Supporting Material for Mathematical Modeling of the Production of Elastomers by

 Emulsion Polymerization in Trains of Continuous ReactorsEnrique Saldívar-Guerra, Ramiro Infante-Martínez and José María Islas-Manzur

SM1. Detailed Expressions for Radical Entry and Exit and Mass Balances for Species

Note. Notice that, for clarity and to interconnect with the main text, some of the equations are repeated from the main text and their numbers in the main text are kept here.

For the entry rate coefficient of radicals in particles, the collision model (proportional to r^{2}), as opposed to the diffusion model (proportional to r), is used:

$$
\begin{equation*}
\rho=N_{A} V_{w} k_{m p} 4 \pi r^{2}[P]_{w} \tag{S1a}
\end{equation*}
$$

where ρ is in $\mathrm{Ls}^{-1} ; k_{m p}$ is an entry coefficient for radicals in particles $\left(\mathrm{m} / \mathrm{s}^{-1}\right) ; \mathrm{r}$ is the radius of an average particle; $[P]_{w}$ is the radical concentration in the aqueous phase. For radical entry to micelles, a similar expression is used:

$$
\begin{equation*}
\rho_{m i c}=N_{A} V_{w} k_{m m} a_{m}[P]_{w} \tag{S1b}
\end{equation*}
$$

where $k_{m m}, \mathrm{~m} / \mathrm{s}^{-1}$, is the entry coefficient for radicals in micelles, and a_{m} is the total micellar surface area.

Radical exit coefficient
This is given by the following expressions:

$$
\begin{equation*}
k_{\text {des }}=V_{\mathrm{w}}\left(g \Psi+g^{T} \Psi^{T}\right) \tag{S1c}
\end{equation*}
$$

with chain transfer frequencies g and g^{T} :
$g=\overline{k_{t r_{M}}}[M]_{p}$

$$
\begin{equation*}
g^{T}=\overline{k_{t r_{T}}}[T]_{p} \tag{S1d}
\end{equation*}
$$

where $\left[\boldsymbol{T}_{\boldsymbol{p}}\right.$] is the chain transfer agent concentration in particles, mol/L, and exit probabilities Ψ and Ψ^{T} :

$$
\Psi=\frac{k_{o}}{k_{o}+\overline{k_{p}}[M]_{p}}
$$

$$
\Psi^{T}=\frac{k_{o}{ }^{T}}{k_{o}{ }^{T}+\overline{k_{p}}[M]_{p}}
$$

where
$k_{o}=\frac{12}{d_{p}^{2} m_{d}} \quad \frac{D_{w} D_{p}}{D_{p}+2 D_{w}}$

$$
\begin{equation*}
k_{o}^{T}=\frac{12}{d_{p}^{2} m_{d_{T}}} \frac{D_{w T} D_{p T}}{D_{p T}+2 D_{w T}} \tag{S1i}
\end{equation*}
$$

(S1h)
D_{w} and D_{p} are the diffusion coefficients $\left(\mathrm{m}^{2} / \mathrm{s}\right)$ of monomeric radicals in water and particles, respectively; $D_{w T}$ and $D_{p T}$ are diffusion coefficients of CTA in water and particles, respectively; m_{d} and $m_{d T}$ are the partition coefficients between particles and water of monomeric and CTA radicals, respectively; d_{p} is the average particle diameter. The exit coefficient $k_{\text {des }}$, has units of Ls^{-1}.
Equations (S1d, S1e) require the use of pseudo-homopolymer chain transfer constants. The following expressions are proposed to this end:

$$
\begin{gather*}
\overline{k_{t r_{M}}}=\sum_{i=1}^{2} \sum_{j=1}^{2} p_{i} \emptyset_{j} k_{t r M_{i j}} \tag{S1j}\\
k_{t r M_{i i}}=C_{M_{i}} k_{p_{i i}} \tag{S1k}\\
C_{M_{12}}=\sqrt{C_{M_{1}} C_{M_{2}}} \tag{S11}\\
k_{t r M_{i j}}(i \neq j)=C_{M_{12}} k_{p_{i j}} \tag{S1m}\\
\overline{k_{t r_{T}}}=\sum_{i=1}^{2} p_{i} k_{t r T_{i}} \tag{S1n}\\
k_{t r T_{i}}=C_{T_{i}} k_{p_{i i}} \tag{S1o}
\end{gather*}
$$

where the $C_{M_{i}}$ and the $C_{T_{i}}$ are the chain transfer constants implicitly defined by Equations (S1k) and (S1o), respectively.

Initiator I_{w}

$$
\begin{equation*}
\frac{d I_{w}}{d t}=-k_{d 1} Y_{1}^{r} I_{w} / V_{w}+F_{\text {in }} \frac{w_{\text {Lin }}}{M_{I}}-\frac{I_{w} F_{\text {out }}}{M_{T}} \tag{12}
\end{equation*}
$$

Reducing Agents $\boldsymbol{Y}_{\mathbf{1}}$ and $\boldsymbol{Y}_{\mathbf{2}}$

$$
\begin{align*}
& \frac{d Y_{1}}{d t}=\frac{F_{i n} W_{y 1, \text { in }}}{M_{y 1}}-\frac{Y_{1} F_{o u t}}{M_{T}} \tag{13}\\
& \frac{d Y_{2}}{d t}=\frac{F_{i n} W_{y 2, \text { in }}}{M_{y 2}}-\frac{Y_{2} F_{o u t}}{M_{T}}-k_{d 2} Y_{1}^{o} Y_{2} / V_{w} \tag{14}
\end{align*}
$$

$$
\begin{equation*}
Y_{1}=Y_{1}^{r}+Y_{1}^{o} \tag{S1p}
\end{equation*}
$$

Neglecting flow terms for Y_{1}^{r} and using Eq. (S1p):

$$
\begin{equation*}
\frac{d Y_{1}^{r}}{d t}=\left(-k_{d 1} I_{w} Y_{1}^{r}+k_{d 2}\left(Y_{1}-Y_{1}^{r}\right) Y_{2}\right) / V_{w} \tag{S1q}
\end{equation*}
$$

and assuming the quasi-steady state (QSSA) for Y_{1}^{r} :

$$
\begin{equation*}
Y_{1}^{r}=\frac{k_{d 2} Y_{1} Y_{2}}{k_{d 1} I_{w}+k_{d 2} Y_{2}} \tag{S1r}
\end{equation*}
$$

Primary Radicals $\boldsymbol{R}_{\boldsymbol{w}}$ and Polymeric Radicals $\boldsymbol{P}_{\boldsymbol{w}}$ (aqueous phase)

$$
\begin{equation*}
\frac{d R_{w}}{d_{t}}=k_{d 1} f Y_{1}^{r} I_{w} / V_{w}-k_{i} R_{w} M_{a q} / V_{w} \tag{S1s}
\end{equation*}
$$

$M_{a q}$ is the molar amount of monomer in the aqueous phase. In Eq. (S1s) it has been assumed that there is no entry of primary radicals into micelles or particles.

$$
\begin{gather*}
\frac{d P_{w}}{d t}=k_{i} R_{w} M_{a q} / V_{w}-k_{t} P_{w}{ }^{2} / V_{w}-k_{m p} 4 \pi r^{2} P_{w} \sum_{n=0}^{2} F_{n}-k_{m m} a_{m} M_{i c} P_{w}+ \\
\frac{K_{\text {des }}}{N_{A}} \sum_{n=0}^{2} F_{n} \tag{S1t}
\end{gather*}
$$

Taking the QSSA for R_{w} and P_{w}, and combining the resulting equations, a simple quadratic equation for P_{w} is obtained:

$$
\begin{align*}
& \quad-k_{t} P_{w}^{2} / V_{w}-k_{m p} 4 \pi r^{2} P_{w} \sum_{n=0}^{2} F_{n}-k_{m m} a_{m} M_{i c} P_{w}+\frac{K_{d e s}}{N_{A}} \sum_{n=0}^{2} F_{n}+ \\
& k_{d 1} f Y_{1}^{r} I_{w} / V_{w}=0 \tag{21}
\end{align*}
$$

The micelle concentration, $M_{i c},\left(\mathrm{~L}^{-1}\right)$ can be calculated from the surfactant balance as shown below.

Surfactant S

$$
\begin{equation*}
\frac{d S}{d t}=\frac{F_{i n} \omega_{s, i n}}{M_{s}}-F_{\text {out }} \frac{S}{M_{T}} \tag{15}
\end{equation*}
$$

It is assumed that the surfactant rapidly reaches thermodynamic equilibrium and is partitioned between surfactant adsorbed in particles, S_{a}, in monomer droplets, S_{d}, or free, S_{f},
which can be in solution or forming micelles, depending on its concentration (all quantities in moles).

$$
\begin{equation*}
S=S_{a}+S_{d}+S_{f} \approx S_{a}+S_{f} \tag{S1u}
\end{equation*}
$$

Neglecting the amount of surfactant adsorbed in monomer droplets, S_{a} can be represented by a Langmuir isotherm:

$$
\begin{equation*}
S_{a}=\frac{A_{p} \Gamma_{\infty} b S_{f} / V_{w}}{1+b S_{f} / V_{w}} \tag{S1v}
\end{equation*}
$$

where the particle surface area A_{p}, is given by:

$$
\begin{equation*}
A_{p}=4 \pi V_{w} \sum_{n=0}^{2} F_{n} r_{h}^{2} \tag{S1w}
\end{equation*}
$$

with r_{h} being the radius of a monomer swollen particle. Combining (S1u) and (S1v), a quadratic equation for S_{f} can be derived:

$$
\begin{equation*}
S+S b S_{f} / V_{w}-A_{p} \Gamma_{\infty} b S_{f} / V_{w}-\left(S_{f}+b S_{f}^{2} / V_{w}\right)=0 \tag{S1x}
\end{equation*}
$$

Once Eq. (S1x) is solved for S_{f}, the micelle concentration can be determined as follows:

$$
\begin{array}{ll}
M_{i c}=\frac{\left(S_{f} / V_{w}-[S]^{c m c}\right) N_{A} a_{e m}}{4 \pi r_{m}^{2}} & \text { if } \quad S_{f} / V_{w} \geq[S]^{c m c} \\
M_{i c}=0 & \text { if } \quad S_{f} / V_{w}<[S]^{c m c} \tag{17}
\end{array}
$$

Where $[S]^{c m c}$ is the critical micelle concentration of the surfactant $\left(\mathrm{mol} \mathrm{L}^{-1}\right) ; a_{e m}$ is the surface area per surfactant molecule, and r_{m} is the radius of a micelle.

Chain Transfer Agent (Tr)

$$
\begin{gather*}
\frac{d T_{r}}{d t}=\frac{F_{\text {in }} w_{T r, \text { in }}}{M_{T r}}-\frac{F_{o u t} T_{r}}{M_{T}}-k_{t r T}\left[T_{r}\right]_{p} \frac{\sum_{n=1}^{2} n F_{n}}{N_{A}} V_{w}+\frac{F_{r i, T r}}{M_{T r}} \tag{18}\\
{\left[T_{r}\right]_{p}=\frac{T_{r}}{V_{p}}} \tag{S1y}
\end{gather*}
$$

where $F_{r, T r}$ is a side feed stream (mass flow) of CTA to reactor $r i$.

Although the CTA employed in the process is usually a long-chain molecule (dodecyl mercaptan), which is not water soluble, for generality it is considered here that the CTA can partition between the aqueous and the particle phase.

Besides the total mass balance of the CTA, it is considered that this component partitions between the particles and the aqueous phase. Defining $[T r]_{p}$ and $[T r]_{w}$ as the concentrations of CTA in the particle and aqueous phase, respectively, the total amount of CTA satisfies the relationship:

$$
\begin{equation*}
\operatorname{Tr}=[\operatorname{Tr}]_{p} V_{p}+[\operatorname{Tr}]_{w} \tag{S1z}
\end{equation*}
$$

And the concentrations in the two phases are assumed to follow the partition coefficient defined as:

$$
\begin{equation*}
K_{T}=\frac{[T r]_{p}}{[T r]_{w}} \tag{19}
\end{equation*}
$$

Resulting in:

$$
\begin{equation*}
[T r]_{p}=\frac{K_{T} T r}{K_{T} V_{p}+V_{w}} \tag{Slaa}
\end{equation*}
$$

This concentration is used to calculate the kinetics and the desorption term in the particle balances (see SM).

Water (in mass units)

$$
\begin{equation*}
\frac{d W}{d t}=F_{\text {in }} W_{w 1 \text { in }}-\frac{F_{\text {out }} W}{M_{T}} \tag{20}
\end{equation*}
$$

SM2. Monomer Partitioning Equations

Based on the definition of the equivalent conversion, x, (Eq. 22 in main text):
If $x \leq x_{\text {sat }}$ (intervals 1 and 2)
In this case $[M]_{p}$ is calculated by first considering the mass of monomer (M) and polymer (P) contained in a hypothetical particle of unit mass, $(M+P)=1$, from which Eqs. (S2a)-(S2c) and (23) follow:

$$
\begin{align*}
& \frac{P}{M+P}=x_{\text {sat }} \tag{S2a}\\
& P=x_{\text {sat }} \tag{S2b}
\end{align*}
$$

$$
\begin{gather*}
M=1-x_{s a t} \tag{S2c}\\
{[M]_{p}=[M]_{p s a t}=\frac{\left(M_{1} / M_{w 1}\right)+\left(M_{2} / M_{w 2}\right)}{V_{p}^{\prime}}} \tag{23}
\end{gather*}
$$

V_{p}^{\prime} is the volume of this hypothetical particle, which is calculated assuming volume additivity:

$$
\begin{equation*}
V_{p}^{\prime}=\frac{M_{1}}{\rho_{1}}+\frac{M_{2}}{\rho_{2}}+\frac{P_{1}}{\rho_{p 1}}+\frac{P_{2}}{\rho_{p 2}} \tag{24}
\end{equation*}
$$

and $M_{w i}=$ molecular weight of monomer i.
P_{1} and P_{2} are the amounts of type 1 and 2 monomer units, respectively, in the polymer ($P=P_{1}+P_{2}$) present in the hypothetical particle. These are easily calculated, since the copolymer composition, and therefore the ratio P_{1} / P_{2}, are known at any given time. Similarly, M_{1}, M_{2} can be calculated based on the proportion of the remaining monomers taking into account that a known fraction of the monomer 2 can be present in the aqueous phase in the NBR case.
$\rho_{i}, \rho_{p i},(\mathrm{i}=1,2)$ are the densities of monomer i and homopolymer i, respectively.
If $x>x_{s a t}($ mass conversion x, interval 3$),[M]_{p}$ is calculated assuming that all the remaining monomer, except for the possible presence of AN in the water phase (NBR case), is in the particles:

$$
\begin{align*}
& {[M]_{p}=\frac{\left(M_{1}^{m} / M_{w 1}\right)+\left(\left(M_{2}^{m}-M_{2 w}^{m}\right) / M_{w 2}\right)}{V_{p}}} \tag{25}\\
& \text { where } \quad V_{p}=\frac{M_{1}^{m}}{\rho_{1}}+\frac{M_{2}^{m}-M_{2 w}^{m}}{\rho_{2}}+\frac{H_{1}^{m}}{\rho_{p 1}}+\frac{H_{2}^{m}}{\rho_{p 2}} \tag{26}
\end{align*}
$$

and the superindex m indicates mass units.
An approximate way of estimating the amount of AN in the water phase $\left(M_{2 w}\right)$ in the NBR case is based on a partition coefficient, defined as the ratio of mass concentrations of monomer 2 in the particles and the water phase:

$$
\begin{equation*}
\chi_{A N}=\frac{\left[\left(M_{2}^{m}\right] p\right.}{\left[\left(M_{2}^{m}\right]_{w}\right.} \tag{27}
\end{equation*}
$$

which can be written as:

$$
\begin{equation*}
\chi_{A N}=\frac{\left(M_{2}^{m}-M_{2 w}^{m}\right) / V_{p}}{M_{2 w}^{m} / V_{w}} \tag{S2d}
\end{equation*}
$$

V_{p} above is the total volume of the particle phase. Replacing (26) in (S2d) and rearranging, a quadratic equation can be obtained for $M_{2 w}$, resulting in:

$$
\begin{equation*}
\frac{\chi_{A N}}{\rho_{2}} M_{2 w}^{2}-\left[\chi_{A N}\left(\frac{M_{1}^{m}}{\rho_{1}}+\frac{M_{2}^{m}}{\rho_{2}}+\frac{P_{1}^{m}}{\rho_{p 1}}+\frac{P_{2}^{m}}{\rho_{p 2}}\right)+V_{w}\right] M_{2 w}+M_{2}^{m} V_{w}=0 \tag{28}
\end{equation*}
$$

SM3. Dimensionless version of the Population Balance Equations for Particles and Original Polymer Moments Equations

Defining $\overline{F_{J, r}}=F_{j, r} / N_{\text {dim }}$, where $N_{\text {dim }}$ is a characteristic number of particles per L of water, Equations (7)-(9) become

$$
\begin{gather*}
\frac{d V_{w} \overline{F_{0, r}}}{d t}=-\rho \overline{F_{0, r}}+k_{d e s} \overline{F_{1, r}}+\frac{2 k_{t}^{\prime}}{v} \overline{F_{2, r}}+Q \overline{F_{0, r-1}}-Q \overline{F_{0, r}} \tag{S3a}\\
\frac{d V_{w} \overline{F_{1, r}}}{d t}=\rho \overline{F_{0, r}}-\left(\rho+k_{d e s}\right) \overline{F_{1, r}}+\left(\rho+2 k_{d e s}\right) \overline{F_{2, r}}+\frac{\rho_{m i c} M_{i c}}{N_{d i m}}+Q \overline{F_{1, r-1}}-Q \overline{F_{1, r}} \tag{S3b}
\end{gather*}
$$

$\frac{d V_{w} \overline{F_{2, r}}}{d t}=\rho \overline{F_{1, r}}-\left(\rho+2 k_{d e s}+\frac{2 k_{t}^{\prime}}{v}\right) \overline{F_{2, r}}+Q \overline{F_{2, r-1}}-Q \overline{F_{2, r}}$

Polymer Moments Equations

PBE's for Live Polymer Moments

$$
\begin{equation*}
\mu_{K, n}=\sum_{r=1}^{\infty} r^{K} N_{n}^{r} \quad n=1,2, \quad K=0,1,2 \tag{32}
\end{equation*}
$$

Zeroth Moments ($K=0$)

$n=1$
$\frac{d V_{w} \sum_{r=1}^{\infty} N_{1}^{r}}{d t}=\frac{d V_{w} \mu_{0,1}}{d t}=k_{d e s} \mu_{0,2}+\rho N_{0}+\rho_{\text {mic }} M_{i c}-k_{d e s} N_{1}-\rho \mu_{0,1}+\frac{\rho \mu_{0,2}}{2}+F I N \mu_{0,1}^{f}-$ FOUT $\mu_{0,1}$
where
$\mathrm{FIN}=F_{\text {in, }, i} w_{w}^{f} / \rho_{w}$

FOUT $=\frac{V_{w} Q_{o u t, r i} \rho_{\text {ri }}}{M_{T}}$
Note that $N_{1} \equiv F_{1, r i} \equiv \mu_{0,1}, \mu_{0,2} \equiv 2 N_{2} \equiv 2 F_{2, r i}$, and Eq. (S2a) is equivalent to (Eq. 8)
$n=2$
$\frac{d V_{w} \mu_{0,2}}{d t}=-k_{d e s} \mu_{0,2}+\rho\left(\mu_{0,1}-\mu_{0,2} / 2\right)-\frac{k_{t} V_{w}}{N_{A} v} \mu_{0,2}+$ FIN $\mu_{0,2}^{f}-$ FOUT $\mu_{0,2}$

Since $\mu_{0,2} \equiv 2 N_{2} \equiv 2 F_{2, r i}$, Eq. (S3e) is equivalent to Eq. (9).

First Moments $(K=1)$

$n=1$

$$
\begin{align*}
& \quad \frac{d V_{w} \sum_{r=1}^{\infty} r N_{1}^{r}}{d t}=\frac{d V_{w} \mu_{1,1}}{d t}=k_{p}[M]_{p} V_{w} \mu_{0,1} \\
& -k_{t r M}[M]_{p} \mu_{1,1} V_{w}+k_{d e s} \mu_{1,2}-k_{t r T}[T r]_{p} \mu_{1,1} V_{w}+\rho N_{0}+\rho_{\text {mic }} M i c \\
& -k_{d e s} \mu_{0,1}-\rho \mu_{1,1}+k_{t r T}[T r]_{p} \mu_{0,1} V_{w}+k_{t r M}[M]_{p} \mu_{0,1} V_{w}+\frac{\rho \mu_{1,2}}{2}+\text { FIN } \mu_{1,1}^{f}-\text { FOUT } \mu_{1,1} \tag{S3f}\\
& \boldsymbol{n}=\mathbf{2}
\end{align*}
$$

$$
\begin{gather*}
\frac{d V_{w} \mu_{1,2}}{d t}=k_{p}[M]_{p} V_{w} \mu_{0,2}-k_{t r M}[M]_{p} \mu_{1,2} V_{w} \\
-k_{d e s} \mu_{1,2}-k_{t r T}[T r]_{p} \mu_{1,2} V_{w}+\rho \mu_{1,1}-\rho \mu_{1,2} / 2+\frac{k_{t} V_{w}}{2 N_{A} v}\left(-2 \mu_{1,2}\right) \\
+k_{t r T}[T r]_{p} \mu_{0,2} V_{w}+k_{t r M}[M]_{p} \mu_{0,2} V_{w}+\operatorname{FIN} \mu_{1,2}^{f}-\text { FOUT }_{1,2} \tag{S3g}
\end{gather*}
$$

Second Moments (K=2)

$n=1$

$$
\begin{gather*}
\frac{d V_{w} \sum_{r=1}^{\infty} r^{2} N_{1}^{r}}{d t}=\frac{d V_{w} \mu_{2,1}}{d t}=k_{p}[M]_{p} V_{w}\left(2 \mu_{1,1}+\mu_{0,1}\right) \\
-k_{t r M}[M]_{p} V_{w} \mu_{2,1}+k_{d e s} \mu_{2,2}-k_{t r T}[T r]_{p} \mu_{2,1} V_{w}+\rho N_{0}+\rho_{\text {mic }} M i c \\
-k_{\text {des }} \mu_{0,1}-\rho \mu_{2,1}+k_{t r T}[T r]_{p} V_{w} \mu_{0,1}+k_{t r M}[M]_{p} V_{w} \mu_{0,1}+\rho \mu_{2,2} / 2+\text { FIN } \mu_{2,1}^{f}- \\
\text { FOUT } \mu_{2,1} \tag{S3h}
\end{gather*}
$$

$n=2$

$$
\begin{gather*}
\frac{d V_{w} \mu_{2,2}}{d t}=k_{p}[M]_{p} V_{w}\left(2 \mu_{1,2}+\mu_{0,2}\right)-k_{t r M}[M]_{p} V_{w} \mu_{2,2} \\
-k_{d e s} \mu_{2,2}-k_{t r T}[\operatorname{Tr}]_{p} V_{w} \mu_{2,2}+\rho \mu_{2,1}-\rho \mu_{2,2} / 2-\frac{k_{t} V_{w}}{2 N_{A} v} \mu_{2,2} \\
+k_{t r T}[T r]_{p} \mu_{0,2} V_{w}+k_{t r M}[M]_{p} \mu_{0,2} V_{w}+\operatorname{FIN} \mu_{2,2}^{f}-\text { FOUT } \mu_{2,2} \tag{S3i}
\end{gather*}
$$

The following definitions are also applicable:
$N_{n}=\sum_{r=1}^{\infty} N_{n}^{r}=$ Total number of particles having n radicals, per L of water $(n=1,2)$.
$N=\sum_{n=1}^{2} \sum_{r=1}^{\infty} N_{n}^{r}=$ Total number of particles per L of water.

PBE's for Dead Polymer Moments

$$
\lambda_{K, n}=\sum_{r=1}^{\infty} r^{K} D_{n}^{r}, \quad K=0,1,2 \quad n=0,1,2
$$

Zeroth Moments (K=0)

$\boldsymbol{n}=\mathbf{0}$

$$
\begin{gather*}
\frac{d V_{w} \lambda_{0,0}}{d t}=-\rho \lambda_{0,0}+k_{d e s} \lambda_{0,1}+\frac{V_{w} k_{t}}{N_{A} v} \lambda_{0,2} \\
\frac{+k_{t d} V_{w}}{N_{A} v} \mu_{0,2}+\frac{F_{i n, r i} w^{F}}{\rho_{w}} \lambda_{0,0}^{f}-\frac{V_{w} Q_{o u t, r i} \rho_{r i}}{M_{T}} \lambda_{0,0} \\
+\frac{k_{t c} V_{w}}{N_{A} v} 2 N_{2} \tag{S3j}
\end{gather*}
$$

$n=1$

$$
\begin{align*}
& \quad \frac{d V_{w} \lambda_{0,1}}{d t}=\rho \lambda_{0,0}-\rho \lambda_{0,1}+2 k_{d e s} \lambda_{0,2}-k_{d e s} \lambda_{0,1} \\
& \quad+V_{w} k_{t r M}[M]_{p} \mu_{0,1}+V_{w} k_{t r T}[T r]_{p} \mu_{0,1}+\rho \lambda_{0,2} \\
& +F_{i n, r i} w^{F} \lambda_{0,1}^{f} / \rho_{w}-\frac{\lambda_{0,1} V_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3k}
\end{align*}
$$

$n=2$

$$
\begin{gather*}
\frac{d V_{w} \lambda_{0,2}}{d t}=\rho \lambda_{0,1}-\rho \lambda_{0,2}-2 k_{d e s} \lambda_{0,2}+V_{w} k_{t r M}[M]_{p} \mu_{0,2} \\
+V_{w} k_{t r T}[T r]_{p} \mu_{0,2}-\frac{V_{w}}{N_{A} v} k_{t} \lambda_{0,2}+F_{i n, r i} w_{w}^{f} \lambda_{0,2}^{f} / \rho_{w}-\frac{\lambda_{0,2} V_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S31}
\end{gather*}
$$

First Moments (K=1)

$\boldsymbol{n}=\mathbf{0}$

$$
\begin{gather*}
\frac{d V_{w} \lambda_{1,0}}{d t}=-\rho \lambda_{1,0}+k_{d e s} \lambda_{1,1}+\frac{V_{w}}{N_{A} v} k_{t} \lambda_{1,2} \\
+\frac{k_{t d} V_{w}}{N_{A} v} \mu_{1,2}+\frac{k_{t c} V_{w}}{N_{A} v}\left(2 \mu_{1,2}\right)+F_{i n, r i} w_{w}^{f} \lambda_{1,0}^{f} / \rho_{w}-\lambda_{1,0} V_{w} \frac{Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3m}
\end{gather*}
$$

$n=1$

$$
\begin{align*}
& \quad \frac{d V_{w} \lambda_{1,1}}{d t}=\rho \lambda_{1,0}-\rho \lambda_{1,1}+2 k_{d e s} \lambda_{1,2}-k_{d e s} \lambda_{1,1} \\
& \quad+V_{w} k_{t r M}[M]_{p} \mu_{1,1}+V_{w} k_{t r T}[T r]_{p} \mu_{1,1}+\rho \lambda_{1,2} \\
& + \tag{S3n}\\
& F_{i n, r i} w_{w}^{f} \lambda_{1,1}^{f} / \rho_{w}-\frac{\lambda_{1,1} V_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i}
\end{align*}
$$

$n=2$

$$
\begin{gather*}
\frac{d V_{w} \lambda_{1,2}}{d t}=\rho \lambda_{1,1}-\rho \lambda_{1,2}-2 k_{d e s} \lambda_{1,2}+V_{w} k_{t r M}[M]_{p} \mu_{1,2} \\
+V_{w} k_{t r T}[T r]_{p} \mu_{1,2}-\frac{V_{w}}{N_{A} v} k_{t} \lambda_{1,2}+F_{i n, r i} w_{w}^{f} \lambda_{1,2}^{f} / \rho_{w}-\lambda_{1,2} \frac{V_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3o}
\end{gather*}
$$

Second Moments (K=2)

$\boldsymbol{n}=\mathbf{0}$

$$
\begin{align*}
& \frac{d V_{w} \lambda_{2,0}}{d t}=-\rho \lambda_{2,0}+k_{d e s} \lambda_{2,1}+\frac{V_{w}}{N_{A} v} k_{t} \lambda_{2,2} \\
& +\frac{k_{t d} V_{w}}{N_{A} v} \mu_{2,2}+\frac{k_{t c} V_{w}}{N_{A} v \mu_{0,2} / 2}\left[\mu_{0,2} \mu_{2,2}+\mu_{1,2}^{2}\right] \\
& \tag{S3p}
\end{align*}
$$

$n=1$

$$
\begin{align*}
& \frac{d V_{w} \lambda_{2,1}}{d t}=\rho \lambda_{2,0}-\rho \lambda_{2,1}+2 k_{\text {des }} \lambda_{2,2}-k_{\text {des }} \lambda_{2,1} \\
& +V_{w} k_{t r M}[M]_{p} \mu_{2,1}+V_{w} k_{t r T}[T r]_{p} \mu_{2,1}+\rho \lambda_{2,2} \\
& \quad+F_{\text {in, }, i} w_{w}^{f} \frac{\lambda_{2,1}^{f}}{\rho_{w}}-\frac{\lambda_{2,1} V_{w} Q_{\text {out }, r i}}{M_{T}} \rho_{r i} \tag{S3q}
\end{align*}
$$

$n=2$

$$
\begin{gather*}
\frac{d V_{w} \lambda_{2,2}}{d t}=\rho \lambda_{2,1}-\rho \lambda_{2,2}- \\
2 k_{\text {des }} \lambda_{2,2}+V_{w} k_{t r M}[M]_{p} \mu_{2,2}+V_{w} k_{t r T}[T r]_{p} \mu_{2,2}-\frac{V_{w}}{N_{A} v} k_{t} \lambda_{2,2} \tag{S3r}\\
+F_{\text {in, ri }} w_{w}^{f} \frac{\lambda_{2,2}^{f}}{\rho_{w}}-\frac{\lambda_{2,2} V_{w} Q_{\text {out,ri }}}{M_{T}} \rho_{r i}
\end{gather*}
$$

Transfer to Polymer and Double Bond Polymerization Terms

In the previous equations, the transfer-to-polymer and double bond polymerization terms have not been included. They are explained next and described as additional terms to be
incorporated in the previous equations. To indicate the corresponding modifications to the previous equations the notation $=\ldots+$ will be used. For example, the following equation:

$$
\frac{d V_{w} \lambda_{1,0}}{d t}=\cdots+\text { additional terms }
$$

indicates that the additional terms have to be added to the right-hand side of Eq. (S3m).

Live Polymer

To derive the corresponding terms, the following reaction schemes are considered:

$$
\begin{aligned}
& N_{n}^{r}+D_{n}^{j} \xrightarrow{j k_{t r p}} D_{n}^{r}+N_{n}^{j} \\
& N_{n}^{r}+D_{n}^{j} \xrightarrow{F_{1, m o r}^{c} r k_{d b}} N_{n}^{r+j}
\end{aligned}
$$

The general balance for live polymer, Eq. (62) is modified as (in the following equations $F_{1, m o}^{c}$ is written as F_{1} for simplicity.

$$
\begin{array}{r}
\frac{d V_{w} N_{n}^{r}}{d_{t}}=\cdots\left[-k_{t r p}\left(\sum_{j=1}^{\infty} j D_{n}^{j}\right) N_{n}^{r}+k_{t r p} r D_{n}^{r} \sum_{j=1}^{\infty} N_{n}^{j}-k_{d b} F_{1}\left(\sum_{j=1}^{\infty} j D_{n}^{j}\right) N_{n}^{r}+\right. \\
\left.k_{d b} F_{1} \sum_{j=1}^{r} j N_{n}^{r-j} D_{n}^{j}\right] \frac{n V_{w}}{N_{n} N_{A} v} \tag{S3s}
\end{array}
$$

From which the moment equations are modified as:
Live Polymer Moments $\mathbf{K}=\mathbf{0 , 1 , 2}$ for $\boldsymbol{n}=\mathbf{1}$

$$
\begin{equation*}
\frac{d V_{w} \mu_{0,1}}{d t}=\cdots+0 \tag{S3t}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d V_{w} \mu_{2,1}}{d t}=\cdots+\left[-k_{t r p} \lambda_{1,1} \mu_{2,1}+k_{t r p} \lambda_{3,1} \mu_{0,1}+k_{d b} F_{1} \lambda_{3,1} \mu_{0,1}+2 k_{d b} F_{1} \lambda_{2,1} \mu_{1,1}\right] \frac{1}{N_{1}} \frac{V_{w}}{N_{A} v} \tag{S3v}
\end{equation*}
$$

Live Polymer Moments $\mathbf{K}=\mathbf{0 , 1 , 2}$ for $\boldsymbol{n}=\mathbf{2}$

$$
\begin{gather*}
\frac{d V_{w} \mu_{0,2}}{d t}=\cdots+0 \tag{S3w}\\
\frac{d V_{w} \mu_{1,2}}{d t}=\cdots+\left[-k_{t r p} \lambda_{1,2} \mu_{1,2}+k_{t r p} \lambda_{2,2} \mu_{0,2}+k_{d b} F_{1} \lambda_{2,2} \mu_{0,2}\right] \frac{2}{N_{2}} \frac{V_{w}}{N_{A} v} \tag{S3x}
\end{gather*}
$$

$$
\begin{equation*}
\frac{d V_{w} \mu_{2,2}}{d t}=\cdots+\left[-k_{t r p} \lambda_{1,2} \mu_{2,2}+k_{t r p} \lambda_{3,2} \mu_{0,2}+k_{d b} F_{1} \lambda_{3,2} \mu_{0,2}+2 k_{d b} F_{1} \lambda_{2,2} \mu_{1,2}\right] \frac{2}{N_{2}} \frac{V_{w}}{N_{A} v} \tag{S3y}
\end{equation*}
$$

Dead Polymer
To derive the dead polymer terms, the kinetic scheme is better re-written as:

$$
\begin{gather*}
N_{n}^{j}+D_{n}^{r} \xrightarrow{r k_{t r p}} D_{n}^{j}+N_{n}^{r} \\
N_{n}^{j}+D_{n}^{r} \xrightarrow{F_{1, m o}^{c} r k_{d b}} N_{n}^{r+j} \\
\frac{d V_{w} D_{n}^{r}}{d_{t}}=\left[-k_{t r p} r D_{n}^{r} \sum_{j=1}^{\infty} N_{n}^{j}+k_{t r p} N_{n}^{r} \sum_{j=1}^{\infty} j D_{n}^{j}-k_{d b} F_{1}\left(\sum_{j=1}^{\infty} j D_{n}^{j}\right) N_{n}^{r}\right] \frac{n V_{w}}{N_{n} N_{A} v} \tag{S3z}
\end{gather*}
$$

Dead Polymer Moments $\mathbf{K = 0 , 1 , 2}$ for $\boldsymbol{n}=\mathbf{1}$

$$
\begin{gather*}
\frac{d V_{w} \lambda_{0,1}}{d_{t}}=\cdots-k_{d b} F_{1} \mu_{0,1} \lambda_{1,1} \tag{S3aa}\\
\frac{d V_{w} \lambda_{1,1}}{d_{t}}=\cdots+\left\{k_{\operatorname{trp}}\left[-\lambda_{2,1} \mu_{0,1}+\mu_{1,1} \lambda_{1,1}\right]-k_{d b} F_{1} \mu_{0,1} \lambda_{2,1}\right\} \frac{V_{w}}{N_{1} N_{A} v} \tag{S3ab}\\
\frac{d V_{w} \lambda_{2,1}}{d_{t}}=\cdots+\left\{k_{\operatorname{trp}}\left[-\lambda_{3,1} \mu_{0,1}+\mu_{2,1} \lambda_{1,1}\right]-k_{d b} F_{1} \mu_{0,1} \lambda_{3,1}\right\} \frac{V_{w}}{N_{1} N_{A} v} \tag{S3ac}
\end{gather*}
$$

Dead Polymer Moments $\mathbf{K}=\mathbf{0 , 1 , 2}$ for $\boldsymbol{n}=\mathbf{2}$

$$
\begin{align*}
& \frac{d V_{w} \lambda_{0,2}}{d_{t}}=\cdots+\left\{k_{t r p}\left[-\lambda_{1,2} \mu_{0,2}+\mu_{0,2} \lambda_{1,2}\right]-k_{d b} F_{1} \mu_{0,2} \lambda_{1,2}\right\} \frac{2 V_{w}}{N_{2} N_{A} v} \tag{S3ad}\\
& \frac{d V_{w} \lambda_{1,2}}{d_{t}}=\cdots+\left\{k_{t r p}\left[-\lambda_{2,2} \mu_{0,2}+\mu_{1,2} \lambda_{1,2}\right]-k_{d b} F_{1} \mu_{0,2} \lambda_{2,2}\right\} \frac{2 V_{w}}{N_{2} N_{A} v} \tag{S3ae}\\
& \frac{d V_{w} \lambda_{2,2}}{d_{t}}=\cdots+\left\{k_{t r p}\left[-\lambda_{3,2} \mu_{0,2}+\mu_{2,2} \lambda_{1,2}\right]-k_{d b} F_{1} \mu_{0,2} \lambda_{2,2}\right\} \frac{2 V_{w}}{N_{2} N_{A} v} \tag{S3af}
\end{align*}
$$

Notice that these reactions do not contribute terms for particles with $n=0$ since these particles contain no live polymer to react with.
On the other hand, since some of the previous terms introduce the moment closure problem (the first moment depends on the 2nd moment; the 2nd moment depends on the third moment, and so on) the Hulburt and Katz approximation is used:

$$
\begin{equation*}
\lambda_{3, n}=\frac{\lambda_{2, n}}{\lambda_{0, n} \lambda_{1, n}}\left(2 \lambda_{2, n} \lambda_{0, n}-\lambda_{1, n}^{2}\right) \mathrm{n}=0,1,2 \tag{S3ag}
\end{equation*}
$$

[^0]
Dimensionless Versions of the Live Polymer Moments Equations

$$
\overline{\mu_{K, n}}=\frac{\sum_{r=1}^{\infty} r N_{n}^{r}}{M f_{d}}, K, n=1,2
$$

$M f_{d}$ is a characteristic value $\left(10^{17}\right)$ for the live polymer moments.

$$
\begin{gather*}
\frac{d V_{w} \bar{\mu}_{1,1}}{d t}=k_{p}[M]_{p} V_{w} \bar{\mu}_{0,1} \\
-k_{t r M}[M]_{p} \bar{\mu}_{1,1} V_{w}+k_{d e s} \bar{\mu}_{1,2}-k_{t r T}[T r]_{p} \bar{\mu}_{1,1} V_{w}+\rho \bar{N}_{0}+\rho_{m i c} \overline{M l c} \\
-k_{d e s} \bar{\mu}_{0,1}-\rho \bar{\mu}_{1,1}+k_{t r T}[T r]_{p} \bar{\mu}_{0,1} V_{w}+k_{t r M}[M]_{p} \bar{\mu}_{0,1} V_{w}+\frac{\rho \bar{\mu}_{1,2}}{2} \\
+F_{\text {IN }} \bar{\mu}_{1,1}^{f}-F_{\text {out }} \bar{\mu}_{1,1} \tag{S3ah}
\end{gather*}
$$

where $\overline{M ı c}=M i c / M f_{d}$

$$
\begin{gather*}
\frac{d V_{w} \bar{\mu}_{1,2}}{d t}=k_{p}[M]_{p} V_{w}\left(\bar{\mu}_{0,2}\right)-k_{t r M}[M]_{p} \bar{\mu}_{1,2} V_{w} \\
-k_{d e s} \bar{\mu}_{1,2}-k_{t r T}[T r]_{p} \bar{\mu}_{1,2} V_{w}+\rho \bar{\mu}_{1,1}-\frac{\rho \bar{\mu}_{1,2}}{2}+\frac{k_{t} V_{w}}{2 N_{A} v}\left(-2 \bar{\mu}_{1,2}\right) \\
+k_{t r T}[T r]_{p} \bar{\mu}_{0,2} V_{w}+k_{t r M}[M]_{p} \bar{\mu}_{0,2} V_{w}+F_{I N} \bar{\mu}_{1,2}^{f}-F_{O U T} \bar{\mu}_{1,2} \tag{S3i}\\
-k_{d e s} \bar{\mu}_{0,1}-\rho \bar{\mu}_{2,1}+k_{t r T}[T r]_{p} V_{w} \bar{\mu}_{0,1}+k_{t r M}[M]_{p} V_{w} \bar{\mu}_{0,1}+\frac{\rho \bar{\mu}_{2,2}}{2}+F_{I N} \bar{\mu}_{2,1}^{f}-F_{O U T} \bar{\mu}_{2,1} \\
-k_{t r T}[\operatorname{Tr}]_{p} \bar{\mu}_{2,1} V_{w}+\rho \bar{N}_{0}+\rho_{m i c} \overline{M l c} \\
k_{p}[M]_{p} V_{w}\left(2 \bar{\mu}_{1,1}+\bar{\mu}_{0,1}\right)-k_{t r M}[M]_{p} V_{w} \bar{\mu}_{2,1}+k_{d e s} \bar{\mu}_{2,2} \tag{S3j}\\
\frac{d V_{w} \bar{\mu}_{2,2}}{d t}=k_{p}[M]_{p} V_{w}\left(2 \bar{\mu}_{1,2}+\bar{\mu}_{0,2}\right)-k_{t r M}[M]_{p} V_{w} \bar{\mu}_{2,2} \\
-k_{d e s} \bar{\mu}_{2,2}-k_{t r T}[T r]_{p} V_{w} \bar{\mu}_{2,2}+\rho \bar{\mu}_{2,1}-\frac{\rho \bar{\mu}_{2,2}}{2}-\frac{k_{t} V_{w}}{2 N_{A} v} \bar{\mu}_{2,2} \\
+k_{t r T}[\operatorname{Tr}]_{p} \bar{\mu}_{0,2} V_{w}+k_{t r M}[M]_{p} \bar{\mu}_{0,2} V_{w}+F_{I N} \bar{\mu}_{2,2}^{f}-F_{O U T} \bar{\mu}_{2,2} \tag{S3k}
\end{gather*}
$$

Dimensionless Versions of the Dead Polymer Moments Equations

Only those equations that are modified in their dimensionless version are included here. In the rest of the equations it is possible to replace the original moments by their dimensionless versions. For example, Equation S3al below is the dimensionless version of Eq. S3k (similarly for Equations S3j and S31)

$$
\begin{array}{r}
\frac{d V_{w} \overline{\lambda_{0,1}}}{d t}=\rho \overline{\lambda_{0,0}}-\rho \overline{\lambda_{0,1}}+2 k_{d e s} \overline{\lambda_{0,2}}-k_{d e s} \overline{\lambda_{0,1}} \\
+V_{w} k_{t r M}[M]_{p} \overline{\mu_{0,1}}+V_{w} k_{t r T}[\operatorname{Tr}]_{p} \overline{\mu_{0,1}}+\rho \overline{\lambda_{0,2}} \\
\quad+F_{i n, r i} w^{F} \overline{\lambda_{0,1}^{f}} / \rho_{w}-\frac{\overline{\lambda_{0,1}} v_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3al}
\end{array}
$$

1st Moments
$n=0 \quad \overline{\lambda_{1,0}}=\sum_{r=1}^{\infty} r D_{o}^{r} / M f_{1}$
$M f_{1}, M f_{2}$ are characteristic values $\left(10^{20}\right.$ and 10^{23}, respectively) for the dead polymer moments

$$
\begin{gather*}
\frac{d V_{w} \overline{\lambda_{1,0}}}{d t}=-\rho \overline{\lambda_{1,0}}+k_{d e s} \overline{\lambda_{1,1}}+\frac{V_{w}}{N_{A} v} k_{t} \overline{\lambda_{1,2}} \\
+\frac{k_{t d} V_{w}}{N_{A} v} \overline{\mu_{1,2}}+\frac{k_{t c} V_{w}\left(2 \overline{\mu_{1,2}}\right)}{2 N_{A} v} \frac{M f_{d}}{M f_{1}}+F_{i n, r i} w_{w}^{f} \overline{\lambda_{1,0}^{f}} / \rho_{w}-\overline{\lambda_{1,0}} V_{w} \frac{Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3am}
\end{gather*}
$$

$n=1 \quad \overline{\lambda_{1,1}}=\sum r D_{1}^{r} / M f_{1}$

$$
\begin{align*}
& \frac{d V_{w} \overline{\lambda_{1,1}}}{d t}=\rho \overline{\lambda_{1,0}}-\rho \overline{\lambda_{1,1}}+2 k_{d e s} \overline{\lambda_{1,2}}-k_{d e s} \overline{\lambda_{1,1}} \\
& +\left(V_{w} k_{t r M}[M]_{p} \overline{\mu_{1,1}}+V_{w} k_{t r T}[T r]_{p} \overline{\mu_{1,1}}\right) \frac{M f_{d}}{M f_{1}}+\rho \overline{\lambda_{1,2}} \\
& \quad+F_{\text {in, ri }} w_{w}^{f} \overline{\lambda_{1,1}^{f}} / \rho_{w}-\frac{\overline{\lambda_{1,1}} v_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3an}
\end{align*}
$$

$n=2$

$$
\begin{gather*}
\lambda_{1,2}=\sum r D_{2}^{r} / M f_{1} \\
\frac{d V_{w} \overline{\lambda_{1,2}}}{d t}=\rho \overline{\lambda_{1,1}}-\rho \overline{\lambda_{1,2}}-2 k_{d e s} \overline{\lambda_{1,2}}+\left(V_{w} k_{t r M}[M]_{p} \overline{\mu_{1,2}}\right. \\
\left.+V_{w} k_{t r T}[\operatorname{Tr}]_{p} \overline{\mu_{1,2}}\right) \frac{M f_{d}}{M f_{1}}-\frac{V_{w}}{N_{A} v} k_{t} \overline{\lambda_{1,2}}+F_{i n, r i} w_{w}^{f} \overline{\lambda_{1,2}^{f}} / \rho_{w}-\overline{\lambda_{1,2}} \frac{V_{w} Q_{o u t, r i}}{M_{T}} \rho_{r i} \tag{S3ao}
\end{gather*}
$$

2nd Moments

$$
\begin{align*}
& n=0 \quad \overline{\lambda_{2,0}}=\sum_{r=1}^{\infty} r^{2} D_{o}^{r} / M f_{2} \\
& \frac{d V_{w} \overline{\lambda_{2,0}}}{d t}=-\rho \overline{\lambda_{2,0}}+k_{d e s} \overline{\lambda_{2,1}}+\frac{V_{w}}{N_{A} v} k_{t} \overline{\lambda_{2,2}} \\
& +\frac{k_{t d} V_{w}}{N_{A} v} \overline{\mu_{2,2}} \frac{M f_{d}}{M f_{2}}+\frac{k_{t c} v_{w}}{N_{A} v \mu_{0,2} / 2}\left[\overline{\mu_{0,2} \mu_{2,2}}+\overline{\mu_{1,2}^{2}}\right] \frac{M f_{d}}{M f_{2}} \\
& +F_{i n, r i} w_{w}^{f} \frac{\lambda_{2,0}^{f}}{\rho_{w}}-\lambda_{2,0} \frac{V_{w} Q_{\text {out }, r i}}{M_{T}} \rho_{r i} \tag{S3ap}\\
& n=1 \quad \overline{\lambda_{2,1}}=\sum_{r=1}^{\infty} r^{2} D_{1}^{r} / M f_{2} \\
& \frac{d V_{w} \overline{\lambda_{2,1}}}{d t}=\rho \overline{\lambda_{2,0}}-\rho \overline{\lambda_{2,1}}+2 k_{d e s} \overline{\lambda_{2,2}}-k_{d e s} \overline{\lambda_{2,1}}
\end{align*}
$$

$$
\begin{align*}
& +\left(V_{w} k_{t r M}[M]_{p} \overline{\mu_{2,1}}+V_{w} k_{t r T}[T r]_{p} \overline{\mu_{2,1}}\right) \frac{M f_{d}}{M f_{2}}+\rho \overline{\lambda_{2,2}} \\
& +F_{\text {in,ri }} w_{w}^{f} \overline{\overline{\lambda_{2,1}^{f}}}-\frac{\overline{\lambda_{2,1}} v_{w} Q_{\text {out }, r i}}{\rho_{w}} \rho_{r i} \\
& n=2 \quad \overline{\lambda_{2,2}}=\sum_{r=1}^{\infty} r^{2} D_{2}^{r} / M f_{2} \\
& \frac{d V_{w} \overline{\lambda_{2,2}}}{d t}=\rho \overline{\lambda_{2,1}}-\rho \overline{\lambda_{2,2}}-2 k_{\text {des }} \overline{\lambda_{2,2}}+\left(V_{w} k_{t r M}[M]_{p} \overline{\mu_{2,2}}+V_{w} k_{t r T}[\operatorname{Tr}]_{p} \overline{\mu_{2,2}}\right) \frac{M f_{d}}{M f_{2}}-\frac{V_{w}}{N_{A} v} k_{t} \overline{\lambda_{2,2}} \\
& +F_{i n, r i} w_{w}^{f} \frac{\overline{\lambda_{2,2}^{f}}}{\rho_{w}}-\frac{\overline{\lambda_{2,2}} V_{w} Q_{\text {out }, r i}}{M_{T}} \rho_{r i} \tag{S3ar}
\end{align*}
$$

Dimensionless versions of the additional transfer to polymer and double bond polymerization terms

Live Polymer

$\bar{\mu}_{1,1}$

$$
\begin{equation*}
\frac{d V_{w} \bar{\mu}_{1,1}}{d t}=\cdots+\left[-k_{t r p} \bar{\lambda}_{1,1} \bar{\mu}_{1,1} M f_{1}+k_{t r p} \bar{\lambda}_{2,1} \bar{\mu}_{0,1} M f_{2}+k_{d b} F_{1} \bar{\lambda}_{2,1} \bar{\mu}_{0,1} M f_{2}\right]_{\frac{1}{\bar{N}_{1} * M f_{d}} \frac{V_{w} v}{N_{A} v}} \tag{S3as}
\end{equation*}
$$

$\bar{\mu}_{2,1}$

$$
\begin{array}{r}
\frac{d V_{w} \bar{\mu}_{2,1}}{d t}=\cdots+\left[-k_{t r p} \bar{\lambda}_{1,1} \bar{\mu}_{2,1} M f_{1}+k_{t r p} \bar{\lambda}_{3,1} \bar{\mu}_{0,1} M f_{2}+k_{d b} F_{1} \bar{\lambda}_{3,1} \bar{\mu}_{0,1} M f_{2}+\right. \\
\left.2 k_{d b} F_{1} \bar{\lambda}_{2,1} \bar{\mu}_{1,1} M f_{2}\right]_{\overline{N_{1} * M f_{d}}} \frac{1}{V_{w} v} \tag{S3at}
\end{array}
$$

$\bar{\mu}_{1,2}$

$$
\begin{equation*}
\frac{d V_{w} \bar{\mu}_{1,2}}{d t}=\cdots+\left[-k_{t r p} \bar{\lambda}_{1,2} \bar{\mu}_{1,2} M f_{1}+k_{t r p} \bar{\lambda}_{2,2} \bar{\mu}_{0,2} M f_{2}+k_{d b} F_{1} \bar{\lambda}_{2,2} \bar{\mu}_{0,2} M f_{2}\right] \frac{2}{\overline{N_{2} M f_{d}} \frac{v_{w} v}{N_{A} v}} \tag{S3au}
\end{equation*}
$$

$\bar{\mu}_{2,2}$

$$
\begin{gather*}
\frac{d v_{w} \bar{\mu}_{2,2}}{d t}=\cdots+\left[-k_{t r p} \bar{\lambda}_{1,2} \bar{\mu}_{2,2} M f_{1}+k_{t r p} \bar{\lambda}_{3,2} \bar{\mu}_{0,2}+k_{d b} F_{1} \bar{\lambda}_{3,2} \bar{\mu}_{0,2} M f_{2}+\right. \\
\left.2 k_{d b} F_{1} \bar{\lambda}_{2,2} \bar{\mu}_{1,2} M f_{2}\right] \frac{2}{\overline{N_{2}} M f_{d}} \frac{v_{w}}{N_{A} v} \tag{S3av}
\end{gather*}
$$

Dead Polymer

Notice that

$$
\overline{\lambda_{0, n}}=\sum_{r=1}^{\infty} D_{n}^{r} / M f_{d}
$$

$\overline{\lambda_{0,1}}$

$$
\begin{equation*}
\frac{d V_{w} \overline{\lambda_{0,1}}}{d_{t}}=\ldots+-k_{d b} F_{1} \overline{\lambda_{1,1}} \overline{M_{0,1}} \frac{M f_{1}}{M f_{d}} \frac{V_{w}}{\overline{N_{1} N_{A} v}} \tag{S3aw}
\end{equation*}
$$

$\overline{\lambda_{1,1}}$

$$
\begin{equation*}
\frac{d v_{w} \overline{\lambda_{1,1}}}{d_{t}}=\cdots+\left\{k_{t r p}\left[-\overline{\lambda_{2,1}} \overline{\mu_{0,1}} \frac{M f_{2}}{M f_{1}}+\overline{\mu_{1,1}} \overline{\lambda_{1,1}}\right]-k_{d b} F_{1} \overline{\lambda_{2,1}} \overline{\mu_{0,1}} \frac{M f_{2}}{M f_{1}}\right\} \frac{V_{w}}{\overline{N_{1} N_{A} v}} \tag{S3ax}
\end{equation*}
$$

$\overline{\lambda_{2,1}}$

$$
\begin{equation*}
\frac{d V_{w} \overline{\lambda_{2,1}}}{d_{t}}=\cdots+\left\{k_{\operatorname{trp}}\left[-\frac{\lambda_{3,1} \overline{\mu_{0,1}}}{M f_{2}}+\overline{\mu_{2,1}} \overline{\lambda_{1,1}} \frac{M f_{1}}{M f_{2}}\right]-k_{d b} F_{1} \overline{\lambda_{3,1}} \overline{\mu_{0,1}} \frac{M f_{2}}{M f_{1}}\right\} \frac{V_{w}}{\overline{N_{1} N_{A} v}} \tag{S3ay}
\end{equation*}
$$

$\overline{\lambda_{0,2}}$

$$
\begin{equation*}
\frac{d V_{w} \overline{\lambda_{0,2}}}{d_{t}}=\cdots+-k_{d b} F_{1} \overline{\lambda_{1,2}} \overline{\mu_{0,2}} \frac{M f_{1}}{M f_{d}} \frac{V_{w}}{\overline{N_{1} N_{A} v}} \tag{S3az}
\end{equation*}
$$

$\overline{\lambda_{1,2}}$

$$
\begin{equation*}
\frac{d V_{w} \overline{\lambda_{1,2}}}{d_{t}}=\cdots+\left\{k_{t r p}\left[-\overline{\lambda_{2,2}} \overline{\mu_{0,2}} \frac{M f_{2}}{M f_{1}}+\overline{\mu_{1,2}} \overline{\lambda_{1,2}}\right]-k_{d b} F_{1} \overline{\lambda_{2,2}} \overline{\mu_{0,2}} \frac{M f_{2}}{M f_{1}}\right\} \frac{2 v_{w}}{\overline{\Sigma_{2} N_{A} v}} \tag{S3ba}
\end{equation*}
$$

$\overline{\lambda_{2,2}}$

$$
\begin{equation*}
\frac{d V_{w} \overline{\lambda_{2,2}}}{d_{t}}=\cdots+\left\{k_{t r p}\left[-\frac{\lambda_{3,2} \overline{\mu_{0,2}}}{M f_{2}}+\overline{\mu_{2,2}} \overline{\lambda_{1,2}} \frac{M f_{1}}{M f_{2}}\right]-k_{d b} F_{1} \overline{\lambda_{3,2}} \overline{\mu_{0,2}} \frac{M f_{2}}{M f_{1}}\right\} \frac{2 v_{w}}{\overline{N_{2} N_{A} v}} \tag{S3bb}
\end{equation*}
$$

SM4. Effects of changes on the initiator and activator concentrations in the SBR case

Figure S.1. Effect of the simultaneous variation of initiator and activator 1 (from -45% to $+45 \%$) on conversion (A), number of particles $N_{\mathrm{p}}(\mathrm{B})$, rate of polymerization $R_{\mathrm{p}}(\mathrm{C})$, and average number of radicals per particle $\bar{n}(\mathrm{D})$, along the reactor train with respect to the base case in SBR production.

SM5. Mayo-Lewis plot of F_{1} vs f_{1} for the NBR case

Figure S. 2 Mayo-Lewis plot (blue line) of the instantaneous copolymer composition F_{1} vs. monomer feed composition f_{1} for the butadiene (1) - acrylonitrile (2) system using reactivity ratios $r_{1}=0.30, r_{2}=0.04$. The red line is only a reference to locate the azeotropic composition.

[^0]: * H. M. Hulburt, S. Katz, Chem. Eng. Sci, 1964, 19, 555.

