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Abstract: Extreme learning machine (ELM) has aroused a lot of concern and discussion for its fast
training speed and good generalization performance, and it has been used diffusely in both regression
and classification problems. However, on account of the randomness of input parameters, it requires
more hidden nodes to obtain the desired accuracy. In this paper, we come up with a firefly-based
adaptive flower pollination algorithm (FA-FPA) to optimize the input weights and thresholds of the ELM
algorithm. Nonlinear function fitting, iris classification and personal credit rating experiments show
that the ELM with FA-FPA (FA-FPA-ELM) can obtain significantly better generalization performance
(such as root mean square error, classification accuracy) than traditional ELM, ELM with firefly algorithm
(FA-ELM), ELM with flower pollination algorithm (FPA-ELM), ELM with genetic algorithm (GA-ELM)
and ELM with particle swarm optimization (PSO-ELM) algorithms.

Keywords: flower pollination algorithm; extreme learning machine; firefly algorithm; optimization

1. Introduction

For the past few years, various artificial intelligence algorithms have attracted more and more
attention from scientific research and industrial applications. Machine learning, also known as statistical
learning theory, is an important branch of artificial intelligence. It obtains data laws through data analysis
and applies these laws to predict or determine other unknown data. Machine learning has been diffusely
used in data mining [1], natural language processing [2], speech recognition [3] and search engines [4].
Neural network is a crucial algorithm for machine learning. It changes the internal structure of the
system by sensing changes in external information. Feedforward neural networks [5] are one of the most
widely used neural networks. It generally includes an input layer, a hidden layer and an output layer,
where the hidden layer can be multi-layered. Neurons in the same layer are not connected, and adjacent
layers have multiple connection methods. The back layer only receives information from the front layer.
Typical feedforward neural networks include perceptron models [6], BP neural networks [7], self-coding
neural networks [8], radial basis networks [9,10] and convolutional neural networks [11].

Lately, ELM was put forward by Huang et al. [12–15]. This is a novel algorithm for single hidden
layer feedforward network [16–19]. It randomly generates input weights and thresholds, and can directly
calculate output weights. The learning speed of ELM algorithm is much faster than the feedforward
network learning algorithm based on the gradient descent, and it has good generalization performance on
complex application problems [20,21]. However, because the input parameters are randomly generated,
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ELM requires a lot of hidden neurons, otherwise it will fall into local minima and overfitting problems [22].
The accuracy and availability of the ELM algorithm largely depend on the parameters of the internal model.
In order to select the appropriate model parameters, many researchers use bio-inspired optimization
algorithms to optimize the input weights and thresholds. In [23], Zhu et al. proposed a hybrid learning
algorithm that uses the differential evolutionary algorithm to select the input weights, and then uses
Moore–Penrose (MP) generalized inverse to determine the output weights. Experimental consequences
show that the method has good generalization performance in a more compact network. Ling and
Han [24] proposed an input weights and hidden thresholds selection algorithm based on particle swarm
optimization for ELM (PSO-ELM). Compared with the original ELM and other evolved ELMs, PSO-ELM
has better generalization performance in function approximation and benchmark classification experiments.
In [25], Alexandre and Cuadra proposed a novel feature selection method that combines a special genetic
algorithm and ELM (GA-ELM feature selection algorithm). After a lot of comparison experiments, it is
found that this method has a good classification effect. Wu et al. [26] used four biologically-inspired
algorithms to optimize ELM to predict China’s daily evapotranspiration (ETo). These are GA-ELM,
ELM with ant colony optimization (ACO-ELM), ELM with cuckoo search algorithm (CSA-ELM) and ELM
with flower pollination algorithm (FPA-ELM). The research results show that CSA-ELM and FPA-ELM
have better prediction performance.

Flower pollination algorithm (FPA) [27–29] and firefly algorithm (FA) [30–34] are two new heuristic
swarm intelligence optimization algorithms proposed by Yang. FPA has the advantages of few parameters,
easy adjustment and simple implementation. When solving multi-objective optimization problems,
the performance of FPA is better than GA and PSO [35–42]. The principle of the FA-FPA is to use the FA
algorithm to get a better initial position before the FPA algorithm. As a resul that the position obtained
after FA iteration helps to accelerate the convergence rate of FPA and find the global optimal solution.
In this paper, our strategy is to combine FA-FPA with original ELM, proposing an algorithm for optimizing
ELM based on FA-FPA. The basic idea of FA-FPA-ELM algorithm is to first use FA-FPA to find the best
input weights and thresholds of ELM, and then use MP generalized inverse to determine the output
weights. The main contributions are as follows.

1. It is shown how to use FA-FPA to train ELM. This method can optimize the input weights and
thresholds of ELM algorithm, so as to achieve the goal of finding the optimal parameter combination.

2. Finding the optimal parameters of the ELM algorithm through FA-FPA can effectively solve the
problem of local minima and overfitting, and enhance the generalization capability of the network.

3. Nonlinear function fitting, iris classification and personal credit rating problems show that the
FA-FPA-ELM algorithm can obtain better generalization performance than traditional ELM, FA-ELM,
FPA-ELM, GA-ELM and PSO-ELM algorithms.

The rest of the paper is arranged as follows: Section 2 describes the network structure of traditional
ELM algorithm. Section 3 describes the theory and implementation steps of the FA-FPA. Section 4 describes
how to optimize ELM network parameters based on FA-FPA. The capability of the FA-FPA-ELM algorithm
is compared with ELM, FA-ELM, FPA-ELM, GA-ELM and PSO-ELM algorithms by nonlinear function
fitting, iris classification and personal credit rating problems in Section 5. In the end, the conclusion is
given in Section 6.

2. Extreme Learning Machine (ELM)

ELM mechanism is described as follows. The number of neurons in the input layer, hidden layer
and output layer are n, L and m, respectively, and the network structure diagram is shown in Figure 1.
ELM algorithm randomly generates input weights and thresholds, only by setting the quantity of hidden
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nodes, and can acquire the unique ideal solution. Suppose there are Q different training samples, where X
and Y are input data and output data, respectively

X =


x11 x12 · · · x1Q
x21 x22 · · · x2Q

...
... · · ·

...
xn1 xn2 · · · xnQ


n×Q

(1)

Y =


y11 y12 · · · y1Q
y21 y22 · · · y2Q

...
... · · ·

...
ym1 ym2 · · · ymQ


m×Q

(2)

the actual output T of the network is as follows:

T =


t11 t12 · · · t1Q
t21 t22 · · · t2Q

...
... · · ·

...
tm1 tm2 · · · tmQ


m×Q

(3)

The standard ELM with L hidden nodes can be denoted as

L

∑
i=1

βi ϕi(xj) =
L

∑
i=1

βi ϕ(wi · xj + bi) = tj (4)

where tj = [t1j, t2j, · · · , tmj]
T , ϕ(x) represents activation function, the specific expression of tj is as follows:

tj =


∑L

i=1 βi1 ϕ(wi · xj + bi)

∑L
i=1 βi2 ϕ(wi · xj + bi)

...
∑L

i=1 βim ϕ(wi · xj + bi)


m×1

(5)

where j = 1, 2, · · · , Q, xj = [x1j, x2j, · · · , xnj]
T , wi = [wi1, wi2, · · · , win] is the weight vector concatenating

the i-th hidden node and input nodes, βi = [βi1, βi2, · · · , βim]
T is the weight vector concatenating the i-th

hidden node and output nodes and bi is the threshold of the i-th hidden node. wi · xj denotes the inner
product of wi and xj.

The above (5) can be signified as Hβ = TT , where H is the output matrix of the hidden layer.
Its specific form is

H(w1, · · · , wL, b1, · · · , bL, x1, · · · , xQ)

=


ϕ(w1 · x1 + b1) · · · ϕ(wL · x1 + bL)

ϕ(w1 · x2 + b1) · · · ϕ(wL · x2 + bL)
... · · ·

...
ϕ(w1 · xQ + b1) · · · ϕ(wL · xQ + bL)


Q×L

(6)
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the least squares solutions of formula Hβ = TT can be represented as:

β̂ = H†TT (7)

here, H† is the MP generalized inverse of hidden layer output matrix H.

Figure 1. The network structure of extreme learning machine.

3. Firefly-Based Adaptive Flower Pollination Algorithm (FA-FPA)

3.1. Adaptive Flower Pollination Algorithm (FPA)

There are two ways to achieve pollination: self-pollination and cross-pollination. Self-pollination
usually occurs when there is no reliable pollinator and is fertilized from the pollen of the same plant.
Cross-pollination means that pollination can be conducted from pollen of different plants. Cross-pollination
usually involves bees, bats and birds, and these pollinators can fly a long distance. The behavior of bees
and birds will follow the lévy distribution [43]. For the convenience of research, it is premised that each
plant has only one flower and one pollen gamete. Each pollen gamete maintains a one-to-one relationship
with a solution, and the corresponding pollination process follows the following rules.

1. Cross-pollination can be deemed a global pollination process, while pollinators carrying pollen move
in a way that follows lévy flights.

2. Self-pollination can be seen as a process of local pollination.
3. The constancy of the flower is the probability of reproduction, which is proportional to the similarity

of the two flowers involved.
4. The switch probability pε[0, 1] can adjust local pollination and global pollination. Owing to

the influence of distance and other factors, the whole pollination process is more inclined to
local pollination.

In the initial stage of FPA, randomly generate a population P(t) = {Xi
t} of N individuals,

Xi
t = [xt

i,1, xt
i,2, · · · , xt

i,j, · · · , xt
i,D](j = 1, 2, · · · , D; i = 1, 2, · · · , N), where N is the size of the population,

D is the dimension of the optimization problem and t is the current number of iterations. Self-pollination
is the process of local pollination, the process is as follows:

Xt+1
i = Xt

i + ε(Xt
j − Xt

i ) (8)

where Xt
j , Xt

i represent pollen of different flowers of the same plant, i, j are random integers on [1, N].
The variation factor ε is a random number obeying uniform distribution on [0, 1].
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Cross-pollination is a global pollination process by pollinators through lévy flight, the process is
as follows:

Xt+1
i = Xt

i + γL(Xt
i − g∗) (9)

here, Xt
i represents the position of pollen i at the t-th iteration, g∗ represents the optimal solution of the

current group, γ represents the scaling factor of the control step, L represents the intensity of pollination,
which substantially is a step size and it follows the lévy distribution. In the basic FPA, the conversion
probability p is a constant, which may cause the problem that the algorithm is not easy to converge and
fall into the local optimal solution. Therefore, the following adaptive adjustments are made to p:

p = 0.8 + 0.2σ (10)

where σ is a random number between [−1, 1]. In reference [44], when p is 0.8, the algorithm has the best
performance, so p is set to float around 0.8 to prevent the value of p from being too large or too small.
The improved algorithm can adaptively adjust the execution probability of global search and local search,
avoiding FPA from falling into local optimum, and at the same time improving the convergence speed of
the algorithm.

3.2. Firefly Algorithm (FA)

In nature, fireflies communicate with other fireflies through their own light-emitting characteristics.
The FA regards the problem of solving the optimal value as the problem of finding the brightest fireflies,
and simulates the entire optimization process as the process of mutual attraction and iterative update of
fireflies. To simplify the algorithm, make the following assumptions:

1. Regardless of the sex of the fireflies.
2. The attraction between fireflies is only pertinent to the brightness and distance of fireflies.
3. The brightness of fireflies is determined by the fitness function.

The brighter the firefly is, the better its position is. Fireflies that glow weaker will move to brighter
ones. The brightest firefly represents the optimal solution of the function. If the brightness is the same,
the firefly will move randomly. If the distance between individual j and individual i is rij, then the
brightness at individual j is

Iij = I0 × e−λrij (11)

among them, λ is the light intensity absorption coefficient, the general value is 1.0, I0 is the maximum
fluorescent brightness of fireflies, rij denotes the Euclidean distance between firefly i and firefly j and its
expression is as follows:

rij =‖ xj − xi ‖=

√√√√ d

∑
k=1

(xk
j − xk

i )
2 (12)

the attraction between individual j and individual i can be expressed as

βij = β0e−λr2
ij (13)

where β0 is the maximum attraction of fireflies. If firefly j is attracted and moved by another brighter
firefly i, its position update formula is:

Xt+1
j = Xt

j + β0e−λr2
ij(Xt

i − Xt
j) + αµj (14)
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here, α is the step factor, µj is a random vector and the random numbers in the vector follow Gaussian
distribution or uniform distribution. The position of fireflies is constantly updated through brightness
and attraction. Eventually, most fireflies will gather around fireflies with higher fitness values, and finally
achieve the purpose of optimization.

3.3. Firefly-Based Adaptive Flower Pollination Algorithm (FA-FPA)

Since FA adopts a global random search strategy with multiple positions in parallel, the position
obtained after iteration helps accelerate the convergence of adaptive FPA and find the global optimal
solution. Therefore, FA can be used to obtain a better initial position, and then use FPA optimization.
The specific algorithm process is shown in Table 1.

Table 1. Steps to achieve firefly-based adaptive flower pollination algorithm (FA-FPA).

step 1: Initialize algorithm parameters, and set loop termination condition;
step 2: Stochastically initialize the position of fireflies, and calculate the target function value of each individual;
step 3: Use formulas (11) and (13) to determine the direction of movement of individuals;
step 4: Update the individual’s spatial position according to formulas (14);
step 5: Calculate the fitness function value of each individual on the grounds of the updated individual’s position;
step 6: Generate σ randomly, calculate the conversion probability p according to formulas (10);
step 7: Generate randε[0, 1] randomly, if p > rand, then conduct a global search according to formula (9);
step 8: If p ≤ rand, then conduct a local search according to formula (8);
step 9: Calculate the fitness function value of each pollen to find the current optimal solution;
step 10: Judge whether the loop termination condition is met. If not, go to Step 3; if satisfied, go to Step 6;
step 11: Output the result, the algorithm ends.

4. Firefly Adaptive Flower Pollination Extreme Learning Machine Algorithm (FA-FPA-ELM)

For effectively solving this question caused by the randomness of the input parameters of the ELM
algorithm, this paper uses the FA-FPA with strong optimization ability to optimize the ELM input weights
and thresholds, so as to propose an adaptive FA-FPA-ELM algorithm. We first use FA-FPA to obtain the
optimal weights and thresholds combination, and use it directly as the input weights and thresholds for
ELM training. For decreasing the influence on the performance of the algorithm due to the large difference
in variables, we use Equation (15) to normalize the data:

X =
X− Xmin

Xmax − Xmin
(15)

here, Xmax, Xmin respectively denote the maximum and minimum values in the training samples.
Next, we individually encode the ELM input parameters, the input weights and thresholds are

expressed as individual pollen in the form of real coding. According to Section 2, the number of neurons
in the input layer and hidden layer are n and L, respectively; therefore, the string length of individual
pollen is

ρ = n× L + L (16)

assume that the weight matrix ω connecting the input layer and the hidden layer is

ω =


ω11 ω12 · · · ω1n
ω21 ω22 · · · ω2n

...
... · · ·

...
ωL1 ωL2 · · · ωLn


L×n

(17)
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the threshold vector b of the hidden layer is

b = [b1, b2, · · · , bL]
T (18)

then the coding form of the individual pollen is

X = [ω11, · · · , ω1n, ω21, · · · , ω2n, · · · , ωLn, b1, · · · , bL] (19)

The fitness function used in FA-FPA is the root mean square error (RMSE). The RMSE and mean
absolute error (MAE) between the actual output and the expected output of the network are used as the
evaluation standard of the network. The following formula are used to calculate RMSE and MAE

RMSE =

√
∑n

i=1[ f (xi)− yi]2

n
, MAE =

∑n
i=1 | f (xi)− yi)|

n
(20)

where f (xi) denotes the predicted datas, yi denotes the actual datas. Therefore, the purpose of using
FA-FPA to optimize ELM input parameters is to find pollen particles that can make the RMSE of the ELM
algorithm smaller. Table 2 details the implementation steps of the FA-FPA-ELM algorithm.

Table 2. Steps to achieve FA-FPA-extreme learning machine (ELM).

step 1: Initialize algorithm parameters, and set loop termination condition;
step 2: Encode ELM input parameters into individual pollen according to formula (16);
step 3: Normalize the data according to formula (15) and randomly initialize individual positions;
step 4: Use the formula (19) to calculate the fitness function value of each individual;
step 5: Use FA to get the initial population, Generate σ randomly, calculate the conversion probability p;
step 6: Generate randε[0, 1] randomly, if p > rand, then conduct a global search;
step 7: If p ≤ rand, then conduct a local search in the light of formula (8);
step 8: Calculate the fitness value of each pollen according to formula (19) and find the current optimal solution;
step 9: Judge whether the loop termination condition is met. If not, go to Step 5; if satisfied, go to Step 10;
step 10: Decode individual pollen into ELM input parameters for network training;
step 11: Output the result, the algorithm ends.

5. Numerical Experiments and Comparison

To verify the effectiveness of the introduced FA-FPA-ELM algorithm, we have done some experiments
which are nonlinear function fitting, iris classification and personal credit rating problems. This section
compares the approximation and classification performance of FA-FPA-ELM with traditional ELM,
FA-ELM, FPA-ELM, GA-ELM and PSO-ELM algorithms.

5.1. Nonlinear Function Fitting Problem

The nonlinear function defined by

f (x) = 1.1(1− x + 2x2)e−x2/2 (21)

a training set (xi, f (xi)) with 400 data, where xi follows the uniform distribution of [−10, 10]. In order
to prevent overfitting and improve the generalization performance of the algorithm, add noise ζi with
uniform distribution of [−0.1, 0.1] to the training samples, then the final training sample is (xi, f (xi) + ζi).
At the same time, we select 100 test samples (xi, f (xi)), where xi is the equal interval sampling of [−10, 10].
For FA, a step factor of α = 0.25, a maximum attraction of β0 = 0.2 and a absorption coefficient of light
intensity λ = 1 are used. For FPA, the initial value of the conversion probability p = 0.8, and the same
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population size N = 10 have been used for two algorithms. The fitness function is the RMSE for the
training sample. The activation function is a radial basis function. It can be seen from Figure 2 that the
FA-ELM algorithm will fall into the local optimum when optimizing the ELM parameters. The improved
FA-FPA-ELM algorithm can jump out of the local optimum and accelerate the convergence speed of
the FPA-ELM. For the sake of testing the effect of the quantity of iterations on the performance of the
FA-FPA-ELM algorithm, we set the hidden layer neurons to 5, and the number of iterations was taken as i
= 5, 10, 20, 50, 100 and 500. Perform 30 experiments respectively, and then take the average of training
time, test time, RMSE and MAE. The experimental results are demonstrated in Table 3. Next, we test the
impact of the number of hidden nodes on the ELM and FA-FPA-ELM algorithms. The maximum number
of iterations is set to 100. When the number of hidden layer nodes gradually increases, the training time
and RMSE of the two continue to change. The experimental results are demonstrated in Table 4.

0 20 40 60 80 100

number of iterations

0.05

0.06

0.07

0.08

0.09

R
M

S
E

FPA-ELM

FA-ELM

FA-FPA-ELM

Figure 2. Comparison of RMSE in FPA-ELM, FA-ELM and FA-FPA-ELM algorithms on a nonlinear function.

Table 3. The impact of the iteration number on FA-FPA-ELM.

Maximum Iteration Number
Time (s) Training Testing

Training Testing RMSE MAE RMSE MAE

5 0.6177 0.0006 0.0648 0.0546 0.0287 0.0175
10 0.9632 0.0006 0.0638 0.0534 0.0262 0.0127
20 1.6182 0.0006 0.0607 0.0508 0.0206 0.0097
50 3.6309 0.0006 0.0589 0.0497 0.0141 0.0078
100 7.0524 0.0007 0.0583 0.0503 0.0122 0.0063
500 34.0895 0.0008 0.0579 0.0510 0.0102 0.0052

Table 4. The impact of hidden layer nodes on ELM and FA-FPA-ELM.

Hidden Nodes
Training Time (s) Training (RMSE) Testing (RMSE)

ELM FA-FPA-ELM ELM FA-FPA-ELM ELM FA-FPA-ELM

2 0.0076 7.8363 0.5104 0.1041 0.5259 0.0871
5 0.0090 7.6754 0.2892 0.0582 0.2807 0.0108

10 0.0086 8.2132 0.0711 0.0576 0.0393 0.0104
15 0.0094 8.9231 0.0566 0.0565 0.0120 0.0113
20 0.0115 9.5575 0.0561 0.0560 0.0125 0.0128

It can be discovered from Table 3 that when the hidden layer node is fixed, as the quantity of
iterations increases, the training time also gradually increases, and the training error and test error
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decrease. When iterations reach a certain value, the test error decreases slowly. Table 4 demonstrates
that with the growth of hidden layer nodes, the RMSE of FA-FPA-ELM and ELM gradually decreases.
The training RMSE of the FA-FPA-ELM algorithm reaches 0.582, and only 5 hidden layer nodes are
required, while the training RMSE of the ELM reaches 0.0561, which requires 20. In other words, when the
two algorithms obtain almost the same training RMSE, the quantity of hidden nodes required by the new
algorithm is a quarter of that of ELM. Combining Tables 3 and 4, the maximum quantity of iterations of
FA-FPA-ELM is set to 100, and the hidden layer node is 5. The fitting of ELM and FA-FPA-ELM algorithm
to test function f (x) is shown in Figure 3. The absolute error of the two algorithms is shown in Figure 4.

-10 -5 0 5 10
-1

0

1

2

3

Actual

ELM Expected

FA-ELM Expected

Figure 3. Prediction of the ELM and FA-FPA-ELM algorithm for a nonlinear function.
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-0.4
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0.1

0.2

0.3

0.4

0.5

A
b
so

lu
te

 e
rr

o
r

ELM

FA-FPA-ELM

Figure 4. Comparison of prediction errors for a nonlinear function.

It is not difficult to see that when the hidden nodes is 5, the approximation effect of FA-FPA-ELM
algorithm is better than the ELM algorithm, and the absolute test error is smaller.

Next, we compare the approximation property of the basic ELM, FA-ELM, FPA-ELM, GA-ELM,
PSO-ELM and FA-FPA-ELM algorithms. In order to ensure a fair comparison, the same population size
and maximum iteration number should be used. The population size N = 10 and maximum iteration
number Maxgen = 100 have been used for these five algorithms for optimizing the ELM. FA-ELM,
FPA-ELM and FA-FPA-ELM selected parameters are consistent with the above. For GA-ELM, a crossover
rate of pcrossover = 0.95 and a mutation rate of pmutation = 0.05 are used. For PSO-ELM, an inertia weight
w = 0.7 is used, and its two learning parameters c1 = c2 are set as 1.5. We run 30 simulation experiments
on each of the six algorithms, and then give the experiment results in Table 5. Figure 5 gives the iteration
curves of the three optimization algorithms (GA-ELM, PSO-ELM and FA-FPA-ELM). Figure 6 shows
the absolute error of the three algorithms (GA-ELM, PSO-ELM and FA-FPA-ELM). It shown that GA,
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PSO and FA-FPA can effectively optimize the input parameters of ELM, and the approximation effect of
FA-FPA-ELM is best by comparing the performance of the five algorithms, but the training time is longer.

Table 5. Comparison of RMSE in ELM, FA-ELM, FPA-ELM, genetic algorithm (GA)-ELM, particle swarm
optimization (PSO)-ELM and FA-FPA-ELM algorithms on a nonlinear function.

Learning Training Time Testing Time Training Testing
Algorithms (s) (s) (RMSE) (RMSE)

ELM 0.0119 0.0017 0.2315 0.2274
FA-ELM 3.2371 0.0008 0.0605 0.0194

FPA-ELM 3.3384 0.0011 0.0562 0.0102
GA-ELM 5.3392 0.0014 0.0737 0.0459
PSO-ELM 4.8809 0.0032 0.0621 0.0221

FA-FPA-ELM 9.5787 0.0045 0.0580 0.0099

0 20 40 60 80 100

number of iterations

0.05

0.06

0.07

0.08

0.09

0.1

R
M

S
E

PSO-ELM

FA-FPA-ELM

GA-ELM

Figure 5. Comparison of iteration curves of a nonlinear function.
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FA-FPA-ELM

GA-ELM

Figure 6. Comparison of prediction errors for a nonlinear function.

5.2. Iris Classification Problem

Next, we verify the classification performance of ELM, FA-ELM, FPA-ELM, GA-ELM, PSO-ELM and
FA-FPA-ELM algorithms, using the iris data set of the UCI database. Iris is a data set for multivariate
analysis, it contains 150 rows of data, each row of data contains 4 attributes, divided into 3 categories.
The four attributes are petal length, petal width, calyx length and calyx width. These properties are used
to predict the species of iris (Setosa, Versicolour, Virginica). Among them, there is a linear relationship
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between the length and width of petals and the type of iris, and there is a nonlinear relationship between
the length and width of sepals and the type of iris. Stochastic method is used here to generate training
sets and test sets, the quantity of training samples is 100, and the rest are testing samples. For FA, FPA
and FA-FPA, a step factor of α = 0.25, a maximum attraction of β0 = 0.2, an absorption coefficient of
light intensity λ = 1 and the initial value of the conversion probability p = 0.8 are used. For PSO-ELM,
an inertia weight w = 0.7 is used, and its two learning parameters c1 = c2 are set as 1.5. For GA-ELM,
a crossover rate of pcrossover = 0.95 and a mutation rate of pmutation = 0.05 are used. The above three
algorithms for optimizing ELM parameters have a population size of 15 and a maximum number of
iterations of 100. The fitness function is the accuracy of training samples, and the quantity of hidden layer
neurons is 5. Sigmoid function is the activation function of the six algorithms. For the iris classification
problem, it can be seen from Figure 7 that when optimizing the ELM parameters, the FA-ELM algorithm
is unstable and will lead to a local optimal. The improved FA-FPA-ELM algorithm can jump out of the
local optimal solution and accelerate the convergence speed of the FPA-ELM algorithm. The iteration
curves of the three optimization algorithms (GA-ELM, PSO-ELM and FA-FPA-ELM) are presented in
Figure 8. Table 6 shows the training time, testing time, training accuracy and test accuracy of the six
algorithms, respectively.
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Figure 7. Comparison of accuracy in FPA-ELM, FA-ELM and FA-FPA-ELM algorithms on the iris data set.
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Figure 8. Comparison of iteration curves of the iris data set.

It is obvious from Figure 8 that when the number of iterations is less than 40, the FA-FPA-ELM
algorithm finds the optimal weights and thresholds, while the PSO-ELM algorithm finds the optimal
parameters when the number of iterations is greater than 80. When the number of iterations is 100,
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the accuracy of FA-FPA-ELM and PSO-ELM is greater than that of GA-ELM algorithm. Table 6 shows that
GA-ELM, FA-ELM, FPA-ELM, PSO-ELM and FA-FPA-ELM can effectively optimize the parameters and
improve the algorithm classification accuracy. FA-FPA-ELM algorithm has the highest accuracy and better
classification property than the other five algorithms, but it requires the longest training time.

Table 6. Comparison of accuracy in ELM, FA-ELM, FPA-ELM, GA-ELM, PSO-ELM and FA-FPA-ELM
algorithms on the iris data set.

Learning Training Time Testing Time Training Testing
Algorithms (s) (s) Accuracy Accuracy

ELM 0.0010 0.0051 84.60% 85.80%
FA-ELM 4.5769 0.0003 85.20% 84.60%

FPA-ELM 4.7329 0.0003 97.60% 95.60%
GA-ELM 4.9440 0.0042 96.30% 93.60%
PSO-ELM 4.8876 0.0034 96.40% 94.80%

FA-FPA-ELM 9.6465 0.0112 98.20% 97.40%

5.3. Personal Credit Rating

With the development of the financial industry, banks have gradually established a corporate credit
evaluation system. The evaluation methods of personal credit are mainly divided into qualitative
evaluation and quantitative evaluation. Qualitative evaluation is mainly based on the subjective judgment
of credit officers. Quantitative evaluation is based on individual customer data and analysis using
tools such as score cards and credit scoring models. The following uses a personal customer credit
evaluation method to classify all customers into two categories, only distinguishing good and bad
situations. The personal credit evaluation uses a data set from the German credit database compiled by
Professor Hans Hofmann, which contains 1000 customers’ data, each customer containing 20 attributes,
and gives a mark of good or bad credit. Among them, each customer’s 20 attributes include 7 numeric
attributes and 13 category attributes. The numeric attributes include age, bank deposits, account duration,
loan amount, installment payment as a percentage of monthly income, current residence years and
number of dependents. Category attributes include current account status, loan history status, loan use,
deposit status, working hours, personal status, security deposit, property, other installment plans, housing
status, working status, telephone number and whether it is a foreign worker. Next, we will use the newly
proposed FA-FPA-ELM algorithm to evaluate user credit and compare it with the traditional ELM, FA-ELM,
FPA-ELM, GA-ELM and PSO-ELM algorithms. The parameter selection of each algorithm is the same as
the iris classification problem. The training set and the test set are randomly generated, the number of
training sets is 700, and the number of test sets is 300. For the personal credit rating problem, it can be seen
from Figure 9 that when the ELM parameters are optimized, the FA-ELM algorithm will oscillate in the
iterative process and fall into a local optimum. The improved FA-FPA-ELM algorithm is relatively stable,
and it has better classification accuracy. Figure 10 shows the iterative curve of GA-ELM, PSO-ELM and
FA-FPA-ELM algorithm optimization. Table 7 shows the training time, testing time, training accuracy and
test accuracy of the six algorithms, respectively.

Figure 10 shows that FA-FPA-ELM has the fastest convergence speed. When the number of iterations
is 100, the accuracy of FA-FPA-ELM and PSO-ELM is greater than that of GA-ELM algorithm. Table 7 shows
that FA-ELM, FPA-ELM, GA-ELM, PSO-ELM and FA-FPA-ELM can improve the algorithm classification
accuracy. FA-FPA-ELM algorithm has the highest classification accuracy. As a result that FA-FPA-ELM
requires two intelligent optimizations, it takes longer training time than FA-ELM, FPA-ELM, GA-ELM and
PSO-ELM algorithms, but has a higher accuracy rate.
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Figure 9. Comparison of accuracy in FPA-ELM, FA-ELM and FA-FPA-ELM algorithms on the personal
credit rating data set.
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Figure 10. Comparison of iteration curves of the personal credit rating data set.

Table 7. Comparison of accuracy in ELM, FA-ELM, FPA-ELM, GA-ELM, PSO-ELM and FA-FPA-ELM
algorithms on the personal credit rating data set.

Learning Training Time Testing Time Training Testing
Algorithms (s) (s) Accuracy Accuracy

ELM 0.0010 0.0053 70.37% 70.07%
FA-ELM 52.0175 0.0032 71.85% 70.20%

FPA-ELM 52.7629 0.0141 73.71% 73.50%
GA-ELM 70.7881 0.0101 72.86% 72.13%
PSO-ELM 64.8698 0.0065 74.20% 73.73%

FA-FPA-ELM 123.3332 0.0055 75.09% 76.80%

6. Conclusions

In this paper, our goal was to optimize the weights and thresholds of the ELM algorithm, because FA
has a good global optimization ability, and FPA has a local optimization ability. Therefore, we first use
the FA-ELM algorithm to get better weights and thresholds, and then use it as the initial weights and
thresholds of the FPA-ELM algorithm. This new algorithm combines the advantages of ELM and FA-FPA,
with simple parameter adjustment, global optimality and strong generalization ability. When fitting a
nonlinear function, the RMSE and MAE of FA-FPA-ELM are better than the traditional ELM algorithm,
indicating that the algorithm after optimizing the weight and threshold of ELM has a better approximation
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effect. In the iris classification and personal credit evaluation experiments, when the hidden node is set to
5 and the activation function is sigmoid, the classification performance of the FA-FPA-ELM algorithm is
better than the traditional ELM, FA-ELM, FPA-ELM, GA-ELM and PSO-ELM, but because the FA-FPA-ELM
algorithm needs to search for the optimal weights and thresholds twice, the training time is the longest.
The above experiment results show that the new algorithm only needs fewer hidden layer nodes to achieve
better approximation and classification results. In the future, we consider applying FA-FPA-ELM algorithm
to practical engineering problems and comparing it with a wider range of algorithms.
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36. Karakatič, S.; Podgorelec, V. A survey of genetic algorithms for solving multi depot vehicle routing problem.
Appl. Sof. Comput. 2015, 27, 519–532. [CrossRef]

37. Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection.
Inform. Process. Lett. 2003, 85, 317–325. [CrossRef]

38. Tasgetiren, M.F.; Liang, Y.C.; Sevkli, M.; Gencyilmaz, G. A particle swarm optimization algorithm for makespan
and total flowtime minimization in the permutation flowshop sequencing problem. Eur. J. Oper. Res. 2007, 177,
1930–1947. [CrossRef]

http://dx.doi.org/10.1016/j.patrec.2011.12.002
http://dx.doi.org/10.1155/2020/9175106
http://dx.doi.org/10.1109/ACCESS.2020.3031647
http://dx.doi.org/10.3390/pr8010109
http://dx.doi.org/10.3390/pr8010092
http://dx.doi.org/10.1016/j.patcog.2005.03.028
http://dx.doi.org/10.1016/j.neucom.2014.11.019
http://dx.doi.org/10.1016/j.jhydrol.2019.123960
http://dx.doi.org/10.1016/j.enconman.2015.05.074
http://dx.doi.org/10.1016/j.asoc.2015.08.037
http://dx.doi.org/10.1016/j.ijepes.2015.11.059
http://dx.doi.org/10.1016/j.swevo.2013.06.001
http://dx.doi.org/10.1016/j.compstruc.2011.08.002
http://dx.doi.org/10.1016/j.enbuild.2012.11.030
http://dx.doi.org/10.1016/j.jocs.2017.07.009
http://dx.doi.org/10.1016/j.asoc.2011.09.017
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1016/j.asoc.2014.11.005
http://dx.doi.org/10.1016/S0020-0190(02)00447-7
http://dx.doi.org/10.1016/j.ejor.2005.12.024


Processes 2020, 8, 1583 16 of 16

39. Li, S.-A.; Hsu, C.-C.; Wong, C.-C.; Yu, C.-J. Hardware/software co-design for particle swarm optimization
algorithm. Inform. Sci. 2011, 181, 4582–4596. [CrossRef]

40. Yang, X.-S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective
optimization. Eng. Optimiz. 2013, 46, 1222–1237. [CrossRef]

41. Liu, W.; Luo, F.; Liu, Y.; Ding, W. Optimal Siting and Sizing of Distributed Generation Based on Improved
Nondominated Sorting Genetic Algorithm II. Processes 2019, 7, 955. [CrossRef]

42. Han, Z.; Zhang, Q.; Shi, H.; Zhang, J. An Improved Compact Genetic Algorithm for Scheduling Problems in a
Flexible Flow Shop with a Multi-Queue Buffer. Processes 2019, 7, 302. [CrossRef]
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