the supply chamber:

qe = qX + q2 + A0
dX
dt

+
V0

K
dP0

dt
(7)
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where V0 is the volume of fluid in the supply chamber. Since the inlet pressure P0 is kept constant via
the relief valve, dP0

dt is considered to be zero. Then, we can get:

qX = qe − q2 −A0
dX
dt

(8)

(5) Continuity equation for flow in the cushion chamber:

q2 = q1 −AX
dX
dt

+
VX

K
dPX

dt
(9)

where VX is the volume of fluid in the cushion chamber, VX =
π(D2

− d2)(H − X)

4 = C3 + C4X,
and C3 and C4 are constants.

(6) Ordinary differential equation (ODE) for valve motion:

P0A0 + P1A′1 − PXAX − P2A1 = m
d2X
dt2 + B

dX
dt

+ mgsinθ+ Ft + Fs (10)

where B is the damping coefficient due to the viscosity of fluid in the gap; Ft and Fs are the
instantaneous and steady fluid forces acting on the poppet, respectively. These quantities can be
calculated as B =

µA
h =

2πµDL
h , in which µ is the dynamic viscosity of fluid and A is the area of contact

between the poppet and the cage; Ft = ρLd dqX
dt ≈ ρLb1

√
∆p dX

dt ; Fs = αDXCυXπDXsin2∅∆p = b2∆PX,
in which CυX (=0.98~0.99) is the flow velocity coefficient and b2 = αDXCυXπDsin2∅.

Based on the above equations, we can obtain expressions for the following parameters: P2, PX,

and X. Based on Equation (4), ∆P =
( qX

b1X

)2
where qX can be obtained from Equation (8), and then we

can get:

P2 = P0 − ∆P = P0 −

qe − 4b3
√

P0 − PX −A0
dX
dt

b1X

2

(11)

The re-arrangement of Equations (9) and (10) leads to:

dPX

dt
=

K
C3 −C4X

[
AX

dX
dt
−

(
C1 + C2

dX
dt

)
(PX − P2) + 4b3

√
P0 − PX

]
(12)

d2X
dt2 =

1
m

[
P0A0 + P1A′1 − PXAX − P2A1 −mgsinθ− B

dX
dt
− ρLb1

√
P0 − P2

dX
dt
− b2(P0 − P2)X

]
(13)

Equations (11)–(13) are the mathematical model for the dynamics of the valve, which is a system
of 2nd-order non-linear ODEs. A MATLAB code using the ode45 solver has been written to solve
these equations. During the numerical simulations, the step of integration was 0.0005 s and the
root-mean-square (RMS) residual level of 10−4 was set as the convergence criteria.

3. Results and Analysis

It is noted that some of the coefficients in these equations depend not only on the valve geometry,
but also on the fluid medium. Therefore, two different types of working fluid, i.e., water and protein
foam concentrate, have been considered. The two types of fluid have similar compressibility (with bulk
modulus K = 2.2 × 109 Pa/m2), but the protein foam concentrate has a relatively higher density
and viscosity than water (i.e., density ρ = 1160 vs. 1000 kg/m3 and dynamic viscosity µ = 6 × 10−3

vs. 1 × 10−3 Pa·s). Figure 5 presents the dynamic behavior (including poppet displacement X and
outlet pressure P2) during the start-up under the design condition (flow rate qe = 8 L/s and control
pressure P1 = 1.6 MPa). For these simulations, the inlet pressure is kept constant at P0 = 1.76 MPa and
the initial outlet pressure P2(0) = 0 Pa. The valve is assumed to be opening from its rest position, so the
initial values of (0, 0) is used for (X, dX/dt). It can be seen that the valve opens quickly within 0.01 s,
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after which both the outlet pressure (P2) and the poppet displacement (X) approach the equilibrium
values (denoted as P̃2 and X̃). In other words, the response time of the valve is less than 0.01 s. At the
beginning of valve opening, P2 increases sharply forming a spike (or an overshoot) and then levels off

at P̃2 = 1.61 MPa, which is very near the target value of 1.6 MPa. The variation in the fluid medium,
water or protein foam concentrate, seems to barely affect the outlet pressure, since the two curves
almost coincide with each other. However, it does affect the value of equilibrium poppet displacement,
which is X̃ = 5.7 and 6.3 mm for the water and protein foam concentrate, respectively. Considering that
the protein foam concentrate is used in real applications, the following simulations select the protein
foam concentrate as the working fluid.Processes 2020, 8, x FOR PEER REVIEW 8 of 14 
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Figure 5. Comparison of the start-up characteristics due to the change in fluid medium—water and
protein: (a) Outlet pressure P2; (b) poppet displacement X. For these simulations: qe = 8 L/s
and P1 = 1.6 MPa.

Figure 6 presents the valve’s start-up characteristics under different operating conditions,
P1 = 1.2 and 1.6 MPa and qe = 5 and 10 L/s. It can be seen that the dynamic characteristics are
similar to that in Figure 5 and the response time maintains constant at 0.01 s. The value of P̃2 seems
to be unaffected by the flow rate, but slightly varies with the control pressure, namely, P̃2 ≈ 1.28 and
1.61 MPa for P1 = 1.2 and 1.6 MPa, respectively. On the other hand, the value of equilibrium poppet
displacement X̃ increases with both qe and P1. The effects of varying initial conditions (ICs) on the
dynamical response of the valve are examined in Figure 7, with P2(0) = 0, 1.5, and 1.7 MPa and
X(0) = 0, 3, and 5 mm. Regardless of the ICs, both P2 and X quickly return to the equilibrium within
the response time of about 0.01 s, either without or with one oscillation, indicating that the system is
overdamped with good stability.
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Figure 6. Development of poppet displacement X (left-side y-axis) and outlet pressure P2 (right-side
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(c) qe = 5 L/s and P1 = 1.6 MPa; (d) qe = 10 L/s and P1 = 1.6 MPa.
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Figure 7. Effect of varying initial conditions (ICs) on the valve start-up characteristics under qe = 8 L/s
and P1 = 1.6 MPa: (a) Outlet pressure P2; (b) poppet displacement X. ICs for Case A: P2(0) = 0 Pa
and X(0) = 0 mm; ICs for Case B: P2(0) = 1.5 MPa and X(0) = 3 mm; ICs for Case C: P2(0) = 1.7 MPa
and X(0) = 5 mm.

The present study also investigates the effects of varying geometrical parameters on the valve’s
static and dynamic properties. The first parameter is the diameter of the diversion holes d2. The four
diversion holes connecting the supply chamber and the cushion chamber are introducing some pressure
drop between the two chambers, while the small clearance between the poppet body and the cage
introduces a high viscous friction force to increase the stability of the valve. When the valve reaches
equilibrium, the following relationships hold: P0 > PX > P2 and q1 = q2. The latter can be written as
the following equation by setting the time derivative term in Equation (6) to zero:

4b3
√

P0 − PX = C1(PX − P2) (14)

where b3 = Cd2
πd2

2
4

√
2/ρ and C1 =

πD(2h)3

96µL .
There exists a minimum value of b3 (or d2) to ensure the valid solution of PX ∈ (P2, P0) satisfying

Equation (14). Figure 8a indicates that the critical diameter of diversion holes is found to be 7~7.5 mm;
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at d2 ≥ 7.5 mm, P2 is very stable with a constant equilibrium value of P̃2 ≈ 1.61 MPa, which is almost
unaffected by the change in d2; at d2 = 7 mm, however, P2 experiences a sudden decrease at t = 0.015 s,
attaining a lower equilibrium value of P̃2 = 1.59 MPa. When the diameter of the diversion holes is
further decreased to d2 ≤ 6 mm, P̃X,P̃2 and X̃ become complex numbers, suggesting that the diversion
holes are too small to ensure physically meaningful results. On the other hand, the increase of d2 results
in a monotonic decrease of X̃, as shown in Figure 8b. A higher value of X̃, as long as the maximum
value does not exceed the allowable limit of poppet displacement (which is 10 mm), is desirable to
increase the sensitivity of the valve. Therefore, d2 is set at 8 mm.
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Figure 8. Effect of varying the diameter of the diversion holes (d2 = 7, 8, 9, and 10 mm) on
the valve start-up characteristics under qe = 8 L/s and P1 = 1.6 MPa: (a) Outlet pressure P2;
(b) poppet displacement X.

Figure 9 presents the effects of varying the diameter of valve stem d (= 8, 16, and 24 mm).
As opposed to the initial expectation that the slender stem might be beneficial to minimize the
difference between A′1 and A1, and hence the pressure difference between P2 and P1, the diameter of
the valve stem nearly has no effect on the responsiveness of the valve. The reason is that d does not
only affect A′1, but also affects AX, VX, and m. Finally, d = 16 mm is selected based on the material
strength requirement under the highest pressure.
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Figure 9. Effect of varying the diameter of the valve stem (d = 8, 16, and 24 mm) on the valve start-up
characteristics under qe = 8 L/s and P1 = 1.6 MPa: (a) Outlet pressure P2; (b) poppet displacement X.

Figure 10 shows the variation of the equilibrium outlet pressure P̃2 and poppet displacement X̃
versus the inlet flow rate (qe) when the control pressure P1 is fixed at 1.6 MPa. It is shown that P̃2 slightly
decreases with qe, from P̃2 ≈ 1.62 MPa at qe = 4 L/s to P̃2 ≈ 1.605 MPa at qe = 12 L/s. It fully satisfies the
design requirement that the maximum difference between P̃2 and P1, or adjustment error eP = P̃2 − P1,
is ±0.1 MPa. In practice, P̃2 is desirable to be slightly higher than P1, since the output foam concentrate
from the valve would experience some pressure drop before entering the proportioner due to a viscous
loss in the pipeline. The equilibrium poppet displacement X̃ increases monotonically with qe, from
about 2 mm at qe = 4 L/s to 10 mm at qe = 12 L/s. Moreover, plotted in this figure is the theoretical
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value based on the static analysis, which can be obtained by plugging Fs = b2∆PX = b2
(
P0 − P̃2

)
X̃

into Equation (1):

X̃ =
1

b2
(
P0 − P̃2

) (P0A0 + P1A′1 − P̃XAX − P̃2A1 −mgsinθ
)

(15)

It is noted that there is a small difference between the numerical and theoretical results, which is
believed to be due to round-off errors and truncation errors during computations.
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Figure 10. Variation of the equilibrium poppet displacement X̃ and outlet pressure P̃2 versus the inlet
flow rate (qe) for P1 = 1.6 MPa.

Figure 11 shows that when the control pressure P1 is 1.2 MPa, P̃2 ≈ 1.3 ~ 1.28 MPa which also
slightly decreases with the flow rate. As compared to the case of P1 = 1.6 MPa, the pressure adjustment
error is relatively higher, i.e., eP ≈ 0.08 ~ 0.1 MPa, but still within the allowable limit. The dynamic
responses of the valve have been tested on the prototype, for which the protein foam concentrate was
used as the working fluid. Figure 12a presents the measured pressure signals (P0, P1, and P2) for
the case of varying P1 from 1.2 to 1.6 MPa under the fixed flow rate (qe = 8 L/s) and supply pressure
(P0 = 1.76 MPa). At 0 ≤ t ≤ 6 s or 12 ≤ t ≤ 18 s where P̃1 is fixed at about 1.2 and 1.6 MPa, respectively,
P2 also maintains a constant level which is slightly higher than P1. More importantly, at 6 ≤ t ≤ 12
s where P1 significantly changes, either continuously or abruptly, P2 always follows P1 without a
noticeable time lag. According to the laboratory tests under a wide array of operating conditions,
the magnitude of eP is always less than 0.05 MPa, completely satisfying the design requirement.
The effects of varying flow parameters (set pressures, flow rate, etc.) on the dynamic instability
characteristic of the valve have been evaluated similar to the procedure described by Ma et al. [17].
Then, this valve prototype was successfully put into production and assembled with other components,
forming the first series of commercial ILBP proportioning unit in China, as shown in Figure 12b.
The slight over-prediction of P̃2 by the numerical simulation might arise from the relatively higher
viscosity of the fluid medium used. Note that the discharge equations such as Equations (4)–(6), as well
as the coefficients in those equations, were derived based on previous measurement data for water or
air, the viscosity of which is negligibly small. Nevertheless, the flow is always tied to the fluid viscosity,
the higher the fluid viscosity, the smaller the flow rate through orifices or pipes at the same pressure
difference. For example, Nguyen et al. [18] found that the flow coefficient of a valve depends not only
on the valve geometry and valve opening but also on the Reynolds number. Therefore, the simulation
of the flow field inside the valve using CFD tools will be conducted to illustrate the viscous effect due
to the variation in the working fluid, as well as the cavitation characteristics, which are important in
hydraulic poppet valves [11,19,20].
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4. Conclusions

This paper presents our design of the automatic pressure balancing valve used in the in-line
balanced pressure (ILBP) proportioner based on static and dynamic modeling. In order to automatically
adjust the output foam concentrate pressure (P2) in response to that of the supply water (P1), the valve
is designed as the poppet type featured in a four-chamber configuration. Unlike the conventional
spring-loaded valve, the present design is novel in creating a cushion chamber on the back side of
the poppet to provide the restoring force. Based on the working principles, mathematic equations for
both static and dynamic characteristics of the valve are established, which have been simulated by the
MATLAB code using the ode45 solver. The system exhibits a robust stability and performance, and it is
insensitive to the variation in the fluid medium and initial condition. With reference to the geometrical
parameters, the diameter of the diversion holes significantly affects the responsiveness of the valve, but
the diameter of the valve stem nearly has no effect. Based on the numerical simulation and optimization,
a physical prototype has been manufactured and tested in the laboratory, verifying its superior stability
and performance. At the design condition (qe = 8 L/s, P1 = 1.6 MPa), P2 quickly reaches the equilibrium
value P̃2 = 1.61 MPa which is very close to P1, within a response time (or time lag) of merely about
0.01 s. The valve’s start-up characteristics under different control pressures (P1 = 1.2 and 1.6 MPa) and
flow rates (qe = 4~10 L/s) have been examined systematically. The results show that the response time
keeps constant at about 0.01 s regardless of the values of P1 or qe; the equilibrium outlet pressure
P̃2 is dependent on qe, but always approaches P1 within the allowable limit. On the other hand,
the equilibrium displacement of the poppet X̃ increases monotonically with both P1 and qe, reaching a
maximum of about 10 mm at P1 = 1.6 MPa and qe = 12 L/s, which matches with the allowable limit to
maximize the sensitivity and accuracy of the valve. Laboratory tests of the prototype verified that
P2 always follows P1 without a noticeable time lag even when P1 changes abruptly. The automatic
pressure balancing valve developed in this study has been successfully put into production, forming
the first series of the ILBP foam pump firefighting system in China.
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