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Abstract: Exosomes are defined as a type of extracellular vesicle released when multivesicular bodies
of the endocytic pathway fuse with the plasma membrane. They are characterized by their role in
extracellular communication, partly due to their composition, and present the ability to recognize and
interact with cells from the immune system, enabling an immune response. Their targeting capability
and nanosized dimensions make them great candidates for cancer therapy. As chemotherapy is
associated with cytotoxicity and multiple drug resistance, the use of exosomes targeting capabilities,
able to deliver anticancer drugs specifically to cancer cells, is a great approach to overcome these
disadvantages. The objective is to assess treatment efficiency in reducing tumor cells, as well
as overall safety and response by cancer carriers. So far, results show exosomes as a promising
therapeutic strategy in the fight against cancer. This review summarizes the characteristics and
composition of exosomes, as well as explaining in detail the involved parties in the origin of exosomes.
Furthermore, some considerations about exosome application in immunotherapy are addressed.
The main isolation and loading methods are described to give an insight into how exosomes can be
obtained and manipulated. Finally, some therapeutic applications of exosomes in cancer therapy
are described.
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1. Introduction

Cancer remains one of the leading causes of death worldwide, despite significant therapeutic
advancements and improved detection methods. The main characteristic of this disease is the
uncontrolled cell proliferation. There are several types of cancer, related to different types of cells,
with different behaviors and responses to treatment, and various contributing factors, such as diet,
lifestyle, inherited genes, infectious microorganisms, as well as exposure to radiation and carcinogenic
substances [1,2]. Usual cancer treatments involve chemotherapy, radiation therapy, and/or surgery.
Chemotherapy is considered the most effective therapy. However, treatment fails in several situations
where cancer cells show resistance to chemotherapeutic drugs. In fact, two of the biggest threats to
chemotherapy are related with multiple drug resistance and with treatment toxicity [3]. In this regard,
therapies based in nanoparticles (NPs) are being investigated, focused on efficient drug delivery
methods, as a way to reduce adverse effects and improve the chances of a successful treatment [4].

In 1983, while observing the maturation of reticulocytes into erythrocytes, Johnstone et al.
reported that fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) led to the
release of nanosized vesicles. Later, in 1987, these vesicles were named exosomes [5,6]. At first, it was
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believed that exosomes acted as cellular disposal systems, helping with the removal of unnecessary
proteins [7]. However, nowadays it is known that exosomes play an important role in extracellular
communication, capable of carrying proteins, nucleic acids, and lipids [8]. Taking advantage of their
innate characteristics and functions, exosomes are being investigated as potential therapeutic agents.
As discussed further on, exosomes are capable of triggering an immune response, prompting the
development of vaccines in immunotherapy. In addition to the capacity for targeting and recognizing
proteins on a cell membrane, they can also act as nanocarriers of drugs and nucleic acids for several
pathologies, namely cancer.

This review aims to describe the composition of exosomes, as well as give insight into the
underlying mechanism responsible for the origin of these vesicles. What could be simply described as a
form of exocytosis, is in fact a much deeper process. With the help of several proteins working together
as one complex, there are several steps involved in the development of exosomes. Although there is
still much to learn about this mechanism, there is already proof of other pathways that lead to the
biogenesis of exosomes [9–11].

Nowadays, there are many techniques used to obtain and purify exosomes. Some techniques
are more popular than others due to their accessibility and simpler methodology (for example,
centrifugation-based methods), while others, which present higher yields, are associated with elevated
costs. Depending on the goal of each study, one technique may be preferable to another. For these
reasons, several techniques were described, each with their own advantages and disadvantages.

Due to the capability of exosomes to carry molecules, several advances have been made in order
to load exosomes with a desired drug or nucleic acid. It was, therefore, relevant to summarize some of
the most commonly performed loading strategies. The different techniques were divided in pre- and
post-loading methods, varying on whether the exosome loading occurs in a direct or indirect manner.
Like isolation techniques, loading techniques also have advantages and disadvantages. These are
mostly related to the drug loading capacity of the method, and to the stress induced on the vesicles.

Knowledge of these techniques provides some background into the posteriorly referred clinical
applications. Several in vivo experiments were performed, using different isolation and loading
methodologies. Results of different investigations will be discussed, evaluating the efficacy of
exosome-based treatments using paclitaxel (PTX), small interfering RNA (siRNA), and doxorubicin
(DOX) [12–14].

2. Exosomes

2.1. Structure and Functions

Cells from the most diverse organisms are known to release extracellular vesicles, which can be
found in several biological fluids like blood, saliva, urine, lymph, and breast milk [15,16]. One of these
vesicles is the exosome, a particle of endocytic origin with a size ranging from 30–100 nm [15,17,18].
The morphology of these particles has been described as being “saucer-like” [18] or “cup-shaped” [19],
resembling a flattened sphere, depending on the cell of origin [18–20]. Exosomes are lined with a lipid
bilayer that encloses cytosol from the secreting cells, and are composed by several lipids, proteins,
and nucleic acids. Similar to their morphology, the composition of exosomes is also influenced by the
parent cell that originated them [15,17,20].

Over the years, the protein composition of exosomes has been the subject of several studies.
According to ExoCarta, an online database regarding exosomes, 9769 proteins have been identified
in these systems [21], such as adhesion molecules, major histocompatibility complex (MHC) class I
and II proteins, cytosolic chaperone proteins (for example, heat shock proteins (Hsp)) and metabolic
enzymes [22,23]. One of the most commonly found protein family in exosomes are the tetraspanins
(namely CD9, CD63, CD81, and CD82) [18,24]. The tetraspanins are a superfamily of proteins with four
transmembrane domains and two extracellular segments [25,26]. These compartments are responsible
for several processes that result in membrane fusion, organization of large molecular complexes and
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even protein trafficking and signaling [18,24]. Since the membrane of exosomes is enriched with
tetraspanins, they are considered excellent biomarkers [24].

Another set of proteins present in the composition of exosomes are the Hsp. These systems act as
molecular chaperones in response to stress. By helping to maintain an appropriate folding of proteins,
Hsp prevent the formation of protein aggregates. These misfolded proteins could lead to the most
diverse pathologies, such as neurodegenerative disorders like Parkinson or Alzheimer’s disease [27].
The correct manipulation of their biological activity could be the answer to develop new therapies for
the mentioned diseases or for several types of cancer [28]. The expression of Hsp can be constitutive
or induced due to stressful events (like exposing a cell to higher temperatures) [29]. In an attempt to
induce the production of Hsp to be sorted into B-cell exosomes, Clayton et al. exposed the cell line to
high temperatures (42 ◦C over 3 h). In this study, it was concluded that there was an increase both in
B-cell exosomes secretion, as well as in the amount of produced Hsp. Further analysis showed that the
Hsp are encapsulated in the lumen of the exosomes. This renders them unavailable to interact with the
Hsp receptors present at the surface of target cells [27], suggesting that other mechanisms could be
involved in order to allow the exosomal Hsp to interact with biological targets.

Exosomes from antigen-presenting cells (APC) carry MHC class II molecules [18], which could
enable them to play a role in antigen presentation. Raposo et al. documented that peptide-MHC class
II complexes present at the surface of exosomes were able to stimulate T cells [30]. It has also been
shown that dendritic cells (DC) produce exosomes with MHC class I molecules and CD86, allowing
them the potential to induce a response from CD8 + T-Cells [18,31].

Regarding their lipid composition, exosomes have resemblances with lipid
rafts [15,32]—microdomains expressed at the PM with elevated content of sphingolipids,
cholesterol, and phospholipids [33]. According to studies, in comparison with their parent cells,
exosomes are usually enriched 2–3 times more in sphingomyelin, cholesterol, phosphatidylserine
and glycosphingolipids, with values varying with each type of originating cell [32,34]. Besides
their structural function in the PM and role in the formation of exosomes, lipids could also have an
influence on the function of these particles in the body, making them important targets for future
studies, as to better understand how exosomes work and how to easily manipulate them as therapeutic
agents [32,34].

Besides their protein and lipid composition, exosomes also act as carriers of nucleic acids,
namely messenger RNA (mRNA) and microRNA (miRNA) [35]. miRNAs are small, non-coding
RNA molecules, that can regulate the expression of genes and complementary mRNAs, playing a
role in cellular development, proliferation, and apoptosis [35–37]. The transfer of nucleic acids by
exosomes from one cell to another can influence cells on an epigenetic level and lead to an exchange of
features between cells, since receiving cells are getting RNA of proteins that wouldn’t be normally
expressed in them [35,37]. Like other cell types, cancer cells can also release exosomes, and with
them, their own nucleic acids. Melo et al., studied the effects of miRNAs transported by breast cancer
cells-derived exosomes. In this study, it was suggested that these molecules have the capacity to
induce the formation of tumours on cells that would otherwise be considered healthy [38]. As alarming
as it may be, these conclusions shed a light on cancer diagnostic and treatment methods, with the
possibility of using miRNAs transported by exosomes as biomarkers in melanoma, breast cancer or
lung cancer [17,37]. Such mechanisms could be adapted to our advantage, using exosomes as vectors
in genetic therapy, and loading specific sets of nucleic acids to use them as carriers between cells [39].

Due to their composition (see Figure 1), exosomes act as nanocarriers in the transfer of
macromolecules around the organism. They play a fundamental role as mediators in cell to cell
communication, whether cells are close to or far from each other [10,35]. These nanosystems are capable
of eliciting biological responses like expression/suppression of proteins, induce immune responses,
or modulate cancer progression [24,40].
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Figure 1. Structure and overall composition of an exosome [15].

2.2. Biogenesis

As previously mentioned, exosomes are considered extracellular vesicles with an endocytic
origin [15]. When a cell membrane site is invaginated through the ubiquitination of surface receptors,
it leads to the formation of early endosomes [16]. As they mature, there is a gradual increase in size and
change in their content, mostly due to the accumulation of intraluminal vesicles (ILV). They eventually
become late endosomes, also referred to as MVBs [17,41]. After their maturation, MVBs usually fuse
with lysosomes, and their contents suffer lysosomal degradation. However, by a process that still is
not quite understood, the membrane of MVBs can fuse with the PM of the cell, leading to the release of
the accumulated ILVs, which are now called exosomes (see Figure 2) [17,24,41,42].

Figure 2. Biogenesis of exosomes [15,43].

One of the most studied mechanisms for the formation and cargo sorting of ILVs into the MVBs
involves the endosomal sorting complex required for transport (ESCRT) [10,17]. The ESCRT family is
composed by almost twenty proteins, distributed by four multiprotein complexes (ESCRT-0, ESCRT-I,
ESCRT-II and ESCRT-III), along with accessory protein Vps4. All of them are involved in the biogenesis
of exosomes, transporting ubiquitinated proteins on the membrane of endosomes in the form of
a cluster, so that they can later be included in a newly formed vesicle, inside the endosome [24].
The discovery of the ESCRT machinery began after the identification of several genes in Saccharomyces
cerevisiae yeast, classified as “Vps” genes, whose proteins had the capacity to form complexes and
mediate protein trafficking through endosomes [44]. Since then, the human analogues of these proteins
have been discovered and categorized according to the ESCRT complex (see Table 1).
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Table 1. The ESCRT proteins in Saccharomyces cerevisiae yeast and corresponding human analogue [42,44].

Complexes Yeast Human

ESCRT-0
Vps27 Hrs

Hse1 STAM1,2

ESCRT-I

Vps23 Tsg101

Vps28 Vps28

Vps37 Vps37 A, B, C, D

Mvb12 Mvb12 A, B

ESCRT-II

Vps36 EAP45

Vps22 EAP30

Vps25 EAP20

ESCRT-III

Vps20 CHMP6

Snf7 CHMP4 A, B, C

Vps24 CHMP3

Vps2 CHMP2 A, B

Vps4 Complex Vps4 Vps4 A, B

Sites of the cell membrane start forming early endosomes when proteins at their surface are
ubiquitinated. Due to the action of Vps34, or class III Phosphatidylinositol-3-Kinase (PI3K), the lipid
phosphatidylinositol (PI) present at the surface of the cell and the endosome is phosphorylated
into phosphatidylinositol-3-phosphate (PI(3)P) [45]. The presence of PI(3)P acts as a recognition
signal with specificity for the Hrs protein, recruiting the ESCRT-0 complex which binds to the
ubiquitinated proteins at the surface of the endosome, initiating cargo sorting into the MVBs [41,44].
After binding with proteins, the ESCRT-0 begins to cluster and sequester them and, due to the Hrs
subunit, binds itself with a Tsg101 unit from ESCRT-I, which proceeds to recruit the ESCRT-II complex
via Vps28/Vps36 binding [44]. ESCRT-I and ESCRT-II work together to create buds and stabilize
vesicle necks, allowing for ESCRT-III to promote the budding process and cleaving inward budding
vesicles. These vesicles are released into the lumen of the endosome, originating ILVs [4,46]. Unlike the
other three complexes, ESCRT-III exists in the cytosol as inactive monomers instead of an active
complex, and depends on ESCRT-II to be activated (in yeasts, ESCRT-II protein Vps25 binds to Vps20,
and afterwards Snf7, Vps24 and Vps2 bind to each other, sequentially) [42,45]. The exact cleaving
mechanism is not fully understood, however it is known that Snf7/CHMP4 is responsible for recruiting
the degradation of alpha-4 (Doa4) enzyme. This enzyme is responsible for the removal of ubiquitin from
the cargo of MVBs, allowing them to be sorted and incorporated in vesicles [47,48]. Before the process
is complete, the ESCRT-III complex is disassembled and recycled back to the cytosol after binding with
the Vps4 ATPase enzyme, which requires adenosine triphosphate (ATP) (see Figure 3) [17,42,45].
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Figure 3. Overall mechanism of the ESCRT during MVB sorting [48].

Even though the ESCRT pathway is considered a key mechanism in the biogenesis of MVBs,
there is evidence of ESCRT-independent mechanisms. Stuffers et al. depleted cells of Hrs, Tsg101,
Vps22 and Vps24, subunits of each ESCRT complex, in order to evaluate the production of MVBs
and the secretion of exosomes in the absence of ESCRT proteins. After transfecting siRNA against
the mentioned proteins using Hep-2 and HeLa cells, the integrity of the ESCRT complex was lost,
yet MBVs were still being formed, suggesting the existence of mechanisms independent of ESCRT [11].

One of the supposed mechanisms involved in MVBs formation revolves around tetraspanins,
namely, CD63 [25], which, unlike other proteins of the tetraspanins family, is abundantly found
intracellularly in ILVs of late endosomes [49]. The melanosomal protein Pmel17 (essential in
the maturation of melanosomes) is transported into ILVs without the need for ubiquitination
and, therefore, does not need to be sorted by the ESCRT complex [50]. After depleting
CD63 in MNT-1 cells with CD63-specific siRNA, there was a reduction of ILVs on endosomes,
with consequent impairment of melanosome maturation [51], suggesting an important role for CD63
in ESCRT-independent mechanisms.

Besides proteins, lipids also seem to play a role when it comes to generate ILVs without the ESCRT
machinery (see Figure 4). Ceramide has been the subject of several studies, as to better understand how
it operates. Studying the endosomal trafficking of the proteolipid protein (PLP), it was observed that
the ESCRT complex was not involved in PLP sorting after using siRNA to knock down Hrs, Tsg101 or
Vps4 coding genes. In the absence of ESCRT, ILVs containing PLP were still being formed, with a high
concentration of sphingolipids in the vesicles [52]. Sphingomyelinases remove the phosphocholine
group of sphingomyelin leading to the formation of ceramide. In order to analyse the role of ceramide
in PLP vesicle sorting and exosome biogenesis, Oli-neu cells (mouse oligodendroglial cells) were
treated with sphingomyelinase inhibitor GW4869. Other inhibitors, spiroepoxide and glutathione,
were also used. The same effect could be observed in the three tests, with a marked decrease of
exosome secretion from the cells, concluding that ceramide is also involved in ESCRT-independent
ILV formation [52]. A similar study was performed in human embryonic kidney (HEK) 293 cells
to prove that miRNA secretion depends on ceramide. First, RNases were added to the medium in
order to assess if extracellular miRNA is contained in exosomes. After the cells were incubated with
the RNases, miRNA could still be detected. Exosomes play an important role in protecting carried
molecules from external threats. Afterwards, two tests were performed, one with GW4869 and another
with siRNA to knock down the expression of sphingomyelinase. It was concluded that depletion of
ceramide lead to a decrease of both exosomes and miRNA in the extracellular medium. Although the
exact mechanism of how miRNAs are sorted into exosomes is still unknown, an ESCRT-independent
mechanism involving ceramide could be responsible for this phenomenon [9].
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Figure 4. Several machineries involved in the biogenesis of exosomes [8].

Several studies are trying to discover more about how MVBs fuse with the PM and release
exosomes to the extracellular microenvironment. Two groups of proteins seem to be a part of this
mechanism, small GTPases of the RAB family and sets of soluble N-ethylmaleimide-sensitive fusion
attachment protein receptors (SNAREs) [15]. The use of small-hairpin RNA (shRNA) to knock down
Rab proteins (Rab2b, Rab9a, Rab5a, Rab27a, and Rab27b) led to an inhibition of exosome secretion in
HeLa cells [53]. A focused analysis on proteins Rab27a and Rab27b led to the discovery that these two
proteins are involved in MVBs distribution to the cell periphery, after using total internal reflection
fluorescence microscopy to observe MVBs. The silencing of Rab27 proteins caused a reduction in the
fusion events between MVBs and the PM, but also led to an increase in MVB size, suggesting that, in
the absence of these proteins, MVBs could fuse with each other or form complexes with other vesicles,
preventing them from docking with the PM [53].

Over the years, several studies have proven the involvement of SNAREs in vesicle fusion with
the PM, for example, in lysosomal exocytosis [54]. However, the SNARE complexes that intervene
in that process could be different from the SNAREs involved in fusion of the MVB with the PM [31].
Fader et al. observed that the vesicle-associated membrane protein 7 (VAMP7), a member of the
SNARE family, was necessary for the fusion of MVBs with the PM, leading to exosome secretion.
Inhibition of these protein in K562 cells (myeloid leukaemia cell line) led to a decrease in exosome
secretion [55]. In another study, Proux-Gillardeaux et al. concluded that the inhibition of VAMP7
on Madin-Darby canine kidney cells impaired lysosome secretion but had no influence on exosome
release [56]. Although contradictory, these results do not discard the role of SNAREs in the biogenesis
of exosomes, but instead indicate that different cell types could require other proteins from the SNARE
family. Further studies should be conducted to better understand how these molecules work [8,15].

2.3. Exosome-Like Endogenous Nanosystems

Prolonged cancer therapies cause systemic toxicity and healthy cell damage, limiting the efficacy
of cytostatic drugs [57]. New drug delivery systems based on NPs could be a way to reduce side effects
and improve the treatment of patients. These nanosystems can target tumours while protecting the
drug from degradation and enhancing endocytosis and drug uptake in the cells [57,58]. As a result
of the flawed angiogenesis and poor lymphatic drainage characteristic of tumour cells, nanocarriers
accumulate around the blood vessels, by a phenomenon termed the enhanced permeability and
retention effect [58]. Also, some nanosystems (such as exosomes) can actively target cells by recognition
of surface proteins or other biomolecules. Unfortunately, synthetic nanosystems have the disadvantage
of being recognized and eliminated by the reticuloendothelial system [59]. On the other hand, NPs like
exosomes have an endogenous nature, making them the perfect candidates for drug delivery given
their high stability, low immunogenicity, and biocompatible properties [14].
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Exosomes can be administered through several routes. The most frequent one is intravenously,
followed by intranasal administration, with reports of oral and subcutaneous administration of
extracellular vesicles [60–62]. Owing to their composition, the administration of exosomes derived
from cells similar to the targeted tissues leads to a higher targeting specificity [62]. The composition of
exosomes gives them an innate ability to target other cells, and their structure allows the encapsulation
of molecules that can be delivered to such cells. However, cells release exosomes in relatively low
amounts, and current purification methods can be inefficient, leading to low yields [57]. This issue has
led to the development of several studies with the objective of directing exosomal targeting and to
formulate nanocarriers with the same characteristics of exosomes, enhancing their therapeutic effect.

As previously referred, exosomes can target cells based on their molecular composition.
Such targeting ligands can, however, be artificially modified [63]. One method commonly
used to engineer desired targeting ligands on exosomes revolves around plasmid transfection.
Alvarez-Erviti et al. transfected plasmids encoding Lamp2b constructs into DCs. One of these
constructs was comprised of the rabies viral glycoprotein (RVG) peptide, that binds to acetylcholine
receptors. After exosome purification, quantitative PCR assay confirmed the expression of RVG-Lamp2b
complexes on the surface of the dendritic cell-derived exosomes. Using fluorescence microscopy, it
could be observed that the exosomes targeted neuronal cells (microglia, oligodendrocytes, and neurons).
The method used for exosomal targeting was, therefore, successful [64].

Since the amount of exosomes released by cells is low, Jang et al. studied a technique to
obtain high amounts of exosome-like nanovesicles. Monocytes and macrophages were loaded with
DOX, a chemotherapeutic drug. In an extrusion process, the cells were passed through filters with
different pore sizes (from 10µm to 1µm). The obtained products were nanovesicles with the same
protein composition of the PM of the cells they derived, similar to the composition of exosomes
released by the same cells. The protein content (analysed by western blotting) of exosomes and the
obtained nanovesicles revealed the presence of CD63, Tsg101, Moesin and Beta-actin in both particles
(see Figure 5) [57].

Figure 5. Western blot results comparison between the nanovesicles (NV) and exosomes (EXO) [57].

In the same study, mice were transplanted with CT26 cells (a colorectal carcinoma cell line
that causes tumours when introduced in mice). After tumour growth was observed, exosome-like
nanovesicles loaded with DOX were administered. Tumour reduction could be observed and there
was no reported decrease in body weight and white cells count. In addition to these promising results
in terms of therapeutic efficacy, the yield of the exosome-like particles was about 100-fold higher than
the quantity of naturally released exosomes [57]. Hence, the method used to obtain exosome mimics is
a great alternative to study the effects of these particles as drug delivery systems.
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2.4. Immunotherapeutic Potential of Exosomes

As approached before, due to their composition, exosomes could elicit some sort of immune
response. Tumour-derived exosomes (TEXs) carry a various array of proteins—such as MCH class I
and II, CD9, CD63—including tumour specific antigens. Due to their composition, TEXs can initiate a
tumour-targeted immune response. DCs recognize and process antigens from TEXs, presenting them
to helper T lymphocytes, causing their activation. Furthermore, TEXs can stimulate natural killer (NK)
cells. Incubation of Hsp70-expressing TEXs and CD94+ NK cells stimulates the activation of NKs and
release of granzyme B [65].

In contrast, TEXs can also have an immunosuppressive effect. For example, the presence of
TGF-β1 and galectin-1 produce a suppressive effect in CD4+ and CD8+ T lymphocytes [65]. In addition,
TEXs are known to be involved in tumour progression, aiding the process of angiogenesis and
metastasis, and inhibiting cancer cells apoptosis [66]. One of the challenges against cancer therapies is
the presence of PD-L1 on the surface of tumour cells. When PD-L1 binds to its receptor on T cells,
it leads to the suppression of T lymphocyte activity. TEXs have been found to express PD-L1, which can
be used as a biomarker. High levels of TEXs containing PD-L1 generally indicate a negative prognosis
in patients treated with PD-L1 inhibitors [67].

Since its first application, chimeric antigen receptor T (CAR-T) cell immunotherapy became a
promising oncologic therapeutic. Using a viral vector, T cells can be recombined with a specific antigen
receptor. Through this method, T lymphocytes are targeted to a certain tumour-associated antigen
with a higher precision, leading to a more effective cytotoxic response [68]. Unfortunately, there are
still many limitations associated with this method. Since CAR-T cells are active, they can expand
uncontrollably. In addition, ten days after CAR-T cell infusion, two thirds of the patients usually
experience an adverse effect called cytokine release syndrome (CRS). CRS is caused by an uncontrollable
release of cytokines by the modified T cells [68]. A way to surpass this effect would be with CAR-T cell
derived exosomes. These exosomes, which are released by CAR-T cells, retain the therapeutic capacity
of their parent cells. Administrating CAR-T cell derived exosomes would enable control of the in vivo
expansion that CAR-T cells go through. In this sense, CRS could be avoided [69].

So far, CAR-T cell therapy has only proved itself efficient in haematological conditions
(such as lymphomas). Owing to their nanometric size, CAR-T cell derived exosomes can easily cross
the blood-brain barrier or tumour cell membranes. This particularity could suggest the application of
CAR-T therapeutic towards other pathologies [68,69].

3. Isolation Techniques

3.1. Traditional Methods

Due to their composition and functions, exosomes have gained attention as potential tools in the
diagnosis and treatment of oncologic diseases. Although there is no standardization when it comes to
exosome isolation, several methods have been developed to facilitate their extraction [70,71].

The following topics give insight into some techniques applied for exosomal extraction, as well as
the advantages and disadvantages behind each method. In order to obtain exosomes of higher purity,
some of these techniques are performed sequentially [72]. To confirm the obtained particles after each
procedure, performing a Western blot and/or a flow cytometry analysis is common practice [73,74].

3.1.1. Differential Centrifugation/Ultracentrifugation

In centrifugation, particles in a sample are subjected to a centrifugal force. This causes
sequential sedimentation of the particles according to their size and density, with heavier/bigger
particles depositing first [71,73]. In differential centrifugation, three successive centrifugations are
performed with increasing centrifugal force and duration, aiming to remove cells, cellular debris and
macromolecules from the rest of the sample [71]. The three centrifugal forces and durations are 300× g
for 10 min, 2000× g for 10 min and 10,000× g for 30 min, respectively [74]. Between each sequence,
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the supernatant is aspired [73]. After the differential centrifugation is performed, an ultracentrifugation
step is followed, applying forces of 100,000× g for 70 min, causing the exosomes to form a pellet.
This step can be repeated by carefully removing the supernatant and re-suspending the exosome pellet
in phosphate buffered saline (PBS) and subjecting it to another centrifugation [71,73,74].

The method of differential centrifugation/ultracentrifugation is the most widely used when
it comes to exosome isolation [71]. It is considered as being easy to perform and not requiring
much technical expertise nor sample pre-treatment. In terms of disadvantages, the extreme forces
applied in ultracentrifugation could damage the exosomes, making them unviable for further testing.
Some nanovesicles tend to be trapped by bigger particles during centrifugation and lost during
supernatant aspiration, resulting in low yields [70].

3.1.2. Density Gradient Centrifugation

A variation of ultracentrifugation is the method of density gradient centrifugation. In this
technique, the obtained supernatant from a differential centrifugation is placed in a density gradient
medium [73]. A sucrose gradient medium is commonly used, being built into an ultracentrifuge
tube. Instead of sucrose, an iodixanol gradient can also be used, with reported improvements when
it comes to the separation of nanovesicles from viral particles [75]. The density of the medium
increases linearly from top to bottom, and after applying a centrifugal force, the particles in the sample
separate themselves based on their densities [73]. The sample is placed on the top of the density
gradient and ultra-centrifuged at 100,000–200,000× g for long periods of time, ranging from one to five
hours, with some studies even going as far as 16 h [72,74]. As mentioned, the particles in the sample
sediment along the medium until they reach a density equal to their own, the isopycnic position [73].
For exosomes, that density is between 1.10 g/mL to 1.19 g/mL [71,74]. The particles of interest can then
be extracted by simply collecting the fractions of the suspension.

Unlike the traditional method for ultracentrifugation, this approach prevents exosomes mixing with
residual proteins or previously separated particles. Having higher separation efficiency, this technique
allows one to obtain exosomes with a higher purity [71,73]. Regardless of the efficiency of the method,
it is more complex in terms of technique, involving the preparation of the density gradient medium,
with more costs associated. Additionally, the process itself requires more time to be performed than
traditional ultracentrifugation [71].

3.1.3. Immunoaffinity Isolation Techniques

The surface of exosomes is covered by proteins and other macromolecules. These molecules can be
targeted by corresponding ligands, similar to antigen-antibody interactions [73]. A method for isolation
of exosomes has emerged based on the immunoaffinity between their proteins. Immunoaffinity isolation
of exosomes uses magnetic beads coated with monoclonal antibodies. These antibodies specifically
target proteins present at the membrane of exosomes, such as CD9, CD63 and CD81 [71,76].
The magnetic beads are added to a sample and attach themselves to the exosomes. After a magnetic
force is applied, the magnetic beads are retained and the rest of the sample is discarded, while the
exosomes attached to the beads remain [71]. This method allows for the targeting of exosomes derived
from specific cells with unique markers. Mathivanan et al. used this technique to isolate exosomes
derived from LIM1215 cells, a colorectal carcinoma cell line. In order to capture the exosomes, the group
used beads coated with A33 antibodies. A33 is a protein commonly expressed in colon epithelial cells.
It was safe to assume that exosomes released from LIM1215 cells would express the A33 protein and be
targeted by the A33-antibody coated beads [77].

After binding to the exosomes, removing the magnetic beads is a difficult task, which limits the
use of the exosomes for further studies [71]. In addition, the reagents necessary for this technique are
costly, impairing accessibility to the method. In order to avoid interference, cells and cell debris must
be absent from the sample. This suggests the need to perform other isolation techniques first [73,77].
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3.1.4. Size Exclusion Chromatography (SEC)

The basis of SEC is to sort particles in a sample according to their size. The particles move across
a column that contains the stationary phase, a porous gel [74]. Based on their sizes, the particles
will move across the column at different rates. Since larger particles cannot penetrate through the
pores of the stationary phase, these elute first by the mobile phase [73]. Smaller particles are retained,
meaning that they are eluted at a slower rate. Afterwards, the eluted fraction containing exosomes
is collected. Prior to SEC, it is common to perform a low-speed centrifugation to remove larger
components from the sample, like cells, cell debris and macromolecules. The sample is also filtered in
order to concentrate extracellular vesicles [74].

Exosomes obtained by SEC show size uniformity and high purity. Unfortunately, this method
requires extensive equipment with high costs, rendering it unsuitable for many laboratories. In addition,
SEC is associated with long running times [73,74].

3.1.5. Hydrophilic Polymer Precipitation

Polyethylene glycol (PEG) is a polymer commonly used to precipitate macromolecules, proteins,
nucleic acids, viruses, and other particles [78]. Due to their hydrophilic nature, PEGs complex with
water molecules, forcing less soluble components to precipitate [73]. The common procedure starts
by incubating the sample with a precipitating solution at 4 ◦C, followed by low-speed centrifugation
(1500× g). The pelleted exosomes can then be re-suspended in PBS [78].

This technique is simple, fast, easy to execute, and does not deform the exosomes.
Several precipitating kits specialized for exosome precipitation are commercially available, but
are associated with high costs [71]. Cells and cell debris need to be removed from the sample to avoid
interference. Like the exosomes, proteins, nucleic acids, and other particles present in the sample
can precipitate after incubation with PEG [78]. Therefore, performing additional techniques might be
necessary in order to minimize the presence of impurities [73,78].

3.2. Novel Methods

Although widely used, traditional methods still present various limitations: long running times,
high costs, and damage to the integrity of the nanovesicles. In recent years, new techniques have been
developed to isolate and identify exosomes, attempting to surpass some disadvantages of traditional
methods [71].

3.2.1. Stirred Ultrafiltration

The principle of stirred ultrafiltration is similar to traditional membrane filtration. Particles in a
sample are separated depending on their size. Based on the pore size of the ultrafiltration membrane,
exosomes and small molecules pass through the filter along with the solvent [71]. The sample is
subjected to constant stirring to prevent the membrane from becoming clogged by bigger particles that
were retained. It also requires an external source of pressure, usually nitrogen, to push the sample
through the filtration membrane. Afterwards, the membrane is usually rinsed with PBS [70].

This method allows the purification of large volumes of sample and to obtain large amounts of
exosomes in a short time span. In comparison to the forces applied in ultracentrifugation, there is a lower
risk of damaging the integrity of exosomes when using this technique [71]. However, the membrane
only discriminates particles based on their size. Small molecules and other particles can pass through
the filter, diminishing the purity of the isolate [73].

3.2.2. Nanoplasmon-Enchanced Scattering (nPES)

The purpose of nPES is not directed towards exosome isolation in the same way as the previously
mentioned methods. Instead, the main goal of this technique is to detect and quantify exosomes
present in a sample in a rapid, sensitive, and specific manner [71]. The methodology resembles an
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enzyme-linked immunosorbent assay (ELISA). A sensor chip is coated with antibodies against typical
exosomal markers (for example, CD81) [79]. When a sample is added to a well, exosomes expressing
the marker are retained and accumulated in the wells. Afterwards, gold NPs, also coated with exosomal
markers (antibodies for CD9 or CD63), are added to the medium. According to their size and shape,
the gold NPs scatter light at different wavelengths. The sensor chip is then placed under a dark field
microscope to analyse the light scattering [79]. Based on the scatter area, the number of exosomes can
be quantified [71].

Liang et al. observed that exosomes secreted by pancreatic cancer cells express the ephrin type-A
receptor 2 (EphA2). In this study, they used antibodies for EphA2 and used nPES to identify exosomes
bearing this protein. This method successfully detected EphA2-expressing exosomes. In addition,
it was also possible to quantify exosomes of patients with pancreatic cancer and to compare results
with post-treatment samples. Besides diagnosis, the nPES technique could give insight into the success
rate of oncologic treatments by monitoring exosomes expressing oncologic markers [79].

4. Exosome Loading Strategies

Some exosomes naturally function as cargo deliverers from one cell to another. Taking advantage
of this ability, these particles can be artificially loaded with drugs and nucleic acids. The several
existing techniques can be divided in pre-loading and post-loading methods. In pre-loading methods,
the exosomes are indirectly loaded with the drug, unlike post-loading methods.

4.1. Pre-Loading Methods

Incubation with Donor Cells

In this technique, parent cells are incubated with a drug at room temperature. When the cells
release extracellular vesicles, like exosomes, these are loaded with the drug [63]. Although relatively
simple to execute, this method does not allow evaluation of the drug loading efficiency [80].

4.2. Post-Loading Methods

4.2.1. Incubation with Exosomes

Extracted and purified exosomes are incubated with a drug, similarly to the previous method.
Due to the concentration gradient, the drug molecules diffuse into the exosomes [63].

Both incubation techniques, considered passive methods for drug loading into nanosystems,
are simple to execute. However, due to the hydrophobic interactions between certain drugs and the
lipid bilayer of the nanovesicles, the loading efficiency is relatively low [63].

4.2.2. Electroporation

In electroporation, exosomes are placed in a conductive solution and subjected to an electrical
field. The applied current causes the phospholipid bilayer of the exosomes to rearrange, forming
small pores in the membrane [63]. The presence of these pores leads to the diffusion of drugs and/or
nucleotides into the interior of the exosomes. After the loading process is completed, the integrity of
the PM is restored [80].

Electroporation is the selected method to encapsulate nucleotides. siRNA possesses a negative
charge and cannot diffuse through the hydrophilic shell of the PM [81]. Nevertheless, if an optimized
buffer is not used, electroporation could cause RNA aggregation and disrupt the stability of the
exosomes, reducing the loading efficiency [80]. Johnsen et al. suggested the use of a trehalose
containing buffer to maintain the integrity of the exosomes [82].
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4.2.3. Sonication

This technique uses ultrasonic frequencies to agitate particles in a suspension. The exosomes are
mixed with the drug and a probe sonicator induces deformation of the PM of the nanovesicles [80].
While the membrane is deformed, drugs diffuse inside the exosomes. The integrity of the membrane is
restored about an hour after the sonication process, as previously reported [12].

Kim et al. loaded exosomes with PTX using different methods: incubation with free exosomes,
electroporation, and sonication. The obtained exosome-PTX nanosystems were purified using SEC
and analysed by high performance liquid chromatography (HPLC) to evaluate the loading efficiency
of each method. The study concluded that sonication led to higher amounts of PTX loading into the
exosomes, followed by electroporation and drug incubation with free exosomes [12].

4.2.4. Freeze/Thaw Cycles

In this method, exosomes are incubated with the drug. Afterwards, these are rapidly frozen
at −80 ◦C and thawed at room temperature [80]. In each cycle, the PM is disrupted, allowing drug
molecules to diffuse inside the exosomes. The cycles are repeated several times to achieve equal drug
concentrations inside and outside the nanovesicles [83].

In terms of loading capacity, this method is lower than other techniques. such as electroporation
or sonication [63].

4.2.5. Saponin Assisted Incubation

In this methodology, exosomes are incubated with the drug and saponins. Saponins are surfactant
molecules that form complexes with cholesterol, present in the PM of exosomes, generating pores [63].
This increase in permeability allows for the easier loading of hydrophilic molecules when compared
with a simple incubation [84].

The exact mechanism of how saponins interact with cholesterol is not yet understood. However, it is
known that they interact in the same way as with cholesterol on the PM of red blood cells. This fact
could be quite harmful when used in in vivo studies, due to the haemolytic activity of saponins.
To perform this technique, the saponin concentrations should be minimal, and the exosomes must be
thoroughly washed after being incubated with saponins [85].

5. Exosomes as Nanosystems of Nucleic Acids and Drugs

5.1. Paclitaxel

PTX is one of the most used anticancer drugs. It is naturally found in the bark of Taxus brevifolia,
although new extraction methods have been developed to obtain this drug [86]. PTX promotes the
assembly of tubulin into microtubules, stabilizing the latter and preventing their dissociation. Since the
microtubules do not dissociate, cell cycle progression is blocked, and the growth of cancerous cells is
hampered (see Figure 6) [87].
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Figure 6. Representation of how PTX promotes microtubule stabilization [88].

PTX has been used in the treatment of several types of cancer, namely colorectal, ovarian, breast or
lung cancer [86,87]. The efficiency of PTX and other chemotherapeutic drugs is limited by the emergence
of multiple drug resistance (MDR) [89]. The overexpression of ATP-binding cassette (ABC) transporters,
specifically the drug efflux P-glycoprotein (Pgp) transporter, is one of the mechanisms mediating
MDR in cancer cells [12]. To overcome MDR, Kim et al. evaluated oncological treatment efficiency of
PTX-loaded exosomes.

The exosomes used in this study were extracted from a murine macrophage cell line, using a
precipitating polymer (ExoQuick-TC™ kit). As previously mentioned, three loading methods were
tested in order to evaluate the loading capacity of each technique. The exosomes loaded with PTX
were purified using SEC and analysed by HPLC. The exosome-PTX complex obtained by sonication
was used for further studies since it showed better values of loaded PTX [12].

To evaluate the antineoplastic effect of exosome-PTX complex, a Lewis Lung Carcinoma mouse
model was used. Using a lentiviral vector, 3LL-M27 cells (a carcinoma cell line overexpressing Pgp)
were transfected in order to encode fluorescent proteins. As such, tumoral growth can be assessed via
fluorescence imaging techniques [12].

The mice were injected intravenously with the modified 3LL-M27 cells. The carcinoma cells
were allowed to establish for 48 h. To begin the treatment, the mice were split through different
groups, where saline, free PTX and with the exosome-PTX system were administered, respectively.
Tumour progression was accompanied by monitoring and quantifying the chemiluminescent signal
emitted by the modified carcinoma cells. In vivo images show the progression of the metastasis in the
different treatment groups (Figure 7a). 22 days after the administration of the 3LL-M27 cells, the mice
were sacrificed. Lung sections were observed via confocal microscopy (Figure 7b). Mice administered
with saline present the biggest tumour growth. Both free PTX and exosome-PTX complex inhibit
tumour progression. When comparing PTX based treatments, the exosome-PTX complex proved to be
more effective at stopping metastasis progression when compared with free PTX [12].
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Figure 7. (a) In vivo imaging of chemiluminescent signal monitoring in each treatment group [12].
(b) Confocal microscopy of lung sections of the sacrificed mice. It is possible to observe no detection
of fluorescence in the Exosome-PTX treated cells, when compared to the non-treated control group
(saline) [12].

5.2. siRNA

siRNA belongs to a class of small, double stranded, non-coding RNAs, composed of
20–30 nucleotides. Through a mechanism of RNA interference, these molecules can target
complementary mRNA. This way, it causes mRNA degradation and subsequent gene silencing [90].

Due to their mechanism and the possibility of exosome loading, exosome-siRNA complexes are
emerging as a therapeutic agent in oncologic conditions. Due to an uncontrolled tumour growth and
metastasis, head and neck cancer (HNC) still has a poor prognosis [13]. One of the reasons that make
HNC so malignant is the epithelial-mesenchymal transition (EMT). EMT is a transforming process
that some epithelial cells go through, leading to the formation of mesenchymal cells. EMT is usually
associated with tumour growth and cancer progression. Cancer cells become more invasive and form
metastases easier [91]. The transient receptor potential polycystic 2 (TRPP2), an ion channel, is one
of the regulating mechanisms of EMT in HCN. Targeting TRPP2 could be a way to inhibit tumour
progression in HNC, which was the goal of a developed study by Wang et al. [13].

Wang et al. investigated if TRPP2 siRNA would have any effect in TRPP2 gene knockdown and
further influence HNC growth and metastasis. To achieve this, a TRPP2 siRNA-exosome complex
was prepared and used. Exosomes were obtained from HEK 293 cells using PEG as the precipitating
agent (a centrifugation was previously performed to remove cells and cell debris). Exosomes were
incubated with the TRPP2 siRNA, with the latter being loaded and encapsulated. siRNA is susceptible
to the action of many enzymes, such as nucleases, so it’s fundamental that exosomes provide some
sort of protection to the cargo they carry. To assess this, an agarose gel electrophoresis was performed
to evaluate the stability of free TRPP2 siRNA and the TRPP2 siRNA-exosome complex against RNA
nucleases (see Figure 8). Free TRPP2 siRNA was degraded after 5 min, whereas exosome-encapsulated
TRPP2 siRNA maintained stability, proving that exosomes shield siRNA from enzyme degradation [13].

Figure 8. Results of agarose gel electrophoresis. Each sample was incubated with RNA nucleases,
free siRNA was mostly degraded after 5 min [13].

FaDu cells, a human squamous carcinoma cell line, were used to evaluate TRPP2 siRNA-exosome
complex efficiency. The cells were incubated with free TRPP2 siRNA (used as the control) and with the
exosomes. Western blot analysis was performed to confirm if TRPP2 suppression occurred. The results
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indicated that there was a significant reduction of TRPP2 expression in FaDu cells treated with the
TRPP2 siRNA-exosomes (see Figure 9). Since TRPP2 is associated with EMT, the authors of the study
also confirmed the influence that the treatment had in this process. Common biomarkers of EMT are
E-cadherin (at low levels), vimentin and N-cadherin (both with increased levels). For these biomarkers,
western blot analysis was also performed, all of them with promising results (Figure 9). There was an
increase in the expression of E-cadherin and a reduction of both vimentin and N-cadherin, showing the
potential of TRPP2 siRNA-exosomes as a treatment option for HNC [13].

Figure 9. Results of western blot analysis for TRPP2 expression and EMT biomarkers. Free siRNA was
used as control [13].

5.3. Doxorubicin-Loaded Nanoparticles

DOX belongs to anthracyclines, a class of drugs routinely used in chemotherapy. Its use is
recommended in the treatment of several cancers (ovarian, breast, lung, Hodgkin’s lymphoma).
The way DOX fights cancer cells has been described by two mechanisms. One occurs in the nucleus
of the cell, where DOX intercalates itself with DNA, impairing the activity of topoisomerase-II and
blocking nucleic acid transcription. The other way involves oxidation of DOX into semiquinone,
with posterior transformation into DOX again. This process generates reactive oxygen species that
cause oxidative stress and cell membrane damage, eventually causing cell death [92]. Besides MDR
caused by ABC transporters (like the previously mentioned Pgp), the use of DOX is limited due to the
cardiotoxic effect it causes.

As previously mentioned, the use of nano-based technologies in drug delivery seems like an
almost perfect solution. However, exogenous particles have the disadvantage of being recognized
and eliminated by the immune system [63]. To overcome this, Yong et al. developed biomimetic NPs,
converging the efficiency of NPs with the endogenous benefits of exosomes [14].

Porous silicon NPs were loaded with DOX. The choice of these NPs was based on their
biocompatibility and drug loading capacity. Afterwards, the DOX-loaded NPs were incubated with H22
cells, a mouse hepatocellular carcinoma cell line. Exosomes were obtained by centrifugation followed
by differential centrifugation. Cells were able to incorporate DOX-NPs and release DOX-NP-Exosomes.
The same procedure was applied to other cell lines, originating DOX-NP-Exosomes from different
origins [14].

Another cause of MDR is the existence of cancer stem cells (CSC). This cell population has high
expressions of ABC transporters and an elevated self-renewal rate. These properties render most
treatments ineffective. In this sense, H22 CSCs were treated with DOX-NP-Exosomes to evaluate the
cytotoxic effectiveness of the nano-complex. The procedure was done with different groups, containing
free DOX, DOX-NPs and DOX-NP-Exosomes, respectively. The results are represented in Figure 10.
In comparison with the other methods, there is an accentuated reduction of H22 CSCs in cells treated
with the DOX-NP-Exosome complex [14].
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Figure 10. H22 CSCs colony size after DOX administration, delivered as free drug, in NPs and NPs
contained in exosomes. The experiments are performed in triplicate (mean±SD) with statistically
significant difference (***) between groups [14].

To assess in vivo results, a model was used with H22 tumour-bearing mice. The mice were
administered with different DOX formulations (free DOX, DOX-NPs and DOX-NP-Exosomes),
with a drug concentration of 0.5 mg/kg. A fourth group was administered with free DOX at a
higher concentration, namely 4 mg/kg. Free DOX and DOX-NPs (at a dosage of 0.5 mg/kg) showed
weak tumour growth inhibiting capabilities. The most effective treatment was with DOX-NP-Exosomes,
which proved to be even more effective than high dose of free DOX (4 mg/kg). This formulation
achieved the biggest reduction in tumour mass (see Figure 11) and also increased mice survival time.
Yong et al. developed an exosomal formulation, containing NPs loaded with a therapeutic agent.
The presented drug delivery system proved itself to be biocompatible, not triggering an immune
response. In terms of MDR, this system exhibits a higher tumour accumulation in comparison with
other formulations (like free DOX) that suffer efflux by the action of ABC transporters [14].

Figure 11. Tumour masses of mice after intravenous administration of different formulations of
DOX [14].

6. Conclusions

MDR by cancer cells is one of the greatest threats to a positive outcome in oncological treatment.
Although many resistance mechanisms have been acknowledged, most of them still remain without
a successful solution. In this sense, exosome-based treatments shed a light on this area. As seen in
the mentioned in vivo studies, exosome-containing formulations were more efficient in diminishing
tumour cells when compared with conventional treatments (administration of free drug). In many
studies, adverse reactions that are commonly associated with anticancer agents were much less frequent
in mice groups treated with exosomes. However, these studies were only performed in animals,
and the results obtained could not be applicable in humans.

In previous years, clinical trials have been performed to evaluate the effectiveness of vaccines
containing exosomes in immunotherapy. In 2005, a Phase I Clinical Trial was performed using
autologous exosomes derived from DCs, loaded with melanoma antigen gene (MAGE) proteins.
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This study aimed to test the safety and effectiveness of these exosomes on 13 patients with non-small
cell lung cancer. It was possible to observe an increase of activity by NK cells, as well as an immune
response against MAGE (determined by delayed type hypersensitivity test). Overall, there was a
prolonged stabilization of the disease and only mild adverse reactions were reported (mostly, topical
reactions related with the injection) [93]. Two years later, in 2007, a Phase I Clinical Trial was conducted
covering 40 patients suffering from colorectal cancer. The exosomes used in this study were obtained
from ascitic fluid. One group was administered with the exosomes alone, while another group was
administered with a combination of exosomes and granulocyte-macrophage colony-stimulating factor
(GM-CSF). The results showed that the groups inoculated with the GM-CSF adjuvant had a more
efficient induction of a tumour-antigen specific response by cytotoxic T lymphocytes. Similar to
the previously mentioned clinical trial, the reported adverse effects were related with injection site
reactions, and some patients claimed to feel fatigued [94]. In addition to the previously mentioned
trials, other studies took place to assess exosome safety and efficiency in cancer therapies. In recent
years, more clinic trials have been registered and are still recruiting candidates (Table 2). A Phase I
clinical trial is currently active, with seven patients enrolled. The aim is to deliver curcumin conjugated
with plant-derived exosomes to normal colon tissue and colon tumours. The effects of curcumin
on both normal cells and cancerous colon cells are to be evaluated by measuring biomarkers and
serum cytokine levels. In another Phase I study, grape-derived exosomes are being used to prevent
oral mucositis caused by chemoradiation treatments of HNC. More recently, a Phase I active trial is
identifying the maximum tolerated dose and dose-limiting toxicities of exosomes loaded with siRNA
against KRAS G12D for the treatment of metastatic pancreatic cancer [95].

Table 2. On-going clinical trials with exosome-based therapies for oncological treatment [91].

Year Disease Phase Exosome
Source Formulation Status

2011 Colon cancer Phase I Plant
derived

Exosomes loaded with
curcumin Active

2012 Head and
neck cancer Phase I Plant

derived

Powder to prevent oral
mucositis derived from

chemoradiation
Active

2013 Malignant
ascites Phase II Tumour cell

derived

Exosomes loaded with
Chemotherapeutic

drugs
Unknown

2016
Malignant

pleural
effusion

Phase II Tumour cell
derived

Exosomes loaded with
cisplatin Recruiting

2020
Stage IV

pancreatic
cancer

Phase I
Mesenchymal

Stromal
Cells

Exosomes loaded with
KRAS G12D siRNA

Not yet
recruiting

Also, other than to treat oncologic diseases, there are trials focused on the treatment of other
illnesses, like those presenting a chronic character (for example, chronic kidney disease or type 1
diabetes) [96].

There is still much to be learned about the biogenesis of exosomes. It is known that the ESCRT
is involved, as well as several ESCRT-independent methods. However, there are many in-between
steps that are still unexplained and require further studies. To fully understand the processes that are
behind the formation of these nanovesicles would be a great advantage. Furthermore, most laboratorial
techniques for exosome isolation suffer from low yields, so a better knowledge of the nature of exosomes
could help develop new techniques aiming to improve exosome production and collection.

Until now, there have been no approved products containing exosomes. Hopefully, that paradigm
will change in the following years. Many studies concerning exosomes have proved their role in
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stimulating the immune system and their ability to load therapeutic molecules. Recent reports
have tried to develop new formulations based on the characteristics of exosomes. With positive
results in several investigations, it is undeniable that exosomes stand as a promising multiparametric
nano-approach for cancer therapy.
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