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Abstract: Slender packed beds are widely used in the chemical and process industry for heterogeneous
catalytic reactions in tube-bundle reactors. Under safety and reaction engineering aspects, good radial
heat transfer is of outstanding importance. However, because of local wall effects, the radial heat transport
in the vicinity of the reactor wall is hindered. Particle-resolved computational fluid dynamics (CFD)
is used to investigate the impact of internal heat fins on the near wall radial heat transport in slender
packed beds filled with spherical particles. The simulation results are validated against experimental
measurements in terms of particle count and pressure drop. The simulation results show that internal
heat fins increase the conductive portion of the radial heat transport close to the reactor wall, leading to
an overall increased thermal performance of the system. In a wide flow range (100 < Rep < 1000),
an increase of up to 35% in wall heat transfer coefficient and almost 90% in effective radial thermal
conductivity is observed, respectively.

Keywords: packed bed reactor; heat transfer; pressure drop; process intensification; heat fins;
computational fluid dynamics (CFD); Discrete Element Method (DEM)

1. Introduction

Multitubular packed bed reactors are widely used in the chemical and process industry for highly
endothermic or exothermic catalytic reactions. They consist of up to thousands of tubes filled with catalyst
particles, whereby a heat transfer media, e.g., a molten salt or gas heated by combustion, is circulated
around the tubes to either provide or remove the heat of reaction. To ensure an adequate radial heat
transfer within the reactor tubes, the tube diameter is usually very low (2–8 cm) [1]. On the other hand,
the pressure drop needs to be kept low, that is why relatively large particles are used, which leads to
slender packed beds characterized by a low tube-to-particle diameter ratio N.

For this reactor configuration the assumption of a homogeneously distributed void fraction does not
hold true, as the confining walls exert an ordering effect on the particle structure. This leads to a radial
void fraction distribution that is characterized by several distinct minima and maxima, as exemplary
shown in Figure 1 for spheres. Directly at the wall, only a point contact exists between particles and the
tube wall, leading to a bed voidage of ε = 1. Because of the ordering wall effect, particles tend to build a
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layer close to the wall. This leads to a global minimum in bed voidage at a distance of half a sphere away
from the wall. After a distance of one particle diameter, the first layer of particles ends, leading to a global
maximum in bed voidage. With increasing distance from the wall the ordering effect gets more and more
lost, leading to a damped oscillatory progression of the radial void fraction distribution. The unevenly
distributed bed voidage significantly impacts the fluid dynamics in the bed structure as it can be seen in
Figure 1 in terms of the radial profile of the average axial velocity normalized by the superficial velocity.
The radial velocity profile corresponds to the radial void fraction distribution and shows an increased
axial velocity at positions where the bed voidage is high, which is because the flow tends to take the
path of the lowest resistance. Close to the reactor wall a global maximum in axial velocity can be seen
which is known as the wall channeling effect. It is widely accepted that this effect negatively influences
the radial heat transport close to the wall, and, therefore, limits the thermal performance of the overall
system. According to Yagi and Kunii [2], the reduced heat transfer can be attributed to three different
effects, which are: (1) the reduced solid conductivity close to the wall as a result of increased voidage,
(2) the buildup of a laminar boundary layer at the wall, and (3) a reduced lateral convective mixing.
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Figure 1. CFD simulation result of the radial void fraction distribution and radial profile of the averaged
normalized axial velocity for a packing of spherical particles (N = 8.8).

Recently, several research groups have addressed this topic, investigating reactor concepts to increase
the radial heat transfer in gas-solid systems. Some of those concepts are shown illustratively in Figure 2.
The main research focus is on the investigation of the impact of particle shape on fluid dynamics,
heat/mass transfer and chemical conversion. The experimental work of Giese et al. [3] showed that
the use of Raschig rings or deformed spheres lead to a more homogeneous radial void fraction distribution
and less radial variance in axial velocity in the inner region of the packed bed. However, it was also
shown that the wall channeling as such could not fully be avoided. This finding was later verified by
the numerical work of Caulkin et al. [4] and Wehinger et al. [5]. The former of both authors showed
that even for trilobes, although characterized by an almost homogeneous void fraction profile, a wall
channeling effect occur, caused by the steep increase of bed voidage close to the wall. Nevertheless,
although the wall channeling cannot totally be avoided by the choice of complex particle shapes, it can
be at least reduced. Martin and Nilles [6] demonstrated, that compared to spheres, Raschig rings show
a higher wall heat transfer coefficient over a large Reynolds number range. However, the authors also
highlighted that cylinder packings show a slightly higher heat transfer coefficient, although the tendency
for wall channeling is higher compared to rings. A possible explanation for this is the higher conductive
resistance of rings caused by the lower amount of solid material in the system. Although, from a
fluid dynamic point of view, complex particle shapes may not solve entirely the radial heat transfer
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problem, from a reaction engineering point of view, it offers many possibilities as recently shown [5,7,8].
Especially, different catalyst suppliers present very different types of shapes for different applications,
e.g., wagon wheels, toothed wheels, flute wheels, daisy-types, tri- or multi-lobes, stars, and many
more [9,10].

(A) (B) (C) (D)

Figure 2. Recent process intensification concepts for catalytic flow reactors: (A) Complex particle shapes,
(B) Periodic open cell structures, (C) Packed foams and (D) Macroscopic wall structures.

An alternative concept to overcome the radial heat transfer problem in catalytic flow reactors
represent periodic open cell structures (POCS), as proposed by the research groups at FAU
Erlangen-Nuremberg [11–13] and visualized in Figure 2B. This concept combines the beneficial
characteristics of honeycomb monoliths, e.g., low pressure drop and high thermal conductivity, with the
high radial mass transfer of open-cell foams. The packings are based on unit cells, e.g., cubic, diamond or
tetradecahedron cells, which are arranged periodically and repetitively. POCS are proposed as alternatives
to random bed structures or honeycombs in gas-solid or gas-liquid-solid applications [11–13]. The latter
authors investigated the impact of material, morphology and wall coupling on the thermal performance
of POCS. The material, and likewise the solid thermal conductivity, only affected the stagnant part of
the effective radial thermal conductivity of the system, leading to a parallel shift of the effective radial
thermal conductivity for different materials plotted over superficial gas velocity. The authors found that
an increasing voidage leads to a reduced stagnant conductivity, while with decreasing cell density the
effective radial thermal conductivity increases faster, if the superficial gas velocity is raised. This reveals
one drawback of the concept: Although the specific surface area with respect to the reactor volume is high
(av ≈ 400–800 m−1), the absolute available surface area is limited, because the voidage is usually also high
(ε = 0.8–0.95), and a high cell density (number of void cells per inch) has a negative effect on the effective
radial thermal conductivity. The wall coupling seems not to be too critical, as it was found that 10–20%
wall coupling is sufficient for an effective wall heat transfer. However, it was shown that in comparison to
conventional packed bed reactors with the same specific surface area, POCS are only beneficial for low
to moderate superficial velocities of v0 ≤ 1.8 m/s, which corresponds to a maximum Particle Reynolds
number of Rep ≈ 350. This could limit the throughput under optimal operating conditions and thus leads
to larger reactor dimensions, resulting in higher investment costs. Furthermore, there may be limitations
on the manufacturability of large scale POCS.

Also inspired by the superior heat transfer characteristic of open-cell foams is the packed foams reactor
concept proposed by Ambrosetti et al. [14] (see schematically Figure 2C) and the packed-POCS concept
by Fratalocchi et al. [15] and Ambrosetti et al. [16]. Here, the open-cell foam or POCS are just a carrier to
enhance the heat transfer. The catalytic active surface area is provided by traditional pellets that are poured
into the reactor and fill the interstices. In their numerical and experimental study, Ambrosetti et al. [14,16]
found that the packing efficiency (Vp,total/ (Vtotal −VPOCS)) is mainly affected by the pore-to-pellet size
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ratio. For a ratio of dpore/dp ≥ 3 the bed voidage approaches asymptotically the value of conventional
packed beds filled with the same type of particles. Furthermore, the authors found that the specific pressure
drop of packed foams is in the same order of magnitude as for a packed bed, if the foam has a high void
fraction (εfoam = 0.9). This becomes significantly higher, if the foam voidage decreases. For the reactor
design, this results in a trade-off between good thermal conductivity and low pressure drop. Since the
foam structure occupies space that is not available for catalyst particles, this leads in an overall higher
pressure drop per active catalyst surface area in comparison to conventional packed beds. However, it was
shown by Fratalocchi et al. [15] that for Fischer-Tropsch synthesis, the packed foam concept leads to
almost isothermal reaction conditions and higher conversion in comparison to conventional packed beds.
In comparison to packed foams, packed-POCS show an increased bulk heat transfer characteristic and
wall heat transfer, respectively.

A completely different concept to solve the radial heat transfer problem in packed beds is proposed by
Zobel et al. [17] and Eppinger et al. [18], see Figure 2D. They suggest macroscopic wall structures to disturb
the regular particle arrangement close to the wall. With that, they achieved a more homogeneous axial
and radial void fraction distribution, leading to a more plug-flow-like flow characteristic. Zobel et al. [17]
demonstrated, that, close to the wall, lateral mixing is significantly increased, showing an average radial
velocity of up to 30% higher, compared to the case without wall structures. In their numerical study,
Eppinger et al. [18] noticed an up to 40% increase in lateral mixing when using appropriate macroscopic
wall structures. They also found that the wall channeling effect can totally be avoided by using specific
wall structures, e.g., randomly arranged spherical caps. The concept itself is interesting, because it directly
addresses the underlying mechanisms of the radial heat transport problem without changing the reactor
type too much. One potential drawback is the manufacturabilty of the specific designs for these wall
structures, which depends on the utilized pellet shape and size.

Comparing the different concepts discussed above, one can distinguish between two different
mechanisms to increase the radial heat transfer: One can either increase the radial conductive heat
transfer, as in the case of POCS and packed foams, or one increases the convective lateral mixing close to
the wall, which can be achieved by macroscopic wall structures. A traditional approach to increase the
heat transfer from a surface to a surrounding fluid is the use of pin-fins in a wide variety of engineering
applications, e.g., cooling of turbine airfoils, electronics, etc. [19–21]. In the field of packed bed reactors,
however, this is not commonly used, and, therefore, only limited work has previously been conducted
in that field. Nakaso et al. [22] investigated the impact of shell-side fins on the thermal performance of
a tube-side heated packed bed and found an up to thirty times higher effective thermal conductivity
if spiral-type heat fins are used. The impact of pin-fin heat sinks on the heat transfer in packings of
spherical particles were investigated by Jeng et al. [23], and a significant increase in the Nusselt number
was observed, comparing a bottom heated cubic packing of spherical brass particles with heat fins against
the configuration without them. The impact of fins in adsorption cooling units was investigated by
numerous authors, e.g., [24,25], showing beneficial characteristics of heat fins for this kind of application.

To the best of our knowledge, the impact of internal heat fins on the heat transfer inside cylindrical
packed bed reactors has not been investigated by now. The basic idea is to bridge the near wall region,
that is characterized by low lateral mixing and thermal conductivity, using fins made of highly conductible
material. This is similar to the mechanism that leads to the beneficial thermal behavior of open-cell foams
or POCS, however, only limited to the region close to the reactor wall, and without changing the general
characteristics of a packed bed too much. If a positive effect of internal heat fins can be found, this would
offer the possibility of equipping new and already existing units with that device, since the heat fins could
be manufactured, for example as a sleeve, that can be inserted into the reactor tubes.

In the first part of this study, details are given about the additive manufacturing process used to
produce a helical finned sleeve. Filling experiments are conducted and numerically replicated, using the
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Discrete Element Method (DEM), to investigate the impact of heat fins on the bed voidage, and with that,
the specific surface area of the catalyst particles. In the next part, the impact of the heat fins on the pressure
drop is investigated experimentally and numerically, followed by a numerical study examining the impact
of internal heat fins on the fluid dynamics and heat transfer. This study is limited to spherical particles.
However, other particle shapes of fin shapes and/or dimensions might have an even larger positive effect
on the reactor performance.

2. Materials and Methods

In the scope of this work, we investigate the fluid dynamics and heat transfer packed beds made of
spherical particles with a diameter of dp = 7 mm that are filled in a cylindrical container with a nominal
diameter of D = 25.4 mm. The study is divided into two separate parts. First, the manufacturability
using 3D printing is tested by producing helical fin sleeve modules. As this part of the study is limited to
fluid dynamic investigations only, and, therefore, the thermal conductivity of the fins does not play a role,
Polylactid (PLA) filaments are used. The sleeves are plugged into the reactor tube that is subsequently
filled with spherical particles and the particle count is determined. The pressure drop of the reactor
without heat fins is compared against the one of the reactor with helical fins. The experimental results are
compared with simulation results to validate the numerical model.

In the second part, the impact of different fin designs on the heat transfer is investigated numerically.
Two different types of heat fins are tested and compared against the reference case without internals.
Here, it is assumed that the heat fins are made of stainless steel, a material that can also be used in
additive manufacturing processes, but has a significantly higher thermal conductivity in comparison to
PLA. The reactor is heated by applying a constant wall temperature of 200 °C.

All investigated fins have a material thickness of 1.0 mm and a nominal width of 4.2 mm. The helical
design has a pitch of 120 mm. Two fins are arranged opposite each other. Figure 3 provides an overview of
the investigated designs, showing the empty and filled reactor. For all investigated packings the bed height
is H = 600 mm, whereas rather dense packings were created in the experiments, which was accounted
for in the numerical filling simulation by lowering the static friction coefficient to 0.01 as proposed by
Jurtz et al. [10,26]. All relevant properties and boundary conditions are summarized in Table 1.

(A)

(B)

Figure 3. Cont.
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(C)

Figure 3. Visualization of the investigated reactor designs: Tube without heat fins (A), with straight heat fins
(B), and with helical heat fins (C). Tube diameter = 25.4 mm; particle diameter = 7 mm; fin depth = 4.2 mm;
fin thickness = 1 mm.

Table 1. Properties and boundary conditions used.

Fluid Dynamic Validation Study:
Inlet velocity [m/s] (without fins) 0.21; 0.41; 0.76; 1.04; 1.25; 1.46; 1.58
Inlet velocity [m/s] (helical fins) 0.21; 0.41; 0.77; 1.05; 1.26; 1.47; 1.54

Numerical Heat Transfer Study:
Inlet velocity [m/s] 0.22; 1.10; 2.20
Inlet temperature [°C] 20
Wall temperature [°C] 200
Thermal conductivity of particles [W/(m K)] 0.25
Thermal conductivity of heat fins [W/(m K)] 15.10
Thermal conductivity of gas phase [W/(m K)] 0.026

2.1. Experimental Methods

The demands on production of the heat fins are comparatively high, since the filigree double helix is
very thin and the outer diameter of the geometry is comparatively small. Conventional manufacturing,
e.g., forming from a metal profile, is possible in principle, but requires a corresponding forming tool,
high technical know-how and, due to the necessary precision, manual skills. With the help of 3D printing
(additive manufacturing), it is possible to produce complex geometries fully automatically on the basis of
a CAD design. In principle, polymers and metals are processed layer by layer. The starting materials are
applied e.g., as filament, liquid or powder and solidified by an activation source according to the material.
An overview about 3D printing in chemical engineering is given by Parra-Cabrera et al. [27].

2.1.1. Additive Manufacturing Process

For the experimental investigation of the pressure loss, functional prototypes of the heat fins were
produced. To achieve good results, a 3D printing process needs to be able to produce the complex geometry
with the appropriate precision and sufficiently high mechanical strength. To meet these requirements,
two cost-effective 3D printing processes for the so called rapid prototyping (3D printing and experimental)
were tested: stereolithography and fused layer modeling (FLM). The stereolithography process uses a
laser to solidify a liquid resin layer by layer [28]. In FLM, a polymer filament is melted in an extruder and
selectively deposited layer by layer to produce three-dimensional components [29].

The filigree double helix geometry requires the use of support material to enable a reliable additive
manufacturing process. In the FLM process, these support structures made of water-soluble Polyvinyl
alcohol (PVA) material can be processed automatically with an additional nozzle and removed easily in an
ultrasonic bath. We, therefore, decided to use the FLM Ultimaker 3 system from Ultimaker with an extruder
die diameter of 0.25 mm, PLA filament and PVA support material. Due to the limited building space of
the Ultimaker 3, we divided the heat fin (600 mm total height) into four parts of equal length and added
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support rings to the CAD model. These rings support the shape accuracy of the individual elements and
also ensure correct orientation of the four parts during assembly, as well as when filling the tube with
pellets (see Figure 4).

Figure 4. 3D-print of a helical fin module (top) and snapshot of the CAD model (bottom).

2.1.2. Particle Count and Pressure Drop Measurements

For the pressure drop measurements, a reactor tube with a diameter of D = 24.14 mm, which is
slightly below the nominal diameter reported in Section 2, and height of H = 600 mm was filled manually
with particles. The particle number Np was calculated according to the weighing method described by
Dixon [30], using Equation (1), where mp is the total mass of particles in the reactor, ρp the particle density,
which was estimated from weighing 100 particles, and the particle diameter dp.

Np =
6mp

ρpπd3
p

(1)

The experimental setup for the pressure drop measurements is shown schematically in Figure 5.
The mass flow controller (MFC) from Bronkhorst High-Tech B.V., AK Ruurlo, Netherlands (Model:
F-202AV-M10-AGD-55-V) was operated in a range of normal volume flow rates (based on T = 0 ◦C
and p = 1 atm) from 2 to 60 LN min−1. The MFC accuracy is described with a value of ±0.5% of the
actual value plus ±0.1% of full scale. Nitrogen was used as a working gas with a head pressure above
the fixed bed from 950 to 1400 mbar. The pressure drop was measured using two pressure sensors from
Swagelok Company, Solon, OH, USA (Model: PTI-S-AA2.5-11AQ) with an accuracy of 0.25 of span best fit
straight line, located at the top and bottom of the fixed bed. Additionally, the temperature of the nitrogen
was measured. Using the temperature, head pressure, and normal flow rate, the inlet velocity for the
CFD simulation was calculated based on the ideal gas law. The pressure drop data reported hereafter are
corrected with the pressure drop in the setup without the bed structure.
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Figure 5. Experimental setup of the pressure drop measurements: details of the bed structure with 3D
printed heat fins (left) and sketch of the experimental setup (right).

2.2. Numerical Methods

In recent years, particle-resolved CFD simulations of packed bed reactors have become a valuable
and predictive tool to describe the fluid dynamcs and transport processes in a fully spatially resolved
manner. The review articles of Jurtz et al. [31] and Dixon et al. [32,33] provide a broad overview of this fast
developing topic. The basic steps for this kind of CFD simulation are:

• The generation of a random particle packing
• The construction of a CAD description of the packing
• Meshing of the geometry
• The CFD simulation itself

The workflow developed by Eppinger et al. [34] is used in this study. It uses the Discrete Element
Method (DEM) to numerically generate the particle bed. Based on the position of the spherical particles,
a CAD description is generated and meshed using the local “caps” strategy. A more detailed description
of the process can either be found in the original literature or in Jurtz et al. [31]. All numerical simulations
are conducted with the commercial CFD tool Simcenter STAR-CCM+ provided by Siemens PLM Software.

2.2.1. Numerical Packing Generation

DEM is a numerical method established by Cundall and Strack [35]. For each particle Newton’s law
of motion is solved to compute their trajectories. To calculate the contact forces, particles are allowed to
overlap slightly. Restitution and damping forces are calculated based on the existing overlap. The linear
momentum equation for each particle is given by:

mp
dvp

dt
= Fs + Fb, (2)

whereby mp is the particle mass, vp the particle velocity, t is time and Fs and Fb are the sum of surface
and body forces that act on the particle. Only the gravitational force, drag force and the contact forces are
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considered in the filling simulations. The overall contact force is calculated as the sum of particle-particle
and particle-wall contact forces that act on a particle. The contact force can be split up in a tangential (Fn,i)
and a normal (Ft,i) acting component:

Fc =
contacts

∑
i=0

(Fn,i + Ft,i) . (3)

With the normal spring stiffness Kn, the overlap in normal direction dn, the normal damping Nn and
the normal velocity component of the relative sphere surface velocity at the contact point vn, the normal
force can be calculated as:

Fn = −Kndn − Nnvn. (4)

The tangential force is defined as:

Ft =


−Ktdt − Ntvt for |−Ktdt| < |KndnCfs| (5a)
|Kndn|Cfsdt

|dt|
for |−Ktdt| ≥ |KndnCfs| . (5b)

Here, Kt is the tangential spring stiffness, dt the overlap in tangential direction, Nt the tangential
damping, vt the tangential velocity component of the relative sphere surface velocity at the contact point
and Cfs the static friction coefficient. The non-linear Hertz-Mindlin contact model is used in this study:

Kn = 4
3 Eeq

√
dnReq (6)

Kt = 8Geq
√

dnReq (7)

Nn = Nn,damp
√

5KnMeq (8)

Nt = Nt,damp
√

5KtMeq. (9)

Here, Nn,damp and Nt,damp are the normal and tangential damping coefficients that are calculated
from the normal and tangential restitution coefficient Cn,rest and Ct,rest:

Nn,damp =
−ln(Cn,rest)√

π2+ln(Cn,rest)
2

(10)

Nt,damp =
−ln(Ct,rest)√

π2+ln(Ct,rest)
2
. (11)

Meq, Req, Eeq and Geq are the equivalent values of mass, radius, Young’s modulus and shear modulus
of particles A and B during the collision:

Meq = 1
1

MA
+ 1

MB

(12)

Req = 1
1

RA
+ 1

RB

(13)

Eeq = 1
1−ν2

A
EA

+
1−ν2

B
EB

(14)

Geq = 1
2(2−νA)(1+νA)

GA
+

2(2−νB)(1+νB)
GB

, (15)

whereby ν is the Poisson ratio.
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The angular momentum of each particle is conserved as well by:

Ip
dωp

dt
=

contacts

∑
i=0

(rc × Fc,i + Mc,i) . (16)

here, Ip is the particle moment of inertia, ωp the angular velocity, rp the position vector from particles
center of gravity to the contact point and Mc the acting moment due to rolling resistance:

Mc = −Cfr |rc| |Fc|
ωp∣∣ωp
∣∣ . (17)

Cfr is the rolling friction coefficient.
In our study, the drag force is considered to prevent particles to accelerate to nonphysically high

velocities. The Schiller-Naumann drag correlation [36] is used, whereby, the particle velocity corresponds
to the relative velocity as the flow field is not solved for the filling simulations.

For a better comparability between experimental and numerical results, we restrict our investigations
to dense packed beds. To numerically mimic the process of bed densification that is done in the experiment,
we manipulate the static friction coefficient, as recently suggested by Jurtz et al. [26]. All simulation
parameter for the DEM simulations are given in Table 2.

Table 2. DEM parameters used.

Property Value

Young’s modulus [MPa] 100.0
Poisson ratio [-] 0.45
Static friction coefficient [-] 0.01
Rolling friction coefficient [-] 0.001
Restitution coefficients [-] 0.5
Particle density [kg/m3] 1100.0

2.2.2. Computational Fluid Dynamics

For the CFD simulations, the steady-state mass, momentum and energy conservation equations are
solved using the Finite Volume Method:

∇ · (ρv) = 0 (18)

∇ · (ρvv) = ∇T (19)

Here ρ is mass density of the fluid, v fluid velocity and T the stress tensor:

T = −
(

p +
2
3

µ∇ · v
)

I + 2µD, (20)

where p is pressure, µ dynamic viscosity, I the unit tensor and D the deformation tensor, given as:

D =
1
2

[
∇v + (∇v)T

]
. (21)

The energy equation is solved using the specific enthalpy h:

∇ · (ρhv) = −∇ · q̇ + (τ : ∇v)− p (∇ · v) (22)
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whereas the convective term and the work terms are neglected in the solid phase, and only the conductive
term q̇ = −λ∇T is solved. The Realizable k-ε turbulence model with an all y+ wall treatment is
used to consider turbulent effects. This model has already been successfully used in our previous
studies [10,34,37,38]. The ideal gas equation of state is used to account for compressible effects. At the
fluid-solid interface the conjugated heat transfer is solved by ensuring invariance of heat fluxes.

Polyhedral cells are used to discretize the domain, whereas a conformal mesh interface is generated
netween the gas and solid phases. During the meshing process, locally, small gaps are introduced between
touching particles and between particles and the wall, as proposed by Eppinger et al. [34]. In comparison
to other contact modification methods (e.g., bridging particle contacts) this method can be applied for heat
transfer simulations without having to specify an additional thermal resistance at the contact points [39].
To minimize the influence of the inlet and outlet boundary conditions, the volume mesh is extended by
extruding the inlet and outlet. Recently, Minhua et al. [40] published a mesh refinement study, showing that
the mesh settings used lead to an almost mesh-independent solution, even for locally evaluated properties.
This has also been shown by our research group, earlier [38,41]. The total cell count is up to 11.5 million
for the fluid dynamic simulations, where the inner of the particles are not meshed, and up to 22.3 million
if the heat transfer is considered and the solid parts are resolved with a grid.

3. Results and Discussion

3.1. Experimental Validation

A comparison between the experimentally and numerically determined number of particles within
a bed height of H = 600 mm is given in Table 3. For the reactor without internals, the average particle
count is 827, having a maximum deviation of ±0.12%. An excellent agreement with the synthetically
generated bed is observed that has a particle count of 823. A slightly higher spreading of particle count
is observed for the reactor with helical fins. The average number of particles is 746 with a maximum
deviation of ±0.6%. Nevertheless, this can be considered as a good reproducibility, and the particle count
of the numerically generated bed, which is 745, is very close to the mean number. Main reason for the
increasing deviation in particle count for the reactor with fins are the support rings, as below the rings
additional voids can arise, if the filling is carried out to fast.

Table 3. Comparison of the particle count (H = 600 mm) between experimental and DEM results.

Particle Count
Exp. #1 Exp. #2 Exp. #3 Exp. #4 DEM

Without fins 826 826 828 827 823
Helical fins 750 747 741 - 745

The simulated and experimentally determined specific pressure drop is compared in Figure 6. For a
wide range of particle Reynolds numbers an excellent agreement can be observed. A maximum deviation of
15% was observed for the case without internals at the lowest inlet velocity. For the remaining simulations
the relative deviation is below 10%, with an average relative deviation of 6.7% for the reactor without fins
and 4.5% for the helical fin design, respectively.
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Figure 6. Predicted specific pressure drop in comparison to experimental results for (A) the reactor without
heat fins, and (B) the reactor with helical fins.

For a better comparability of the two investigated designs, the numerical results are fitted towards a
Darcy-Forchheimer type equation, resulting in the following description:(

∆p
∆z

)
No Fin

= 0.28466 · u0 + 13.94474 · u2
0 (23)(

∆p
∆z

)
Helical Fin

= 0.73153 · u0 + 14.18691 · u2
0. (24)

Based on Equations (23) and (24), Figure 7 compares the specific pressure drop of the two designs.
The use of helical heat fins lead to an increasing pressure drop. However, for the investigated range of
Reynolds numbers (100 < Rep < 1000) the increase is below 10%, whereby, with increasing Reynolds
number, differences vanish. For conditions that are most probably out of scope of industrial applications
(Rep < 100) the helical fin leads to a significantly higher pressure drop, which can be attributed to the
higher value of the viscous term in Equation (24). A possible reason for this, which will be discussed in
more detail in the following section, is the formation of a strong swirl near the reactor wall, which is caused
by the helical fins. This causes an increase of average tortuosity leading to higher viscous frictional losses.
Contrarily, the influence of the helical fins on the pressure drop decrease with increasing Rep. This is due
to the fact that the main driver is then the deflection of flow through the bed structure.
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Figure 7. Parity plot, comparing the specific pressure drop of the reactor without fins, and the one
with helical fins. The provided data is based on polynomial fitting of the simulation data according to
Equations (23) and (24).

3.2. Detailed Numerical Study

In the experimental study multiple modules were used, as for the reason of stability, the two fins need
to be fixed using two annular connection elements. The connection elements are neglected in the further
part of this study in order to reduce the level of complexity. Furthermore, it is assumed that the fins are
made of stainless steel, a material characterized by its good thermal conductivity, and that can be used for
conventional and additive manufacturing processes. A packed bed without heat fins is compared against
reactors with straight and with helical heat fins regarding the bed morphology, the fluid dynamics and the
heat transfer characteristic. The dimensions of the fins and the container correspond to the nominal values
given in Section 2. The boundary conditions are summarized in Table 1.

3.2.1. Bed Morphology

As the fluid dynamics, and likewise, the heat transfer is strongly coupled with the bed morphology,
first, the impact of the heat fins on the particle arrangement is investigated. A bed voidage of ε = 0.460 is
observed for the design without additional heat fins. The usage of heat fins significantly increases the bed
voidage to values of ε = 0.470 for the straight fin design and ε = 0.491 for the helical design, respectively.
In other words, the specific surface area without fins is 465 m−1, whereas it is 431 m−1 for a bed with helical
fins and 444 m−1 for a bed with straight fins. This is obvious, because additional particle-wall contacts are
created. The radial void fraction distributions, given in Figure 8, show that this effect is limited to the near
wall region, which extend until one particle diameter away from the wall. Here, the straight and helical fin
designs show a similar increased void fraction in comparison to the reactor without heat fins. At a position
of r∗ = (R− r) /dp ≈ 0.6, a discontinuity is observed, leading to a small, but recognizable, increase of
void fraction. This corresponds to the position of the fin tips. For the straight fin design, Figure 9 shows,
based on a parallel projected view from the top of the reactor, a transmitted light image of all particles that
are in contact with the wall. The one sphere near the center of the bed is in contact with the bottom plate
of the reactor. It can be seen that the majority of particles are arranged between the two heat fins and only
a small number is in contact with the tip if the fins itself. This results in the observed steep increase of
void fraction close to the fin tips. However, after a distance of one until one and a half particle diameters,
the straight fin design shows the lowest void fraction, while the helical design and the reactor without fins
show similar values. In the core of the bed, the reactor without fins has the lowest void fraction, while the
straight design shows the highest values. The coincident trends of the radial void fraction profiles near the
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wall show that there is no increase in particle-wall contacts for the helical design compared to the straight
design, although this could have been expected. Furthermore, it can be seen that away from the wall,
the impact of fins on bed voidage is low.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0
0.2
0.4
0.6
0.8
1.0

 (-)

(R-r)/dp (-)

 No fin Straight fin Helical fin

Figure 8. Radial void fraction distribution for the different investigated designs.

Figure 9. Transmitted light image of particles that have wall contacts (straight fin design).

3.2.2. Fluid Dynamics

The observed differences in bed morphology significantly impact the fluid dynamics of the different
reactor designs. Figure 10 shows the radial profiles of the axial and tangential absolute velocity,
normalized with the local interstitial velocity for different particle Reynolds numbers. For all investigated
designs, the wall channeling effect is clearly visible, leading to a peak in axial velocity at a dimensionless
wall distance of r∗ ≈ 0.1. In comparison to the other designs, the straight fin design shows a significant
higher axial velocity close to the wall. This is caused by the additional interstices between particles, fin and
reactor wall that can be seen in Figure 9. This leads to an additional extreme channeling effect as the
flow can pass straight through the reactor. The helical design is characterized by a distinct swirl close
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to the wall, as can be seen in the profile of the tangential velocity. With increasing Reynolds number the
swirl gets more distinct. However, this effect is limited to r∗ ≤ 0.6, which corresponds to the fin width.
However, the flow in this near wall region is in strong exchange with flow in the center of the bed as can
be seen in Figure 11. Here, intersection points of streamlines with cross-sectional planes at a distance of
10 mm are shown, whereas the streamlines were injected in the annular space near the wall at a bed height
of 100 mm. It can be seen that due to the presence of particles, the flow gets quickly dispersed, which is
important for the convective radial heat transfer. At high Reynolds numbers, Figure 10 shows for the
reactor without internals close to the wall a slight increase of tangential velocity as well, while for the
straight-fin design this effect can not be observed. This is mainly caused by the straight channeling effect
discussed before.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

01
23
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1000
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(|v ax|
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(B)

Figure 10. Radial profiles of the circumferentially and axially averaged absolute value of (A) axial and
(B) tangential velocity, which are normed to the local interstitial velocity.

Figure 11. Helical design: Visualization of the intersection points of streamlines with cross-sectional planes
at a distance of 10 mm The streamlines were injected in the annular space near the wall at a bed height
of 100 mm.

The second maximum of the axial velocity coincidences with the maximum of the radial void fraction
distribution, that is given in Figure 8, at a position of r∗ ≈ 1.0. Due to the extreme wall channeling that was
found for the straight design, for continuity reasons, a reduced axial velocity is observed in comparison
to the other two desings. In the center of the bed a further increase of axial velocity can be found for the
straight-fin design, which results from the pronounced increase of void fraction that was found. For the
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reactor without internals and the helical-fin design only a slight increase in axial velocity can be observed
in the core of the bed.

The specific pressure drop for the different designs is listed in Table 4. Caused by the higher
bed voidage and increased wall and core channeling, the pressure drop of the straight-fin design is
significantly lower, compared to the baseline design without internals. A reduction between 20–30% is
found. Considering Ergun’s equation [42], as the bed voidage is about 2% higher compared to the baseline
design, around 10% of the pressure drop reduction can be attributed to the increase in bed voidage,
while the remaining amount must be addressed to the additional channeling effects. The additional
channeling effcts are reflected by a lower friction factor Ψ, as can be seen in Table 4. The helical design
shows a specific pressure drop similar to the one of the reactor without internals. However, as the bed
voidage is about 7% higher for the helical-fin design, a significant pressure drop reduction would normally
be expected. In fact, it is found that the friction factor increases by 30%. The, in relation to the bed voidage,
increased pressure drop can be attributed to the strong swirl that was found close to the wall. This leads to
a more tortuous flow path.

Table 4. Summary of simulation results.

Rep Design ∆p/∆z (Pa/m) δ∆p (%) Ψ =
∆p

ρfu2
0
·

dp

L
· ε3

1 − ε
(-) δΨ (%) αw (W/(m2 K)) δαw (%) λr,eff (W/(m K)) δλr,eff (%)

10
5.

6 No fin 192.0 - 4.17 - 29.5 - 0.149 -
Straight fin 157.9 −18 4.01 −4 32.0 +8 0.189 +27
Helical fin 193.9 +1 5.43 +30 37.5 +25 0.219 +47

52
8 No fin 2755.4 - 2.41 - 73.3 - 0.461 -

Straight fin 1950.8 −29 1.98 −18 86.9 +19 0.449 −3
Helical fin 2804.6 +2 3.14 +30 98.7 +35 0.769 +67

10
56

No fin 9721.9 - 2.11 - 124.3 - 0.831 -
Straight fin 6600.2 −32 1.68 −20 140.5 +13 1.082 +30
Helical fin 10,072.8 +4 2.82 +34 149.9 +21 1.573 +89

3.2.3. Heat Transfer

The axial profiles of the dimensionless temperature Θ = (T − T0) / (Tw − T0) in the center of the bed,
as well as the axial profile of the mass flow averaged temperature, evaluated on cross sectional planes,
are given in Figure 12. For the lowest Reynolds number it can be seen that, until an axial distance of
approximately 10 dp, the core temperature profiles of the straight-fin design and the baseline design are
almost coincident. After that position, the temperature gradients for the straight-fin design get steeper in
comparison to the baseline case, leading to higher core temperature at same axial positions. With increasing
Reynolds number the position increases slightly to a value of 20 dp, nevertheless, the trend of higher core
temperatures is still preserved, indicating an improved heat transport characteristic. The axial profile of
the mass flow averaged temperature show that, except for the position 10 ≤ z/dp ≤ 15, always higher
average temperatures are found for the straight-fin design. For the helical-fin design this trend is even
more pronounced. Besides a small entry length of ≤5 dp, the core and the average temperatures are
significantly above those of the other investigated designs, which is a first indicator for the superior heat
transfer characteristic of the helical-fin design.



Processes 2020, 8, 1528 17 of 24

0 20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

 (-)

z/dp (-)
 No fin Straight fin Helical fin

(A)

0 20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

 (-)

z/dp (-)
 No fin Straight fin Helical fin

(B)

0 20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

 (-)

z/dp (-)
 No fin Straight fin Helical fin

(C)

0 20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

 (-)

z/dp (-)
 No fin Straight fin Helical fin

(D)

0 20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

 (-)

z/dp (-)
 No fin Straight fin Helical fin

(E)

0 20 40 60 80 1000.0
0.2
0.4
0.6
0.8
1.0

 (-)

z/dp (-)
 No fin Straight fin Helical fin

(F)

Figure 12. Comparison of the axial profile of the core temperature (left) and the averaged temperature
(right) for Rep = 105.6 (A,B), Rep = 528 (C,D) and Rep = 1056 (E,F).
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Based on the axial profile of the logarithmized dimensionless core temperature Θlog,c =

ln [(Tw − Tc) / (Tw − T0)], the wall heat transfer coefficient and the effective radial thermal conductivity
can be calculated from the slope and the intercept of the resulting straight line as described by
Wakao and Kaguei [43]:

slope = −a2
1

(
λr,eff

v0ρfcp,fR2

)
(25)

intercept = ln
2

a1

[
1 + (a1/Bi)2

]
J1 (a1)

. (26)

First, the parameter a1 is determined iteratively, solving:

Tw − Tm

Tw − Tc
=

2J1 (a1)

a1
(27)

at the end of the bed. Once a1 is known, the effective radial thermal conductivity and Biot number
Bi = αwR/λr,eff can be calculated from Equations (25) and (26). In a last step, the wall heat transfer
coefficient is calculated from the Biot number. In above’s equations, ρf and cp,f are the density and specific
heat of the gas phase, Tc the core temperature, Tm the average exit temperature, and J1 (a1) the Bessel
function of first kind and first order. The underlying assumptions of this evaluation method is, that axial
heat conduction can be neglected, which is true for high flow rates. For a more detailed description the
interested reader is referred to the original literature [43]. For the fitting of the linear temperature curve
only temperature values of 0.05 ≤ Θ ≤ 0.95 are considered, to minimize thermal entry and saturation
effects. Based on the simulation of the baseline design at u0 = 1.1 m/s the sensitivity of αw and λr,eff
towards the accounted temperature range was conducted, whereas the range of Θ was varied as follows:
{Θ ∈ R : 0.02 ≤ Θ ≤ 0.4 ∧ 0.6 ≤ Θ ≤ 0.98}. The mean relative deviation for αw and λr,eff were 1% and
6%, respectively. To ensure a representative number of data points to be evaluated, we decided to use the
reported range of Θ.

The calculated wall Nusselt numbers and dimensionless effective radial thermal conductivities
are given in Figure 13 and are compared with the correlation values of Yagi and Kunii [2,44]. For the
baseline design, the values for αw and λr,eff tend to be a bit lower in comparison to the correlations.
However, considering the scattering of literature values that were reported by Dixon [45], the agreement is
satisfactory. Furthermore, the results show the positive effect of the internal heat fins on both, the wall
Nusselt number and the effective radial thermal conductivity. As summarized in Table 4 αw increases by
8–19% and 21–35% for the straight and helical fin design, respectively. The increase in λr,eff is approximately
47–89% for the helical design, whereas the gain gets larger for higher Reynolds numbers. Not so clear are
the results for the straight fin design. While a growth in λr,eff of around 30% can be seen for Rep ≈ 100
and Rep ≈ 1000, no performance gain was found for Rep ≈ 500. The reason for this could yet not be
identified, nevertheless, the results show the beneficial impact of internal heat fins on the overall heat
transfer. Since the heat fins change both, the flow field and the bed morphology (see: Figures 8 and 10), it is
hard to distinguish which heat transfer mechanism exactly improves the thermal performance. However,
the results of the straight fin design show slight additional channeling effects close to the wall that are
induced by the higher voidage in that area. Theoretically, this would negatively affect the radial heat
transport in this area. The fact, that the thermal performance is also increased for that fin design indicates,
that the gain of radial heat transfer can significantly be attributed to the conduction through the solid of
the fins.
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Figure 13. Wall Nusselt number (black) and the dimensionless effective radial thermal conductivity (red)
as a function of particle Reynolds number for all investigated designs in comparison to the correlations of
Yagi and Kunii [2,44].

4. Conclusions

In this work, the impact of internal heat fins on the bed morphology, pressure drop and heat transfer
in slender packed bed reactors filled with spherical particles was investigated. Helical fin modules were
manufactured using the FLM 3D printing technique. The effect of the fins on bed morphology, in terms
of particle count, and specific pressure drop was investigated both, experimentally and numerically,
using particle-resolved CFD. An excellent agreement between the CFD results and the experimental
measurements were found, indicating that particle-resolved CFD is a reliable and predictive tool that can be
used for further design studies, e.g., dimensions, shape, and numbers of internal heat fins. For industrially
relevant Reynolds numbers (Rep > 100), the specific pressure drop, caused by the helical heat fins, is below
+10% in comparison to the case without fins. However, one needs to keep in mind, that the bed voidage
increases due to the presence of the helical fins, resulting in a lower pellet surface area per reactor volume.

In a comparative numerical study, two different heat fin designs (helical and straight fin design) were
compared against a reactor without heat fins under wall-heated conditions. While, in accordance with our
previously presented results, the specific pressure drop for the helical fin design is only slightly increased,
a significant reduction in specific pressure drop of 20% was observed for the straight fin design. To account
for the differences in bed voidage, the friction factors were calculated. A decrease of up to 20% can be
seen for the straight fin design, which is mainly caused by additional channeling effects that are a result of
how the spherical particles arrange around the heat fins. Regarding the helical fin design, a strong swirl
occurs close to the tube wall, which is the main driving force for the increase of the friction factor of 30%.
Nevertheless, it was found that the flow in this near-wall region is in strong exchange with the flow in the
remaining bulk part of the reactor.

Based on the axial temperature profiles, the wall heat transfer coefficients and the effective radial
thermal conductivities were calculated. Over the investigated particle Reynolds number range, an increase
of 25% to 35% in wall heat transfer coefficient, and of up to almost 90% in effective radial thermal
conductivity was found for the helical fin design, respectively. For the straight fin design, the increase of the
wall heat transfer coefficient accounts for 8–19%. For the lowest and highest investigated Reynolds number,
also for the straight fin design, a significant increase in λr,eff of up to 30% was found. Overall, the simulation
results show the beneficial impact of internal heat fins on the heat transfer characteristics in slender packed
bed reactors. In comparison to other presented reactor concepts, the advantages of internal heat fins are:
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• It is applicable to new and already existing reactors, as the fins are manufactured as
replaceable sleeves.

• The morphological and fluid dynamic characteristics (bed voidage and pressure drop) change
only moderately.

• The active catalytic surface area changes only slighty. It is reduced by 7% for the helical and below
5% for the straight fin design, respectively.

• Reactor filling and re-filling strategies can stay unaffected.

Nevertheless, we see the following future tasks, to make this a reliable reactor concept:

• Although, some publications are available, indicating the accuracy of particle-resolved CFD when it
comes to heat transfer simulation, e.g., [46,47], broader validation is necessary, to make this a reliable
and predictive design tool, especially under industrial conditions, e.g., complex particle shapes,
turbulent flows, steep gradients, and coupled with catalytic reactions.

• Design parameters, such as number of fins, fin thickness, fin material and fin shape, should be
varied to find an optimized fin design that incorporates a beneficial heat transfer characteristic with a
reduced impact on bed voidage, active catalytic surface area and pressure drop.

• It needs to be evaluated, if a generalized optimized fin design can be found, that is also applicable to
other particle shapes than spheres, or if individual solutions must be developed.

• Possible limits regarding the manufacturability using 3D printing need to also be evaluated.
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Abbreviations

The following abbreviations are used in this manuscript:

CAD Computer aided design
CFD Computational fluid dynamics
DEM Discrete element method
FLM Fused layer modeling
MFC Mass flow controller
PLA Polyactid
POCS Periodic open-cell structures
PVA Polyvinylalcohol

Nomenclature

Cfr rolling friction coefficient [-]
Cfs static friction coefficient [-]
Cn,rest normal restitution coefficient [-]
Ct,rest tangential restitution coefficient [-]
D tube diameter [m]
Eeq particle equivalent Young’s modulus [Pa]
Geq particle equivalent shear modulus [Pa]
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H bed height [m]
J1 () Bessel function of first kind and first order [-]
Kn normal spring stiffness [N m−1]
Kt tangential spring stiffness [N m−1]
Meq particle equivalent mass [kg]
N tube-to-particle dimeter ratio [-]
Nn,damp normal damping coefficient [-]
Nn normal damping [N s m−1]
Np particle count [-]
Nt,damp tangential damping coefficient [-]
Nt tangential damping [N s m−1]
R tube radius [m]
Req particle equivalent radius [m]
T temperature [K]
T0 inlet temperature [K]
Tc core temperature [K]
Tm average outlet temperature [K]
Tw wall temperature [K]
VPOCS volume of the POCS [m3]
Vp,total volume of all particles [m3]
Vtotal empty reactor volume [m3]
D deformation tensor [s−1]
Fb body forces [N]
Fn normal contact force [N]
Fs surface forces [N]
Ft tangential contact forces [N]
Ip particle moment of inertia [kg m−2]
I unit tensor [-]
Mc moment due to contact [N m]
T stress tensor [Pa]
rp position vector from particle center of gravity to contact point [m]
vp particle velocity [m s−1]
v fluid velocity [m s−1]
q̇ conductive heat flux [W m−2]
a1 parameter [-]
av specific surface area [m−1]
cp,f fluid specific heat [J kg−1 K−1]
dn overlap in normal direction [m]
dpore pore diameter [m]
dp particle diameter [m]
dt overlap in tangential direction [m]
h specific enthalpy [J kg−1]
i contact index [-]
mp particle mass [m3]
p pressure [Pa]
r radial coordinate [m]
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r∗ dimensionlesss wall distance [-]
t time [s]
v0 superficial velocity [m s−1]
vn normal velocity component of the relative sphere surface velocity [m s−1]
vt tangential velocity component of the relative sphere surface velocity [m s−1]
z axial coordinate [m]
Ψ friction factor [-]
Θ dimensionless temperature [-]
Θlog,c dimensionless logarithmic core temperature [-]
αw wall heat transfer coefficient [W m−2 K−1]
ωp particle angular velocity [rad s−1]
δ relativ deviation [%]
λ thermal conductivity [W m−1 K−1]
λr,eff effective radial thermal conductivity [W m−1 K−1]
µ dynamic viscosity [Pa s]
ν Poisson ratio [-]
ρ fluid density [kg m−3]
ρf fluid density [kg m−3]
ρp particles solid density [kg m−3]
ε void fraction [-]
εfoam foam voidage [-]

Dimensionless Numbers

Bi = αwR/λr,eff Biot number
Rep = v0dpρf/µf particle Reynolds number
Nuw = αwdp/λf wall Nusselt number
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