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SM1. Detailed Expressions for Radical Entry and Exit and Mass Balances for Species  
Note. Notice that, for clarity and to interconnect with the main text, some of the equations 

are repeated from the main text and their numbers in the main text are kept here.  

For the entry rate coefficient of radicals in particles, the collision model (proportional to r2), 

as opposed to the diffusion model (proportional to r), is used: =    4   [ ]  

(S1a) 

where    is in Ls-1;   is an entry coefficient for radicals in particles (m/s-1); r is the 

radius of an average particle; [ ]  is the radical concentration in the aqueous phase.   

For radical entry to micelles, a similar expression is used:  =      [ ]     (S1b) 

 

where , m/s-1, is the entry coefficient for radicals in micelles, and  is the total 

micellar surface area.  

Radical exit coefficient 

This is given by the following expressions: =   ( +   ) 

(S1c) 

with chain transfer frequencies  and : =  [ ]                                                                     =    [ ]  

(S1d) (S1e) 

where  [ ]  is the chain transfer agent concentration in particles, mol/L, and exit 

probabilities  and : =  [ ]                                                                  =  [ ]  



(S1f) (S1g) 

where =                                                          =     

(S1h) (S1i) 

 and  are the diffusion coefficients (m2/s) of monomeric radicals in water and particles, 

respectively;  and  are diffusion coefficients of CTA in water and particles, 

respectively;   and  are the partition coefficients between particles and water of 

monomeric and CTA radicals, respectively;  is the average particle diameter. The exit 

coefficient , has units of Ls-1. 

Equations (S1d, S1e) require the use of pseudo-homopolymer chain transfer constants. The 

following expressions are proposed to this end:  

 = ∑ ∑ ∅       (S1j) 

 

 =                                             (S1k) 

 =                                                (S1l) 

 ( ≠ ) =                                      (S1m) 

 = ∑                                           (S1n) 

 =                                              (S1o) 

where the  and the  are the chain transfer constants implicitly defined by Equations 

(S1k) and (S1o), respectively. 

Initiator  = −  /  + ,  −      (12) 

Reducing Agents  and  = , −        (13) = ,  −  − /     (14) 



= +       (S1p) 

 Neglecting flow terms for  and using Eq. (S1p): 

                                = (− + ( − ) )/     
 (S1q) 

and assuming the quasi-steady state (QSSA) for : 

                                 =       (S1r) 

  

Primary Radicals  and Polymeric Radicals  (aqueous phase)  =  /  −    /     (S1s)  is the molar amount of monomer in the aqueous phase. In Eq. (S1s) it has been assumed 

that there is no entry of primary radicals into micelles or particles. 

 =   / − /  -  4    ∑ −    +  ∑       (S1t) 

Taking the QSSA for  and , and combining the resulting equations, a simple quadratic 

equation for  is obtained: −  / − 4    ∑ −    +   ∑ +  / = 0         (21) 

The micelle concentration, , (L-1) can be calculated from the surfactant balance as 

shown below. 

 

Surfactant S =  , −       (15) 

 

It is assumed that the surfactant rapidly reaches thermodynamic equilibrium and is 

partitioned between surfactant adsorbed in particles, , in monomer droplets, , or free, , 



which can be in solution or forming micelles, depending on its concentration (all quantities 

in moles).  = + +  ≈ +      (S1u) 

Neglecting the amount of surfactant adsorbed in monomer droplets,  can be represented by 

a Langmuir isotherm: =      /    /        (S1v) 

 

where the particle surface area , is given by:              

      = 4 ∑       (S1w) 

                             

with   being the radius of a monomer swollen particle. Combining (S1u) and (S1v), a 

quadratic equation for  can be derived: 

 + /    −      /   − ( +  / )  = 0   (S1x) 

Once Eq. (S1x) is solved for , the micelle concentration can be determined as follows: = (  /  [ ] )            if         /  ≥ [ ]      

(16) = 0                                       if       /  <  [ ]      

(17) 
 

Where [ ]  is the critical micelle concentration of the surfactant (mol L-1);  is the 

surface area per surfactant molecule, and  is the radius of a micelle. 

 

Chain Transfer Agent (Tr) =  , −  − [ ]   ∑  + ,     (18) [ ] =        (S1y) 

where ,  is a side feed stream (mass flow) of CTA to reactor ri. 

 



Although the CTA employed in the process is usually a long-chain molecule (dodecyl 

mercaptan), which is not water soluble, for generality it is considered here that the CTA can 

partition between the aqueous and the particle phase. 

Besides the total mass balance of the CTA, it is considered that this component partitions 

between the particles and the aqueous phase. Defining [ ]  and [ ]  as the concentrations 

of CTA in the particle and aqueous phase, respectively, the total amount of CTA satisfies the 

relationship:  =  [ ] + [ ]                                        (S1z) 

And the concentrations in the two phases are assumed to follow the partition coefficient 

defined as:   =  [ ][ ]                                                             (19) 

Resulting in:  [ ] =                                                  (S1aa) 

This concentration is used to calculate the kinetics and the desorption term in the particle 

balances (see SM). 

 

 

Water (in mass units) =  −        (20) 

 
SM2. Monomer Partitioning Equations 

Based on the definition of the equivalent conversion, , (Eq. 22 in main text): 

If ≤    (intervals 1 and 2) 

In this case [ ]  is calculated by first considering the mass of monomer ( ) and 

polymer ( ) contained in a hypothetical particle of unit mass, ( + ) = 1, from which Eqs. 

(S2a)-(S2c) and (23) follow: =        (S2a) =        (S2b) 



= 1 −            (S2c) [ ] =   [ ] = (  / )  (  / )                (23) 

 is the volume of this hypothetical particle, which is calculated assuming volume additivity: 

  = + + +       (24) 

and  = molecular weight of monomer i. 

   and  are the amounts of type 1 and 2 monomer units, respectively, in the polymer 

( =  + ) present in the hypothetical particle. These are easily calculated, since the 

copolymer composition, and therefore the ratio / , are known at any given time. 

Similarly,  ,  can be calculated based on the proportion of the remaining monomers 

taking into account that a known fraction of the monomer 2 can be present in the aqueous 

phase in the NBR case.  

, , (i=1,2) are the densities of monomer i and homopolymer i, respectively. 

If  >   (   , interval 3), [ ]  is calculated assuming that all the 

remaining monomer, except for the possible presence of AN in the water phase (NBR case), 

is in the particles: [ ] =   (  / )  (( ) / )     (25) 

where    =  + + +      (26) 

and the superindex m indicates mass units.  

An approximate way of estimating the amount of AN in the water phase ( ) in the 

NBR case is based on a partition coefficient, defined as the ratio of mass concentrations of 

monomer 2 in the particles and the water phase: =   [( ][( ]         

     (27) 

which can be written as:  =   ( )//       (S2d) 



 above is the total volume of the particle phase. Replacing (26) in (S2d) and 

rearranging, a quadratic equation can be obtained for , resulting in: − + + + + + =   0    (28) 

 
SM3. Dimensionless version of the Population Balance Equations for Particles and 
Original Polymer Moments Equations 
 

Defining ,  = , / , where  is a characteristic number of particles per L of water, 

Equations (7)-(9) become  , = − , + , + , + , − ,     (S3a)  , = , − ( + ) , + ( + 2 ) , + +  , − ,  

 (S3b)  , = , − ( + 2 + ) , + , − ,     

(S3c) 

Polymer Moments Equations 
 

PBE’s for Live Polymer Moments 

                                             , = ∑              = 1, 2,     = 0, 1, 2        (32) 

 
Zeroth Moments ( =  ) =  

 ∑ = , = ,  + + − − , + , + , −,    

(S3d) 

      where 

FIN = , /  



FOUT= ,  

Note that ≡ , ≡ ,  , , ≡ 2   ≡  2 , , and Eq. (S2a) is equivalent to (Eq. 8) 

 =   
 

, = − , + ( , − , /2) − , + , − ,    

(S3e) 

 

Since , ≡ 2   ≡  2 , , Eq. (S3e) is equivalent to Eq. (9). 

 

        

First Moments ( =  ) =  ∑ = , = [ ] ,  − [ ] , + , − [ ] , + +  − , − , + [ ] , + [ ] , + , + , − ,
  (S3f) =   

, = [ ] , − [ ] ,  

− , − [ ] , + , − , /2 + 2 (−2 , ) + [ ] , + [ ] , + , − ,      
 (S3g) 

 

 

Second Moments (K=2) =                                                            



 ∑ = , = [ ] (2 , + , ) − [ ] , + , − [ ] , + +  − , − , + [ ] , + [ ] , + , /2 + , −,   (S3h) 

 =                

, = [ ] (2 , + , ) − [ ] ,  

                                           − , − [ ] , + , − , /2 − ,  + [ ] , + [ ] , + , − ,     (S3i) 

 

The following definitions are also applicable: = ∑  = Total number of particles having n radicals, per L of water (n=1,2). = ∑ ∑  = Total number of particles per L of water. 

 

PBE’s for Dead Polymer Moments 

 

 , = ∑ ,   = 0, 1, 2   = 0, 1, 2 

Zeroth Moments (K=0) =               

 

, = − , + , + ,  + , + , , − , ,  

+ 2    (S3j) 

 



=       
 

, = , − , + 2 , − ,  + [ ] , + [ ] , + ,  + , , / − , ,      (S3k) 

 =                           
 

, = , − , − 2 , + [ ] ,  + [ ] , − , + , , / − , ,   (S3l) 

First Moments (K=1) =                
, = − , + , + ,  

+ , + (2 , ) + , , / − , ,    (S3m) 

 =           
 

, = , − , + 2 , − ,  + [ ] , + [ ] , + ,  + , , / − , ,       (S3n) 

 =                          
 



, = , − , − 2 , + [ ] ,  + [ ] , − , + , , / − , ,   (S3o) 

 

 

Second Moments (K=2) =                  
, = − , + , + ,  

                                                    + , + , / , , + ,  

                                                    + , , − , ,      
 (S3p) 

 =                    
, = , − , + 2 , − ,  + [ ] , + [ ] , + ,  + , , − , ,       (S3q) 

 =                   
 

, = , − , − 2 , + [ ] , + [ ] , − ,  

                + , , − , ,      (S3r) 

Transfer to Polymer and Double Bond Polymerization Terms 

In the previous equations, the transfer-to-polymer and double bond polymerization terms 

have not been included. They are explained next and described as additional terms to be 



incorporated in the previous equations. To indicate the corresponding modifications to the 

previous equations the notation =…+ will be used. For example, the following equation: , = ⋯ +   

indicates that the additional terms have to be added to the right-hand side of Eq. (S3m). 

Live Polymer 

To derive the corresponding terms, the following reaction schemes are considered: +   +  +   1,  

The general balance for live polymer, Eq. (62) is modified as (in the following equations 

,  is written as  for simplicity. 

= ⋯ − ∑ + ∑  − ∑ +∑   (S3s) 

From which the moment equations are modified as: 

Live Polymer Moments K=0,1,2 for =                              
, = ⋯ + 0    (S3t) 

 

, = ⋯ + − , , + , , + , ,   
 (S3u) 

 

, = ⋯ + − , , + , , + , , + 2 , ,  
  (S3v) 

Live Polymer Moments K=0,1,2 for =  

, = ⋯ + 0   (S3w) 

 

, = ⋯ + − , , + , , + , ,   
 (S3x) 



 

 

, = ⋯ + − , , + , , + , , + 2 , ,  
  (S3y) 

 

Dead Polymer 

To derive the dead polymer terms, the kinetic scheme is better re-written as: 

 +   +  +   1,  

 = − ∑ + ∑ − ∑  
 (S3z) 

 

Dead Polymer Moments K=0,1,2 for =                              
 

, = ⋯ − , ,    (S3aa) 

 

, = ⋯ + − , , + , , − , ,    
 (S3ab) 

 

, = ⋯ + − , , + , , − , ,    
 (S3ac) 

 

 

 

Dead Polymer Moments K=0,1,2 for =    



, = ⋯ + − , , + , , − , ,     
 (S3ad) 

, = ⋯ + − , , + , , − , ,    
 (S3ae) 

 

, = ⋯ + − , , + , , − , ,    
 (S3af) 

Notice that these reactions do not contribute terms for particles with n=0 since these particles 

contain no live polymer to react with.  

On the other hand, since some of the previous terms introduce the moment closure problem 

(the first moment depends on the 2nd moment; the 2nd moment depends on the third moment, 

and so on) the Hulburt and Katz approximation is used: 

, = ,, , 2 , , − ,   n = 0,1,2   (S3ag) 

  

* H. M. Hulburt, S. Katz, Chem. Eng. Sci, 1964, 19, 555. 
 

Dimensionless Versions of the Live Polymer Moments Equations 

, = ∑ , , = 1,2  is a characteristic value (1017) for the live polymer moments. ̅ , = [ ] ̅ ,  − [ ] ̅ , + ̅ , − [ ] ̅ , + +  − ̅ , − ̅ , + [ ] ̅ , + [ ] ̅ , + ̅ ,2  + ̅ , − ̅ ,  

           (S3ah) 

 

where =  /  



̅ , = [ ] ̅ , − [ ] ̅ ,  

− ̅ , − [ ] ̅ , + ̅ , − ̅ ,2 + 2 (−2 ̅ , ) 

+ [ ] ̅ , + [ ] ̅ , + ̅ , − ̅ ,       (S3i) 

 ̅ , = [ ] 2 ̅ , + ̅ , − [ ] ̅ , + ̅ ,  − [ ] ̅ , + +   − ̅ , − ̅ , + [ ] ̅ , + [ ] ̅ , + , + ̅ , − ̅ ,   
          (S3j)         ̅ , = [ ] 2 ̅ , + ̅ , − [ ] ̅ ,  

                                           − ̅ , − [ ] ̅ , + ̅ , − , − ̅ ,  + [ ] ̅ , + [ ] ̅ , + ̅ , − ̅ ,     (S3k) 

 

Dimensionless Versions of the Dead Polymer Moments Equations 

Only those equations that are modified in their dimensionless version are included here. In 

the rest of the equations it is possible to replace the original moments by their 

dimensionless versions. For example, Equation S3al below is the dimensionless version of 

Eq. S3k (similarly for Equations S3j and S3l) 

, = , − , + 2 , − ,  + [ ] , + [ ] , + ,  + , , / − , ,     (S3al) 

1st Moments  

= 0              , = /  

,  are characteristic values (1020 and 1023, respectively) for the dead polymer 
moments 
 



, = − , + , + ,  

+ , + ( , ) + , , / − , ,    (S3am) 

 = 1         , = /  

 

, = , − , + 2 , − ,  

+( [ ] , + [ ] , ) + ,  

+ , , / − , ,       (S3an) 

 = 2                        , = ∑ /  

, = , − , − 2 , + ( [ ] ,  

+ [ ] , ) − , + , , / − , ,   (S3ao) 

 

 

2nd Moments 

= 0        , =  /        
, = − , + , + ,  

                                                    + , + , / , , + ,  

                                                    + , , − , ,       (S3ap) 

= 1                  , =  /  

, = , − , + 2 , − ,  



+( [ ] , + [ ] , ) + ,  

+ , , − , ,       (S3aq) 

 

= 2                 , =  /  

 

, = , − , − 2 , + ( [ ] , + [ ] , ) − ,  

                + , , − 2,2 ,      (S3ar) 

 

 
Dimensionless versions of the additional transfer to polymer and double bond 
polymerization terms 

Live Polymer ̅ ,  

 

, = ⋯ + − ̅ ,  ̅ , 1 + ̅ , ̅ , 2 + ̅ , ̅ , 2 ∗  

  (S3as) 

 

   ̅ ,  

, = ⋯ + − ̅ , ̅ , 1 + ̅ , ̅ , 2 + ̅ , ̅ , 2 +2 ̅ , ̅ , 2 ∗    (S3at) ̅ ,  

, = ⋯ + − ̅ , ̅ , 1 + ̅ , ̅ , 2 + ̅ , ̅ , 2  

  (S3au) 



̅ ,  

, = ⋯ + − ̅ , ̅ , 1 + ̅ , ̅ , + ̅ , ̅ , 2 +2 ̅ , ̅ , 2    (S3av) 

 
Dead Polymer 

Notice that 

, =  /  

,  

, = … + − , , 1     (S3aw) 

 

 

,  

, = ⋯ + − , , 21 + , , − , , 21    

 (S3ax) 

 

 

,  

, = ⋯ + − , ,2 + , , 12 − , , 21    

 (S3ay) 

 

 

,  

, = ⋯ + − , , 1     (S3az) 

 

 



 

 

,  

, = ⋯ + − , , 21 + , , − , , 21    

 (S3ba) 

 

,  

, = ⋯ + − , ,2 + , , 12 − , , 21    

 (S3bb) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SM4. Effects of changes on the initiator and activator concentrations in the SBR case 
 



 
Figure S.1. Effect of the simultaneous variation of initiator and activator 1 (from -45% to 

+45%) on conversion (A), number of particles Np (B), rate of polymerization Rp (C), and 

average number of radicals per particle  (D), along the reactor train with respect to the base 

case in SBR production.  

 

SM5. Mayo-Lewis plot of F1 vs f1 for the NBR case 
 



 

Figure S.2 Mayo-Lewis plot (blue line) of the instantaneous copolymer composition F1 vs. 

monomer feed composition f1 for the butadiene (1) – acrylonitrile (2) system using 

reactivity ratios r1 = 0.30, r2=0.04. The red line is only a reference to locate the azeotropic 

composition.  
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