
processes

Article

Catalytic Performance of Lanthanum Promoted
Ni/ZrO2 for Carbon Dioxide Reforming of Methane

Mahmud S. Lanre 1, Ahmed S. Al-Fatesh 1,* , Anis H. Fakeeha 1,2 , Samsudeen O. Kasim 1 ,
Ahmed A. Ibrahim 1 , Abdulrahman S. Al-Awadi 1,2, Attiyah A. Al-Zahrani 1 and
Ahmed E. Abasaeed 1,*

1 Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia; mahmudsofiu@gmail.com (M.S.L.); anishf@ksu.edu.sa (A.H.F.);
sofkolajide2@gmail.com (S.O.K.); aididwthts2011@gmail.com (A.A.I.); alawadi@ksu.edu.sa (A.S.A.-A.);
aazz@ksu.edu.sa (A.A.A.-Z.)

2 King Abdullah City for Atomic and Renewable Energy, (K.A. CARE) Energy Research and Innovation
Center at Riyadh, Riyadh 11421, Saudi Arabia

* Correspondence: aalfatesh@ksu.edu.sa (A.S.A.-F.); abaseed@ksu.edu.sa (A.E.A.);
Tel.: +966-11-467-6859 (A.S.A.-F.); +966-11-467-6856 (A.E.A.)

Received: 14 October 2020; Accepted: 16 November 2020; Published: 20 November 2020 ����������
�������

Abstract: Nickel catalysts supported on zirconium oxide and modified by various amounts of
lanthanum with 10, 15, and 20 wt.% were synthesized for CO2 reforming of methane. The effect of
La2O3 as a promoter on the stability of the catalyst, the amount of carbon formed, and the ratio of H2

to CO were investigated. In this study, we observed that promoting the catalyst with La2O3 enhanced
catalyst activities. The conversions of the feed, i.e., methane and carbon dioxide, were in the order
10La2O3 > 15La2O3 > 20La2O3 > 0La2O3, with the highest conversions being about 60% and 70% for
both CH4 and CO2 respectively. Brunauer–Emmett–Teller (BET) analysis showed that the surface
area of the catalysts decreased slightly with increasing La2O3 doping. We observed that 10% La2O3

doping had the highest specific surface area (21.6 m2/g) and the least for the un-promoted sample.
The higher surface areas of the promoted samples relative to the reference catalyst is an indication of
the concentration of the metals at the mouths of the pores of the support. XRD analysis identified the
different phases available, which ranged from NiO species to the monoclinic and tetragonal phases
of ZrO2. Temperature programmed reduction (TPR) analysis showed that the addition of La2O3

lowered the activation temperature needed for the promoted catalysts. The structural changes in the
morphology of the fresh catalyst were revealed by microscopic analysis. The elemental compositions
of the catalyst, synthesized through energy dispersive X-ray analysis, were virtually the same as the
calculated amount used for the synthesis. The thermogravimetric analysis (TGA) of spent catalysts
showed that the La2O3 loading of 10 wt.% contributed to the gasification of carbon deposits and
hence gave about 1% weight-loss after a reaction time of 7.5 h at 700 ◦C.

Keywords: catalyst stability; lanthanum promoters; methane dry reforming; nickel catalyst;
zirconium oxide

1. Introduction

The catalytic reaction of CH4 with CO2 has attracted attention for a long time. The process
utilizes both CH4 from natural gas and CO2, two major greenhouse gases, hence mitigating global
warming [1]. The reaction of CH4 with CO2 follows some steps which stem from the breaking of
CH4 by heat and subsequent gasification of the resulting carbon deposits. This approach requires
catalysts with bi-functional properties, which are able to break the bonds in CH4 efficiently and remove
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carbon deposits at the same time [1]. Both CH4 and CO2 are relatively inexpensive feed stocks due to
their natural abundance. This makes CO2 or dry reforming of methane a good alternative to steam
reforming, which is mainly used for synthetic gas (CO/H2) production in industrial applications [1].
In reforming CH4 with CO2, the ratio of H2 to CO is usually less than unity. This syngas mixture can
therefore be combined at an appropriate ratio to produce other important value-added hydrocarbons
via the prominent Fischer–Tropsch method [2].

CH4 reforming with CO2 reactions require a relatively higher thermal energy when compared to
reforming with steam [3]. A simple explanation for this could be that higher energy is needed to break
the bonds in CO2 than what is required for steam [4–9]. Coke formation arises from methane cracking
(Equation (1)) as well as the disproportionation of CO reactions (Equation (2)) [4]:

CH4(g) → Cadsorbed(s) + 2H2(g) ∆Ho
298 = 75

kJ
mol

(1)

2CO(g) → Cadsorbed(s) + CO2(g) ∆Ho
298 = −172

kJ
mol

(2)

Findings from several investigations of methane dry reforming suggest that Nickel-based catalysts
are the most promising, being relatively cheap and stable vis-à-vis the noble metals. Deactivation
as a result of carbon deposits and metal agglomeration is a vulnerability of Ni-based catalysts [1].
Ni catalysts have been fortified in order to retard carbon deposits and to achieve catalysts that would
last for a long time in reactions such as dry reforming [10]. The metal–support interaction is essential
in order to strengthen the resistibility of Ni catalysts to carbon deposits [11–14]. Tuning the size of
Ni particles, as well as the selection of appropriate supports that will promote better metal–support
interaction and consequently prevent the sintering of Ni, are still challenges [15–18].

According to reports, promoting catalysts supports with basic oxides offers promising results [19].
In addition to this, systems that involve loading two metals of the same composition have also been
studied [20]. These studies were aimed at enhancing the activity and shelf life of the catalysts. It is
believed that adding basic oxides to a support promotes the activation of CO2, as well as oxidizing
carbon deposits covering the catalyst active sites [20]. Generally, zirconia is seen as a better active
metal carrier, owing to its stability to heat and exclusive properties such as its reduction-oxidation and
acid-base features [21]. In a study conducted by Santamaria et al., Ni supported on ZrO2 was used
in the steam reforming of volatile components obtained from the pyrolysis of biomass. A maximum
10.73 wt% H2 was produced, and they concluded that ZrO2 is a suitable support for Ni, owing to its
limited coke deposition, as well as its low coke combustion temperature [22]. A large part of the research
using Ni on zirconia has shown that this catalyst suffers from deactivation as a result of the active
metal sintering and carbon deposits. Promoters such as CaO, MgO, and CeO2 have proven to improve
the catalyst’s stability [23]. The performance of Ni/CeO2–ZrO2 in H2 production via the reforming of
aqueous bio-oil fractions was compared with that of a commercial catalyst. The synthesized catalyst
performed better at an Ni and Ce loading of 12% and 7.5% respectively, with an H2 yield of 69.7% and
an H2 content of 61.8% [24].

According to recent findings, CO2 in high concentration promotes feed conversions while
maintaining the stability of catalysts via the continuous removal of carbon deposits by the reversed
Boudouard reaction [25]. In addition to this, it is necessary to optimize the adsorption of CO2 as well as
its activation. To achieve this, catalysts that have strong basic sites should be deployed. The synthesis
of these can be achieved by employing promoters like La that are basic [26,27]. The rare-earth metal
oxides have proven to have a positive influence on the dispersion of Ni. Among the rare earth
metals, La shows higher efficiency in the Dry Reforming of Methane Reaction (DRM) for Ni-based
catalysts [28]. In a direct biogas reforming reaction, Goula et al. [29] compared the activities of varieties
of Ni catalysts that are supported on La2O3–ZrO2. It was discovered that at 750 ◦C, 57% of CH4 and
63% of CO2 were converted. Moreover, their work revealed that the conversion of CO2 remained
the same, even though they expected the activity to be reduced due to shortage of oxidants in the
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course of the reactions. Previous works [30,31] have revealed that adding La to catalysts stands as an
enhancement of the stability of the catalysts upon calcining at 750 ◦C. In addition, similar findings
were reported in the reforming of biomass pyrolysis produce when La was used as a promoter in
Ni/Al2O3. The excellent results achieved were attributed to the basicity and water adsorption capacity
of La, which consequently thwart the catalyst’s deactivation [32]. Lanthanides in general improve
the dispersion of metal and consolidate the adsorption of CO2 onto the carrier. The availability of
oxycarbonates on La2O3 improves the removal of carbon deposits because it acts like a pool of oxygen
that is dynamic [33,34].

The promotion of Ni/La–ZrO2 with lanthanum may reveal that CO2 interacts with La2O3 to form a
carbonate, which scavenges carbon from nickel, thus restoring the nickel particles to their original state,
as in Ni/La2O3 [35]. There are reports that adjusting the redox and acid-base properties of catalysts by
adding varieties of dopants could lead to the inhibition of carbon deposits [36]. Lanthanum oxide has
been touted to be a good dopant due to its ability to strengthen the CO2 adsorption onto the available
support, thereby preventing the accumulation of coke deposits via the reversed disproportionation
reaction [37–41]. Furthermore, La2O3 could undergo a change to La2O2CO3 at 600 ◦C in dry reforming
experiments [7,42]. Verykios and co-workers proved that the coke deposited on the interface between
Ni and La2O2CO3 can be gasified via the reaction La2O2CO3 +C↔ La2O3+2CO [43]. This reaction
effectively suppresses coke formation on the catalyst. Liu et al. [42] argued that adding La to an
Ni-Mg-Al HT synthesized catalyst led to higher metallic site availability, with weak and medium
basic strength. However, they discovered that La addition enhanced the reaction that involved
decomposition of methane. Lucredio et al. [44] investigated the effect of promoting Ni supported
on Mg-AlHT with La in a feed stream that contained CH4 in excess of CO2 in DRM. According to
their findings, a catalyst doped with 1 wt% La resulted in a higher amount of Ni species that were
reducible. Consequently, higher conversions of CH4 were obtained, whereas the conversions of CO2

were lower than that of the un-promoted catalyst. Furthermore, they claimed that La favored coke
depositions via the decomposition of methane reaction. On the contrary, Yu et al. [36] showed that
higher lanthanum loadings resulted in better performance within a 600–700 ◦C reaction temperature.
This performance was attributed to an increase in the size of basic sites. It was shown that the
best performance was obtained at a 0.1 lanthanum molar ratio. In addition to the redox ability of
lanthanum, modification with lanthanum minimized sintering and enhanced the resistance of the
catalyst to heat at elevated temperatures [45]. La has become a common promoter in the world of
catalysis for reactions like CO2 reforming of methane, steam and CO2 reforming of glycerol, steam
and tri-reforming of methane, and steam reforming of ethanol [5]. Furthermore, La2O3 has made an
entrance into the field of photo-catalysis, as it is now being used as a promoter in semiconductors
employed in photo-catalysis [46,47].

Catalytic deactivation owing to agglomeration and metal particle sintering is a serious challenge
in dry reforming of methane, which has encouraged researchers to design anti-coke catalysts in a
suitable route. The research in this area will continue until a breakthrough is achieved and the process
is capable of developing large scale production. Most research studies on lanthanum are based on
alumina support. The most recent work focusing on the role of lanthanum in zirconium-oxide support,
authored by Goula et al., [29] investigates the biogas dry reforming of methane, which shows less
activity than our method. The emphasis of this work is to study the effect of varying La2O3 lanthanum
composition loadings on zirconium oxide support for the dry reforming of methane. Our objective
was to study the effect of a lanthanum promoter on ZrO2 supports. The Prepared catalyst was
used to determine the selectivity, stability, and activity, and moreover, the conditions of minimum
carbon deposition are discussed. Methods of analysis such as Brunauer–Emmett–Teller (BET), XRD,
temperature programmed reduction (TPR), temperature-programmed desorption (TPD)-CO2, SEM,
and TEM analysis were performed to assess the outcomes of our work.
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2. Experimental

2.1. Materials

Lanthanum Nitrate (La(NO3)3·6H2O 433.01 g/moL; 99.99%; Aldrich), zirconium oxide (99.9%,
Alfa Aesar), and nickel nitrate hexahydrate (Ni (NO3)2·6H2O, 98%, Alfa Aesar) were purchased
and were used as received. Ultrapure water was obtained via a Milli-Q water purification system
(Millipore).

2.2. Catalyst Preparation

The weight of an empty crucible was measured and recorded. Depending on the desired
composition and mass of the catalyst, the calculated amount of the support (zirconium oxide) was
measured and poured into the empty crucible. In addition, calculated masses of lanthanum nitrate
hexahydrate (equivalent to 10, 15, and 20 wt%) and that of nickel nitrate hexahydrate (equivalent
to 5 wt%) were added to the crucible containing the support and were crushed to obtain a powder
mixture. The mixture was ground thoroughly in the crucible until all the greenish color of nickel
nitrate had disappeared. Ultrapure water was added dropwise to the ground powder mixture in the
crucible to form a paste. It was well stirred and the water was allowed to evaporate under ambient
conditions overnight as a drying process. The weight of the crucible plus the sample was measured
and subsequently that of the sample was determined after drying overnight. Thereafter, the dried
sample was calcined at 700 ◦C for 3 h.

2.3. Catalytic Testing

DRM experiments were done at a 700 ◦C reaction temperature and in one atmosphere. The reactions
were performed in a packed bed reactor made from stainless steel (internal diameter, 0.0091 m; height,
0.3 m). A catalyst mass of 0.10 g was carefully positioned in the reactor over a ball of glass wool.
A stainless steel, sheathed K-type thermocouple, positioned axially close to the catalyst bed, was used
to measure the temperature during the reaction. Prior to the start of the reaction, activation of the
catalysts was performed at 700 ◦C in an atmosphere of H2. This lasted for 60 min and the remnant
H2 was purged with N2. During the experiments, the feed volume ratio was maintained at 3:3:1 for
methane, carbon dioxide, and nitrogen gases, respectively. In addition, the space velocity was kept at
42 l/h./gcat. The outlet of the reactor was connected to an online gas chromatograph (GC) equipped
with a thermal conductivity detector (TCD) to analyze its composition. The methane and carbon
dioxide conversion and syngas ratio were thus computed according to Equations (3)–(5):

CH4 conversion (%) =
CH4,in −CH4,out

CH4,in
∗ 100 (3)

CO2 conversion (%) =
CO2,in −CO2,out

CO2,in
∗ 100 (4)

H2

CO
Ratio =

mole of H2 produced
mole of CO produced

(5)

2.4. Determination of Catalyst Physicochemical Properties

2.4.1. Nitrogen Physisorption

The surface area and distribution of pore sizes of the catalysts were measured by N2

adsorption-desorption at −196 ◦C using a Micromeritics Tristar II 3020 surface area and porosity
analyzer. The Barrett, Joyner, and Halenda (BJH) method was employed in the calculation of pore
size distribution.
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2.4.2. Temperature Programmed Reduction (TPR)

Seventy milligrams of the sample were loaded inside the TPR sample holder of a Micromeritics
Auto Chem II apparatus. Thereafter, TPR measurements were performed at 150 ◦C using Ar gas for
30 min. After that, the sample was cooled to room temperature. The next step involved heating by the
furnace up to 900 ◦C ramping at 600 ◦C h−1, in an atmosphere of an H2/Ar mixture (1:9 vol%) flowing
at 40 mL/min. The thermal conductivity unit recorded the consumption of H2 during the operation.

2.4.3. Thermo-Gravimetric Analysis (TGA)

The quantity of carbon deposits on the spent catalysts was measured by means of TG analysis.
A platinum pan was filled with 10–15 mg of the used catalysts and carefully positioned inside the
device. Heating was done from room temperature up to 1000 ◦C at a 20 ◦C min−1 temperature ramp.
The change in mass was continuously monitored as the heating progressed.

2.4.4. X-ray Diffraction (XRD)

Powder X-ray diffraction (XRD) patterns of the prepared catalysts were recorded on a Miniflex
Rigaku diffractometer that was equipped with Cu Kα X-ray radiation. The device was run at 40 kV
and 40 mA.

3. Results and Discussion

3.1. Brunauer–Emmett–Teller (BET) and Barrett, Joyner, and Halenda (BJH) Analyses

Figure 1 shows the nitrogen physisorption isotherms for the prepared catalysts, depicting similar
isotherm linear plots, with 5Ni-10 La-ZrO2 having a large pore volume, hence resulting in a higher
surface area than the others [2]. The large specific surface area and pore volume of 5Ni+10 La2O3-ZrO2

could result in a great deal of nickel support interface and effectively enhance the mass and heat
transfer properties [2]. 5Ni-10 La2O3-ZrO2 shows large uptake of nitrogen at relative pressure in the
range of 0.6–0.75, which indicates capillary condensation or the presence of uniform pores of highly
mesoporous material. The rest have a plateau at relative pressures above 0.9 p/p0, which indicates
the absence of larger mesoporous structure. Table 1 contains the specific surface area (SSA) and the
different pore sizes, as well as the pore volumes for 5Ni/ZrO2 and La-promoted Ni/ZrO2 catalysts.
From the table, it can be observed that the SSA of the catalysts decreased with increasing La2O3 doping.
This decrease was most likely due to significant pore blockage [48]. It has been reported that for
La2O3-promoted ZrO2 catalysts, there is a strong inhibition of crystallite agglomeration and sintering
between different crystallite regions due to the formation of monoclinic zirconia [49]. Indeed, Table 1
shows that the pore increases with the addition of La2O3.

3.2. Temperature-Programmed Reduction (TPR)

The reduction behavior of the fresh calcined catalysts was determined by H2-TPR analysis. Figure 2
represents the reduction patterns of the four samples; it shows sharp peaks. All peaks appeared
at temperatures below 600 ◦C. Differences in the metal–support interaction are responsible for the
appearance of the peaks at different temperature ranges. The reduction peak at low temperature
regions (250–310 ◦C) corresponds to weakly interacting or surface NiO species that are being reduced,
whereas the reduction peak at high temperature (450–550 ◦C) corresponds to “NiO species strongly
interacted with the support”. This indicates that Ni/ZrO2 has both types of reduction peaks, which
means that NiO species interacted with the ZrO2 support weakly as well as strongly. After adding
10% La2O3, the strongly interacting NiO species were suppressed and moderately reducible NiO
species, which interact moderately with the support, appeared in the intermediate temperature region
(310–450 ◦C). As La2O3 loading increased, peaks broadened in the intermediate temperature region.
This indicates that La2O3 loading induces moderate NiO interaction with the support. Therefore, ZrO2
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assisted in making Ni particles stable and preventing their sintering, due to the inherent properties of
the metal-oxide [4]. Moreover, ZrO2 assisted in the activation of NiO species at elevated temperatures
and ensured access to the active sites of Ni for the CO2 reforming of methane reaction [4].Processes 2020, 8, x FOR PEER REVIEW 6 of 15 
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Figure 1. Nitrogen physisorption isotherms of 5Ni-ZrO2, as well as lanthanum-promoted
5Ni-ZrO2 samples.

Table 1. Textural properties (specific surface area (SSA), pore volume (Pv), pore diameter (Pd)) of the
pristine and doped Ni-ZrO2 samples.

Samples SSA, m2/g Pv, cm3/g Pd, nm

5Ni-ZrO2 16.1 0.15 43.3
5Ni-10 La2O3/ZrO2 21.6 0.18 36.3
5Ni-15 La2O3/ZrO2 18.4 0.15 36.1
5Ni-20 La2O3/ZrO2 17.3 0.13 33.5
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Figure 2. H2-temperature programmed reduction (TPR) profiles of 5Ni-ZrO2 and La2O3-promoted
5Ni-ZrO2 catalysts.
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3.3. Temperature-Programmed Desorption (TPD-CO2)

The TPD-CO2 profiles shown in Figure 3 depict peaks for the desorption of CO2 within a
temperature range of 0–700 ◦C. The desorption peaks around 250–300 ◦C correspond to medium
strength basic sites/a build-up of basicity by surface oxygen anions, and the peaks around 500–550 ◦C
correspond to strong basic sites/a build-up of basicity due to carbonate species adsorbed on the Ni-ZrO2

interface [23]. The lowest desorption peak at 250 ◦C can be related to a build-up of basicity by surface
hydroxyls [23]. It can be seen that the desorption peaks for 5Ni-10 La2O3-ZrO2 are characterized by
weak and medium basic sites. As shown in previous studies, La2O3 addition enhanced the strength
of medium as well as strong basic sites [26]. Thus, the addition of La2O3 at higher loadings (15 and
20 wt.%) has a relatively positive influence on the basicity of the catalyst. The un-promoted catalyst
has only weak and medium-strength basic sites. On promoting the catalyst with 15% and 20% La2O3,
not only did the intensity of the medium site increase, it also led to the formation of strongly basic sites.
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Figure 4. X-ray diffraction (XRD) patterns for 5Ni-ZrO2 and La2O3-promoted 5Ni-ZrO2 catalysts.

3.4. X-ray Diffraction (XRD) Analysis

The powder X-ray diffraction (XRD) data plotted in Figure 4 were used to explore the phase
composition of the prepared samples. Standard powder XRD cards (JCPDS) were employed in the
determination of the different crystallographic phases. Diffraction peaks of NiO can be featured on the
diffractograms at 2θ = 28◦ and 32◦ corresponding to the (101) and (012) reflections, respectively [50].
Monoclinic zirconia (m-ZrO2) was found at 2θ ≈ 28.2, and 35.3, whereas tetragonal zirconia (t-ZrO2)
appeared at 2θ = 40.1, 50, and 55.4 [50]. No peak could be assigned to the La2O3 phase; hence, peaks
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for the promoter were not found, which indicates its good dispersion. Peak broadening was not
observed, indicating uniform lattice strain [30].

3.5. Catalytic Activity

The results of the performance of the catalysts are presented in Figure 5. The reaction was
performed at 700 ◦C, 1 atm, and for a duration of 7.5 h. The catalyst activity, measured in terms of
CH4 conversion, CO2 conversion, and H2/CO mole ratio, is shown in Figure 5. 5Ni-10 La2O3-ZrO2

catalyst were found to be highly active and stable in DRM, showing >60% CH4 conversion, >70%
CO2 conversion, and a >0.90 mol H2/CO ratio over 7.5 h of reaction time and a temperature of 700 ◦C.
The conversions of the feed, i.e., methane and carbon dioxide, were in the following order: 10 wt.%
La2O3 > 15 wt.% La2O3 % > 20 wt.% La2O3 > the non-promoted catalyst. The 15 wt.% La2O3 catalyst
system showed moderate activity, whereas the un-promoted catalyst displayed a good initial activity
but was progressively deactivated. The un-promoted catalyst system was found to be the lowest in
terms of activity and stability. In all tested catalysts, CH4 conversion was lower than CO2 conversion.
This can be linked to the reverse water gas shift (RWGS) reaction, which consumes CO2 alongside the
main reaction. La2O3 content influenced the activity of the catalysts—the addition of La2O3 improved
the catalyst performance [30]. La2O3 addition improved the adsorption ability of CO2, the Ni available
at the surface, and enhanced the catalysts stability overall [30]. It can be seen that 10 wt.% La2O3

gave the optimum performance and the catalyst activity declined with loading above 10%. A possible
explanation for these results could be linked to the higher surface area of 10 wt.% La2O3 catalyst.
Moreover, the TPR results indicate a sharp peak with significant intensity at a low temperature for
10 wt.% La2O3. This indicates that the NiO species have a moderate metal–support interaction, which
could easily be activated and available for reaction. Based on the XRD diffractogram, the intensity of
NiO species is higher in 10 wt.% La2O3 than in the un-promoted catalyst. This precludes covering of
the active phase by other added species and ultimately makes it available for reaction. The H2/CO of
the catalysts were very stable and close to 1 during the 7.5 h reaction time (Figure 5C), which indicates
that both RWGS and decomposition of CH4 had less of an effect on the catalyst. Hence, it is safe to say
that during the CO2 reforming of methane the catalyst displayed good stability. Table 2 exhibits the
results of this work compared to the literature.
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Table 2. Comparison of the results of this work with those of the literature.

Catalyst Constituents
Method of
Forming
Catalyst

Reactor Type Operating
Temperature Product/Conversion Ref.

Ni/ZrO2
Wet

impregnation
Fixed-bed

quartz reactor T = 850 ◦C CH4 = 72
CO2 = 82 [51]

Ni/Al2O3+ZrO2 Sol-gel T = 850 ◦C CH4 = 87
CO = 90 [52]

Ni/La2O3-ZrO2
Polymerized

method
Fixed-bed with

electricity T = 223 ◦C CH4 = 12.4
CO2 = 17.8 [53]

Ni/La2O3-ZrO2
Wet

impregnation Fixed-bed T = 750 ◦C CH4 = 57
CO2 = 63 [29]

Ni/ZrO2-Pluronic P123 One-pot Quartz flow
reactor T = 600 ◦C CH4 = 12

CO2 = 20 [54]

La2NiO4/γ-Al2O3 Sol–gel Fixed-bed
quartz reactor T = 700 ◦C CH4 = 49.5

CO2 = 60 [55]

Ni/La2O3-ZrO2 Our method Packed-bed
reactor T = 700 ◦C CH4 = 61.3

CO2 = 76.5 This work

3.6. Transmission Electron Microscope (TEM)

Figure 6A,B shows the TEM images for the fresh 5Ni-10 La-ZrO2 catalyst, whereas Figure 6C,D
shows those for the used 5Ni-10 La2O3-ZrO2 catalyst at 200 and 100 nm magnification, respectively.
There is a disparity in the morphology of the fresh and used catalysts. The fresh catalyst appears to
contain particles clumped on the surface, whereas the used catalysts depict chunky and dispersed
particles on the catalyst’s surface. In addition to the identified metal particles, carbon in the form of
nanotubes can be seen in the images of the used catalysts.Processes 2020, 8, x FOR PEER REVIEW 10 of 15 

 

 

Figure 6. TEM image of (A) fresh 5Ni-10 La2O3-ZrO2 catalyst, (B) fresh 5Ni-10 La2O3-ZrO2 catalyst, (C) 

used 5Ni-10 La2O3-ZrO2 catalyst, and (D) used 5Ni-10 La2O3-ZrO2 catalyst. 

3.7. Scanning Electron Microscope (SEM) 

Figure 7A,B shows the SEM images for the fresh 5Ni-10 La2O3-ZrO2 catalyst, whereas Figure 

7C,D shows those for the used 5Ni-10 La-ZrO2 catalyst at 10,000 and 1000 magnifications, 

respectively. The used catalyst appears to be less chunky with irregularly-shaped particles than the 

fresh catalyst. 

 

Figure 7. SEM image of (A) fresh 5Ni-10 La2O3-ZrO2catalyst, (B) fresh 5Ni-10 La2O3-ZrO2 catalyst, (C) 

used 5Ni-10 La2O3-ZrO2 catalyst, and (D) used 5Ni-10 La2O3-ZrO2 catalyst. 

3.8. Energy Dispersive X-ray Analysis 

The EDX surface elemental analysis showed that the surface composition of the fresh catalyst 

(Figure 8) comprised varying amounts of elemental composition. Zirconium oxide was the most 

abundant element on the surface with ~50 wt.% for the fresh catalyst. From the fresh catalyst analysis, 

the percentage composition of Ni and the other elements correspond to the calculated composition 

during the synthesis. 

Figure 6. TEM image of (A) fresh 5Ni-10 La2O3-ZrO2 catalyst, (B) fresh 5Ni-10 La2O3-ZrO2 catalyst,
(C) used 5Ni-10 La2O3-ZrO2 catalyst, and (D) used 5Ni-10 La2O3-ZrO2 catalyst.
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3.7. Scanning Electron Microscope (SEM)

Figure 7A,B shows the SEM images for the fresh 5Ni-10 La2O3-ZrO2 catalyst, whereas Figure 7C,D
shows those for the used 5Ni-10 La-ZrO2 catalyst at 10,000 and 1000 magnifications, respectively.
The used catalyst appears to be less chunky with irregularly-shaped particles than the fresh catalyst.
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3.8. Energy Dispersive X-ray Analysis

The EDX surface elemental analysis showed that the surface composition of the fresh catalyst
(Figure 8) comprised varying amounts of elemental composition. Zirconium oxide was the most
abundant element on the surface with ~50 wt.% for the fresh catalyst. From the fresh catalyst analysis,
the percentage composition of Ni and the other elements correspond to the calculated composition
during the synthesis.Processes 2020, 8, x FOR PEER REVIEW 11 of 15 
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3.9. Thermogravimetric Analysis (TGA) of the Used Catalyst

Based on the TGA Plot (Figure 9), the amount of carbon deposition on 5Ni-10 La2O3-ZrO2 was
about 1% and it significantly increased to 4% when the La2O3 content increased. The un-promoted
catalyst exhibited a large amount of carbon deposition, compared to the La2O3-promoted catalyst.
Hence, La2O3 addition helps in coke gasification. The availability of La could lead to La2O2CO3,
which could assist in gasifying the deposited carbon, including the amorphous carbons that lack
definite structures formed in the course of the reforming reactions [50]. The weight loss obtained at the
temperature range of 500 ◦C–700 ◦C can be assigned to filaments and fibers of carbon, which grow on
Ni-sites. La2O3-promoted catalysts enhance the direct methane decomposition reaction [56].
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3.10. Stability Test

After investigating all the synthesized samples in the dry reforming of methane, the catalyst with
the best activity was selected and tested to see how stable it would be over a longer period of time
(67 h). The results obtained from this study are shown in Figure 10.

Based on the results shown in Figure 10, it can be seen that the catalyst had a higher initial
conversion and then maintained stability at another value that was still significant after about 67 h
of reaction. Li and Zhao [51] performed a stability test for 30 h using Ni/ZrO2 prepared via the
impregnation method for dry reforming at 850 ◦C. They found that CH4 conversion declines steadily
from 84% to 70%. Similarly, the work of Goula et al. [29] investigated syngas production employing
the dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts.
Their stability profile showed that CH4 conversion decreased from 52% to 40% for 30 h on steam at
750 ◦C. Alternatively, Mustu et al. [55] prepared a Ni/ZrO2 catalyst using the ammonia solution route
and displayed stability for 4 h, in which the CH4 conversions varied from 22% to 20% at 600 ◦C.

4. Conclusions

La enhances the catalytic activity for nickel-zirconium oxide catalysts. The 10 wt.% La2O3-
promoted catalyst showed the highest conversion values. For this catalyst, the active metal appeared to
be localized close to the entrance of the pores and therefore the effect of diffusion limitation of the feed
to the sites of the active metal was reduced. Furthermore La2O3 addition improved the reducibility
of Ni species. This implies that the NiO species were not strongly bonded to the support and thus
would be available for the reaction of the feed components. BET analysis indicated that increasing
La2O3 doping in the catalyst causes significant pore blockage of the catalyst. TGA analysis showed
that La contributes to the reduction of deposits of carbon, using the formed La2O2CO3 species to
oxidize these deposits. However, the presence of La2O3 promotes unwanted side reactions, like direct
decomposition of methane. Increasing the weight load percent above 10 wt% La2O3 decreases the
catalyst stability and increases the carbon deposition on the spent catalyst. The stability test indicated
that the activity for 5Ni-10 La2O3-ZrO2 was reduced over time, but it nevertheless maintained stability
at appreciable conversions for both CH4 and CO2.
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