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Abstract: Supercritical CO2 power cycles have been deeply investigated in recent years. However,
their potential in waste heat recovery is still largely unexplored. This paper presents a critical review
of engineering background, technical challenges, and current advances of the s-CO2 cycle for waste
heat recovery. Firstly, common barriers for the further promotion of waste heat recovery technology
are discussed. Afterwards, the technical advantages of the s-CO2 cycle in solving the abovementioned
problems are outlined by comparing several state-of-the-art thermodynamic cycles. On this basis,
current research results in this field are reviewed for three main applications, namely the fuel cell,
internal combustion engine, and gas turbine. For low temperature applications, the transcritical CO2

cycles can compete with other existing technologies, while supercritical CO2 cycles are more attractive
for medium- and high temperature sources to replace steam Rankine cycles. Moreover, simple
and regenerative configurations are more suitable for transcritical cycles, whereas various complex
configurations have advantages for medium- and high temperature heat sources to form cogeneration
system. Finally, from the viewpoints of in-depth research and engineering applications, several future
development directions are put forward. This review hopes to promote the development of s-CO2

cycles for waste heat recovery.
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1. Introduction

Efficient conversion and utilization of energy is an effective pathway to address energy shortage
and environmental problems faced by mankind. However, several losses occur during the energy
conversion process, starting from the primary energy carrier to the end-user, mainly in the form
of waste heat. The waste heat discharged to the environment has high exergy value and also
contains large quantities of pollutants, thus, contributing to global warming. The recovery of this
waste heat for targeted use can significantly raise the process efficiency and reduce the primary
energy consumption [1,2]. Such an energy-saving potential is particularly significant for industrial
processes, thermal engines, and mechanical devices [3–5]. Take China as an example, the annual
energy consumption of the industrial sector accounts for more than 70% of the total national energy
consumption, of which at least 50% is converted to waste heat at different temperatures and with
different carriers. The estimated waste heat in the cement, iron/steel, and glass industries in China,
in 2016, were, 41.0 GWth, 2.9 GWth, and 1.8 GWth, respectively [3].

Generally speaking, there are many kinds and forms of waste heat resources. According to the
investigation by Galanis et al. [6], waste energy is released from industrial processes to the environment
via four main states of matter; namely, liquid streams at temperatures between 50 ◦C and 300 ◦C,
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exhaust at temperatures ranging between 150 ◦C to 800 ◦C, steam at temperatures ranging from
100 ◦C to 250 ◦C, as well as the process gases and vapors within a temperature range of 80 ◦C to
500 ◦C. Furthermore, low-temperature (<350 ◦C) waste heat accounts for the majority in most end-use
energy sectors. As shown in Figure 1, evaluations reveal that 63% of the waste heat streams arise at
temperatures below 100 ◦C, and the largest proportion of which is produced by the electricity sector,
followed by the commercial and transportation sector [1].
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From a thermodynamic point of view, energy from waste heat can be recovered in various ways.
Direct heat exchange can take place between waste heat and other fluids, namely the heat transfer
fluids for the heating and cooling process [7,8]. Conversion of waste heat into useful power is done
using a thermodynamic cycle. The waste heat can be used as a heat source, i.e., the high-temperature
side, which is used to heat the working fluid to obtain a gas phase of certain temperature and pressure.
This working fluid, or the waste heat fluid itself, can be used to perform expansion work [9,10].
Another method is to raise the temperature of the waste heat to a required value using a heat pump
for special applications such as distributed energy systems [11,12]. These diverse pathways face
challenges, such as the low-grade and fluctuation and intermittency of heat sources, inefficiencies in
the energy conversion process, and cascade utilization of different energy sources.

2. Barriers to Waste Heat Recovery

Using waste heat as an energy source is based on many aspects, which are elaborated as follows:
Many factors make waste heat recovery very difficult, such as operating principle of heat recovery
facilities, user demand, and characteristics of the source of the waste heat. Each method of waste heat
recovery is posed with different problems, thus, the technologies face a number of barriers. A graphical
representation of the various energy conversion pathways for waste heat is shown in Figure 2. Waste
heat is known to mainly originate from two types of sources, i.e., fossil fuel and renewable energy.
Most of the waste heat from fossil fuel involves industrial processes while renewable energy can be
used directly through an air pre-heater, waste heat boiler, and economizer, and a small part of them
need to go through a thermal power cycle before being used [13]. This is one of the main reasons
for the temperature grade diversification of waste heat resources. Meanwhile, as mentioned above,
the diverse forms of waste heat recovery technologies depend on the specific energy form needed
by the end-user. At this point, the limitation of space for equipment as well as the economic and



Processes 2020, 8, 1461 3 of 18

environmental boundaries should be taken into account. These abovementioned issues make an
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From a technical perspective, the following aspects need to be highlighted. First of all, waste
heat sources are prone to more fluctuation and intermittence than traditional heat sources, severely
affecting the operation stability of the recovery system. This is especially challenging in context to
an evaporation process where the energy transfer takes place directly between the heat source and
the working fluid. The abrupt fluctuation of the temperature of the heat source during a transient
scan cause the variation in physical and chemical properties of the working fluid [14]. The indirect
evaporation with an intermediate heat transfer fluid between the fluctuating waste heat stream and
the working fluid can solve such problem effectively. Moreover, the development of a proper control
strategy can also avoid large fluctuations in the performance of the system [15,16].

A second technical aspect involves systems that have more than one heat source, such as the waste
heat from internal combustion engines (ICE) and from other complex industrial processes. For such
a case, a waste heat recovery system must be designed and optimized for the multiple heat sources.
In ICEs, the engine coolant is low-grade waste heat with temperature below 100 ◦C which is used as a
preheat source, and the exhaust gas is high-grade waste heat with temperatures ranging from 500 ◦C
to 700 ◦C [17]. Technical solutions involve matching the characteristic temperature drop of each source
of waste heat.

Thirdly, due to the variety and complexity of waste heat resources, where the waste heat is present,
the chemical composition of the waste heat carrier is important when considering recovery from steam
generation [18,19]. Furthermore, the waste heat sources are usually dispersed geographically, which
makes it challenging to integrate the recovery system with the original industrial process. In these
cases, additional problems like the pressure drop of the flue gases in the heat absorber [20] should be
taken into account.

To realize an economical and efficient waste heat recovery process, the barriers to the wide
application of recovery technology for low-temperature waste heat have been described as follows:
(1) The mismatch of energy grade of the waste heat resource and user demand in terms of time and
space, (2) the intermittent of waste heat sources, and (3) the lack of a comprehensive methodology
for global energy transfer and transformation optimization at the system level [21–23], especially for
larger zones.
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3. State-of-the-Art Thermodynamic Cycles for Waste Heat Recovery

Various implementation pathways can be adopted with respect to the quality of waste heat
sources [2]. The main approach is to utilize the available waste heat as heat source to drive the
thermodynamic cycle and convert the thermal energy into useful power. One of the most important
indicators for choosing a proper cycle is the operation temperature. Figure 3 depicts the possible
thermodynamic cycles and the range of their relevant operation temperatures. The most suitable waste
heat temperature range for the Steam Rankine Cycle (SRC) is medium-high temperature, at about more
than 300 ◦C. Systems for lower temperature heat sources are much less cost-effective and may lead to
surface corrosion problem. Furthermore, the Organic Rankine Cycle (ORC) which uses lower boiling
point organic fluids, has been also extensive investigated in last few decades. A suitable waste heat
temperature to obtain competitive efficiency of the ORC ranges from 90 ◦C to 250 ◦C. Additionally, the
Kalina Cycle uses a mixture of ammonia and water as working fluid to closely meet the temperature
profile of waste heat sources during the phase change heat transfer process, between 100 ◦C and 450 ◦C.

Recent years, the use of CO2 power cycles for waste heat recovery are gained more and more
attentions. Such cycles are usually operated under trans-critical or supercritical conditions, due to
the relatively low critical point of carbon dioxide. Its main advantages can be summarized as follows.
First of all, the CO2 cycles are suitable for the recovery of waste heat sources with a wide range
of temperatures, while the steam based Rankine cycle is only efficientto recovery waste heat at
high-temperature. Therefore, the main propose to investigate the CO2 power cycles was not only to
replace the SRC [24] but also as a more wide range to waste heat recovery temperatures [25]. The special
physical properties of CO2 can reduce the heat transfer loss between working fluid and heat source [26].
Furthermore, the CO2 is a non-combustible and nontoxic refrigerant which frees up space for the cycle
operation temperature to rise [27,28]. In addition, the CO2 power cycles occupy a smaller space as
compared with SRC, which has a large working fluid steam volume and therefore shows great potential
for system downsizing and lightweight. Accordingly, the chemistry and condensingprocesses are also
simpler [28,29].
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Besides to thermodynamic cycles, other choices is to use thermoelectric (TE) materialsfor
power conversion of waste heat. Relevant investigations focus on the thermoelectric generator [30],
electrochemical systems [31], thermogalvanic cells [32] and pyroelectric energy conversion [33],
which are still under study and has no large scale market application.
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In summary, with respect to conventional thermodynamic cycles, supercritical carbon
dioxide(s-CO2) cycles offer a wide range of operating temperatures and potentially higher efficiencies,
and a much smaller environmental footprint [34–36]. Power cycles running on s-CO2 have received
wide attention, and the number of publications has risen exponentially in recent years. However, the
great potential for this technology in waste heat recovery remains to be further explored, which makes
this comprehensive review of recent advances in s-CO2 cycles for waste heat recovery highly relevant.

4. Advances in s-CO2 Power Cycles for Waste Heat Recovery

In general, a cogeneration system can be consisted of a topping- and a bottoming cycle on the
basis of the sequence of energy use. In the topping cycle, the input primary energy is used to first
produce power and thermal energy, whilein a bottoming cycle the waste heat rejected from the topping
cycle is further used to generate power through a recovery heat exchanger and a turbine machine.
The bottoming cycles are suitable for recovery the low-grade waste heat produced by industrial
processes to realizing the cascade utilization of energy.

In this section, studies on different applications of CO2-based bottoming cycles for waste heat
recovery have been summarized and discussed in detail. It should be noted that the investigations
on CO2-based power cycles are primarily focused on solar energy [36,37] and carbon capture
systems [38,39]. Nevertheless, this section will only focus on those studies that utilize CO2 power
cycles for industrial waste heat recovery applications. Figure 4 illustrates a roadmap for the progress
of research of the s-CO2 cycle for different industrial waste heat recovery applications in the last ten
years. Research has been mainly concentrated on three aspects, i.e., recovering waste heat from fuel
cells, internal combustion engines (ICE), and gas turbine. Moreover, waste heat recovery from nuclear
power plants and landfills has been also carried out.
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4.1. Fuel Cell

The research in relevant region begins with the employment of CO2-based bottoming cycles for
waste heat recovery in high temperature fuel cells. The pioneering work was reported in 2009 [40],
and it applied a regenerative s-CO2 cycle to recover flue gas waste heat from high-temperature solid
oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC). The total system efficiency was increased
by 4.4%, while the total net output power was increased by 583.6 kW. The study then compared the
combinations of six different configurations of fuel cell and s-CO2 cycles. The results indicated that the
required power consumption of the compressor for the s-CO2 bottoming cycle was far lower than the
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air bottoming cycle, and the operation performance of the bottoming cycle was less affected by the fuel
cell operating temperature [41]. Bae et al. [42] compared to the thermodynamic performance of four
different configurations of the s-CO2 bottoming cycle to recover waste heat from the MCFC flue gas
and compared it with the regenerative air Rankine cycle. The results showed that the total efficiency of
the system could be improved by nearly 11% by using the cascade cycle, which was much higher than
that of the system using the air Rankine cycle as the bottoming cycle. Moreover, the investigation from
Baronci et al. [43] showed that the adoption of the s-CO2 bottoming cycle under optimal conditions
could enhance the total energy efficiency of the system by 8.15%. Meanwhile, through a performance
comparison, it was found that the total energy efficiency of the system using s-CO2 as the bottoming
cycle could reach 55.3%, while total energy efficiency of the system using ORC (cyclohexane as the
working fluid) as the bottoming cycle was only 53.3%.

Moreover, Ahmadi et al. [44] proposed a combined cycle of proton exchange membrane fuel cell
(PEMFC) and s-CO2, which used s-CO2 fluid to replace the cooling water of conventional fuel cells.
It also reused the gasification cooling energy of liquefied natural gas (LNG) to reduce the condensation
temperature of the combined cycle to improve the cycle efficiency. Through a sensitivity analysis of the
system operation parameters, the study demonstrated that the total energy efficiency of the system
would decrease with the increase of operating temperature of the fuel cell and the increase of the pinch
point temperature difference in the pre-heater of the bottoming cycle. The total energy efficiency of the
system could be improved with the increase of the turbine inlet temperature of the bottoming cycle and
the decrease of the pinch point temperature difference of the condenser. This study also showed that
using s-CO2 as the bottoming cycle could increase the net output power of the cycle by 39.56%, and
the total energy efficiency could reach up to 72.36%. Furthermore, Mahmoudi et al. [45] put forward
the MCFC/s-CO2/ORC cascade system to create a combined supply of cooling, heating, and power,
and optimized the system with multiple objectives to maximize the exergic efficiency and minimize
the initial investment of the system. The results showed that the largest exergy loss of the system
came from the fuel cell cycle, and the operating temperature of the fuel cell was positively correlated
with the exergy efficiency and initial investment of the system. The latest research by Ryu et al. [46],
compared the thermodynamic performance of the MCFC cycle using three different configurations of
the s-CO2 bottoming cycle. The results showed that the total energy efficiency of the system could be
increased by 3.41–4.6% by adding the bottoming cycle, and the back pressure of the compressor was
the key parameter that affected the bottom cycle performance. In addition, the economic analysis of
the system showed that the combined cycle had obvious economic advantages over the traditional
thermal and power cogeneration system, i.e., the heating cost was less than $28/Gcal, and the cost of
printed circuit board heat exchanger (PCHE) was lower than $100/kW.

4.2. Internal Combustion Engine

Another research hotspot in this field is the comprehensive recovery and utilization of waste
heat of internal combustion engines (ICE) using the CO2-based bottoming cycle. The most extensive
research in this area has been conducted by Shu et al., which have been summarized herein. In context
to theoretical research, the system performance of different forms of CO2 or ORC bottoming cycles
for the cascade recovery of the waste heat of exhaust and jacket water, of a four-cylinder four-stroke
water-cooled internal combustion engine, was analyzed. The results showed that the combined use of
preheating and the regenerative CO2 cycle could increase the total net output power of the system
by 9.0 kW at the highest, and the corresponding thermal and exergic efficiencies of the system were
increased by 184% and 227%, respectively [47]. Moreover, after further comparison of four different
configurations of CO2 bottoming cycles, it was found that the contribution of the pre-heater to the
recovery of waste heat from the jacket water and the improvement of the net output power of the
system due to the set of the regenerator, were 5.5 kW, and 7.0 kW, respectively. The relevant overall
exergic efficiency of the system could reach 48% by using the pre-heater with the regenerator CO2

bottoming cycle. At the same time, the system economy studies shown that setting the regenerator
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is conducive to improving the system economy, while adding the pre-heater is not as useful [48].
In addition, by establishing a dynamic cycle model, the influence of different operating parameters
on the performance of the CO2 bottoming cycle under partial load condition of the ICE was studied.
Accordingly, a system operation control strategy with the mass flow rate of the working fluid as the
regulation target was proposed [49].

In terms of experimental research, the CO2 bottoming cycle performance under typical operating
conditions of the ICE was tested with different cycle pressure ratios [50]. Meanwhile, the dynamic
performance of the CO2 bottoming cycle of three different configurations under given operating
conditions was compared to a study of the influence of different working fluid mass flow rates and
cycle pressure ratios. The time constant of the dynamic system performance was obtained [51,52].
Furthermore, aimedat the special ICE operation conditions, such as start, idling, and emergency stop,
the operating performance of the CO2 bottoming cycle with the pre-heater, was studied. The results
showed that the preheating effectively prevented the pressure surge at the inlet of the expander, so as to
ensure the stable and safe operation of CO2 bottoming cycle under special working conditions. It also
improved the energy efficiency of the overall system under partial load conditions [53]. The latest
investigation by Shu et al., pertains to the development of an ICE-CO2 cold-power cogeneration system,
which consists of theoretical analyses on the operating performances of the system under various
operation modes. The results showed that compared with the traditional system, the proposed system
could reduce fuel consumption of the ICE by 2.9% under the refrigeration mode, and increase the total
net output power by 4.8%. Meanwhile, under the ice-making mode, the fuel consumption could be
reduced by 3.4% and the total net output power of the system was increased by 1.6% [54]. In addition,
Shu et al. proposed to adjust the condensation temperature of the CO2 bottoming cycle by using mixed
working fluid, and to simulate the dynamics of the system with different mixed working fluid by using
the finite volume method and a moving boundary model. The results of the off-design modelling of
the proposed systems showed that under the same operating conditions, with the increase of CO2

concentration in the mixed working fluid, the dynamic response speed of the system became faster,
while the thermal efficiency and net output power of the system decreased slightly. Moreover, the
maximum value of net output power appeared at operation conditions with high working fluid pump
speed [55]. Moreover, the performance of the system with the CO2/R134a mixture as the working fluid
was experimentally analyzed. The influence of different concentrations of the mixed working fluid on
the energy efficiency of the system was investigated. The results indicated that the energy efficiency
and the net output work showed a trend of first rising and then falling as the mass fraction of R134a
increased [56].

Relevant studies in this area were also conducted by Choi et al. [57] who proposed to use the
temperature difference between the jacket water of a marine engine and seawater to drive the two-stage
reheat CO2 power cycle. Thermodynamic analyses showed that the maximum net output power of the
CO2 bottom cycle was 383 kW, the highest thermal efficiency of the system was 7.87%, and the highest
exergic efficiency was 5.96%. Moreover, Sharma et al. [58] carried out thermodynamic analyses on
the regenerative and recompressed s-CO2 Brayton cycle used to recover waste heat from flue gas of
marine engines. The influence of several key operation parameters, such as the inlet temperature of
the turbine and compressor, as well as the equipment pressure drop on the overall performance of
the combined cycle, was investigated. The results showed that the s-CO2 bottoming cycle improved
the overall cycle efficiency, and the net output power by 10%, and 25%, respectively. In addition, the
exhaust composition and exhaust temperature of the gas turbine in the topping cycle had a significant
effect on the performance of the s-CO2 bottoming cycle. Hou et al. [59] proposed a tri-generation
system by recovering the waste heat from the marine engine based on the recompression s-CO2 cycle.
They carried out a thermal-economic optimization for the proposed system through a genetic algorithm.
The study showed that the high-temperature regenerator and evaporator of the refrigeration system
were the key components that affected the thermal economy of the proposed system. Manjunath
et al. [60] presented the energetic and exergetic performance analyses of a supercritical/transcritical CO2
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based bottoming cycle for marine engine. It was found that under the optimal operating conditions,
the enhancement of the power output by the proposed system is nearly 18% and provide cooling of
892 TR having the COP (coefficient of performance) of 2.75. Liang et al. [61] proposed the s-CO2/ORC
combined cycle for waste heat recovery of the ICE, which increased the net output power of the overall
system by 6.78%. Feng et al. [62] proposed to adopt s-CO2/Kalina combined cycle to recover waste heat
of marine engines. The influence of inlet temperature and pressure of the compressor and turbine on
the combined cycle performance has been investigated. Multi-objective optimization was conducted
to optimize the thermal-economic performance of the system, and the annual fuel consumption of
the engine was reduced by 16.62%. Liang et al. [63] investigatedan engine waste heat powered
thermal-power cogeneration system whichcombined thes-CO2 power cycle with a transcritical CO2

refrigeration cycle. This configuration was used to replace the conventional absorption cooling cycle.
The results indicated that the proposed configurationreduce the size and weight of the system and is
therefore proper on-board application. Pan et al. [64] proposed a cogeneration cycle which combined
the s-CO2 power cycle and ejector expansion refrigeration cycleas the bottoming cycle to recovery the
waste heat from ICE. Working fluid in both sub-cycles is CO2-based zeotropic mixture. The effects
of the important operating parameters on system performance wereinvestigated. Zhang et al. [65]
developed a novel s-CO2 power cycle based on recompression cycle configuration to recover the waste
heat from ICE. The influence of main operation parameters have beencomprehensively studied and a
genetic algorithm was used to maximize the system net output power. The results indicated that for the
intermediate pressure the maximum system net output power can reach to 39.49 kW. Song et al. [66]
proposed a two-stage bottoming cycle for ICE waste-heat recovery. Thes-CO2 cycle was coupled with
an ORC to further recover the heat rejected from the s-CO2 cycle. The proposedcycle can contribute a
maximum net power output of 215 kW, which accounts for ca. 18% of rated power of ICE.

4.3. Gas Turbine

Besides the ICE, there are several studies that proposed to use the CO2 power cycles for recovery
waste heat from exhaust of gas turbines. Walnum et al. [67] conducted thermodynamic analyses on the
applications of regenerative and two-stage CO2 cycles for the recovery of waste heat from flue gas of
offshore oil- and gas platforms. The operation performance of bottoming cycles under partial load
conditions of the gas turbine was studied. The results showed that single-stage cycles could increase
the total net output power and the overall system efficiency of the oil- and gas platform by about
27.6%, and 10.6%, respectively, while the improvement of the double-stage cycle was more significant.
Moroz et al. [68] compared the thermodynamic performance of various combined s-CO2 cycles for
recovery the waste heat from a 53 MW gas turbine. The results indicated that the simplest cascade cycle
provided a power output of 16.13 MW, while value of the cycle with most complicated configuration is
17.05 MW, which represented 32% from the power output of topping cycle. The output power bythe
single regenerative s-CO2 bottoming cycle or a recompression s-CO2 bottoming cycle is 12.94 MW, and
11.85 MW, respectively. Cho et al. [69] investigated cascade systems which consist of a recompression
(or pre-compression) cycles and a partial heating cycle for recovering waste heat from a 288 MW
gas turbine. The minimum cycle pressure and temperature, and isentropic efficiency of compressor
and turbines have been discussed. They found that the cascade systems are uncompetitive due to
their complex configuration and lower power output. Huck et al. [70] carried out a thermodynamic
performance comparison of different dual flow splitting s-CO2 bottoming cycles and steam bottoming
cycles to recovery the waste heat from heavy-duty and aero-derivative gas turbine combined cycles.
The waste heat recovery efficiency and thermal efficiency were calculated in detail. It was found that
the efficiency improvement of s-CO2 bottoming cycle was not significant when the system operated
under more realistic assumptions. Wright et al. [71] compared three typical configurations of s-CO2

cycles for recovering waste heat from a 25 MW gas turbine. The results showed that the total heat
recovery efficiencies of the considered s-CO2 cycles, ranged from 20.3% to 21.2%, which were 4%
higher than the concerned baseline cycle. This was due to the higher recovery of waste heat offset
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the decrease in system thermal efficiency. Moreover, the single regenerative power cycle shows the
best economy. Kim et al. [72] compared the thermodynamic performance of the waste heat recovery
of gas turbines in a landfill plant with nine different configurations of the s-CO2 bottoming cycle.
The study showed that the recompressing cycle was not suitable for waste heat recovery, and the
two-stage split-flow cycle had a significant effect on the improvement of the net output power of the
overall system, but its structure was too complex. Khadse et al. [73] carried out an investigation of a
simple construction of a s-CO2 bottoming cycle to recovery the waste heat recovery from a gas turbine.
The results indicated that a maximum improvement of 22.9% can be gained by the use of recompression
configuration. Cao et al. [74] propose a cascade configuration which composed of a s-CO2 Brayton
cycle and a transcritical CO2 Rankine cycle to recovery the waste heat from a gas turbine. Both cycles
were based on simple configurations, and the CO2 was condensed by using the cold energy of LNG
(liquid nature gas). The results indicated that the power output by cascade cycles contributed nearly
28.9–39.1% to the power output of the whole system. Moreover, the investigation from Gao et al. [75]
indicated that the partial heating cycle provided the highest power output compared to the single
regenerative cycle due to its good waste heat absorption performance. Tozlu et al. [76] carried out a
bi-objective optimization of a single regenerative s-CO2 cycle for waste heat recovery from the exhaust
gas of gas turbine. It was found that the s-CO2 bottoming cycle showed a potential to increase the
net power output of the turbines by 19.3%. Zhang et al. [77] proposed an improved cascade s-CO2

bottoming cycle for recovering the waste heat from flue gas of the offshore oil- and gas platform and
adopted an artificial bee colony algorithm to carry out the multi-objective optimization of the bottoming
cycle design parameters. The results showed that the s-CO2 bottoming cycle could improve the net
output power of the overall system by 30% under rated conditions. Meanwhile, the high-temperature
part of the cascade cycle had a greater impact on the thermal performance of the overall system,
while the low-temperature part had a greater impact on the economic performance of the overall
system. Sánchez et al. [78] usea partial heating s-CO2 bottoming cycle to recover the waste heat
from high temperature exhaust of a gas turbine. The results showed that, compared to conventional
steam bottoming cycle, the proposed partial heating s-CO2 bottoming cycle reached a high thermal
efficiencyand reduced the system initial investment by a quarter. Zhou et al. [79] developed a novel
supercritical-/transcritical-CO2 combined cycle system for recovering waste heat from offshore gas
turbines. Comprehensive parametric analysis was conducted to simultaneously optimize the net
output work and net present value (NPV) under different conditions. Recently, Tao et al. [80] proposed
applying the two-stage reheat and recompression split s-CO2 cycle to recover the waste heat of gas
turbines in distributed energy system. The preliminary thermodynamic analysis results showed that
the total thermal efficiency of the system could reach up to 48% under the optimal split ratio.

4.4. Others

Other studies in this field have been summarized in this section. Wang et al. [81] adopted a
genetic algorithm to optimize the exergy-economy of a s-CO2 bottoming cycle for recovering waste
heat from combustion engines in nuclear reactors, which increased the total thermal efficiency and
the net output power of the overall system by 7.92%, and 13.7 MW, respectively. Astolfi et al. [82]
compared the performance of the dual regeneratives-CO2 bottoming cycle against three traditional
cycle layouts. The results indicated that the dual regenerative layout was found to be the best choice,
if the minimum heat source temperature has been not constrained. Olumayegun et al. [83] studied
the dynamic performance of the recompression s-CO2 cycle for recovering waste heat from cement
plants. Those results indicated that the inlet temperature of the main compressor could be controlled
by adjusting the mass flow of cooling water, and the inlet pressure of the compressor could be kept
constant through the throttle valve to improve the dynamic performance of the whole cascade system.
Luo et al. [84] proposed a multi-generation system which combined s-CO2 cycle and transcritical CO2

refrigeration cycles using waste heat as power source. Exergoeconomic evaluation and optimization
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has been conducted under different operating conditions. It was found that the refrigeration cost is the
highest, while the cost of the power is the lowest of total system operating cost.

For a clearer and more intuitive comparison, Table 1 summarizes the main information in the
above-mentioned literature, and eight typical configurations of s-CO2 bottoming-cycle used for waste
heat recoveryare illustrated by Figure 5. It can be found from this table that research on waste
heat recovery from gas turbine accounts for half of the total listed literatures, while the amount of
investigation on waste heat recovery from fuel cell and ICE are quite similar. Meanwhile, research on
ICE and turbine has been a hot topic in this region in recent five years.

Table 1. Most relevantstudiesin chronological order.

Year Author Application THS (◦C) Cycle Layouts WCO2,net.max (kW)

2009 Sanchez et al. [40] Fuel cell 709 REG 583.6
2011 Sanchez et al. [41] Fuel cell 650 REG 540.4

2013 Walnum et al. [67] Turbine 532 REG/
two stage REG

41,100
42,000

2014 Bae et al. [42] Fuel cell 709 REC/REG/
two stage SIM

600.8/582.8/
603.8

2015 Baronci et al. [43] Fuel cell 398 REG 2800

2015 Moroz et al. [68] Turbine 425–700 REG/REC/PREC/
cascade 17.1

2015 Cho et al. [69] Turbine 580 cascade/PH/PRE >100,000
2016 Ahmadi et al. [44] Fuel cell 343 s-CO2+LNG 276.1
2016 Shu et al. [47] ICE 777 SIM/PRE+REG 3.6/4.4
2016 Choi et al. [57] ICE 354 two stage REH 383
2016 Wang et al. [81] Nuclear 850 two stage SIM 22,000
2016 Huck et al. [80] Turbine 650–750 SPL >100,000
2016 Wright et al. [71] Turbine 538 REG/PH/SPL 8500

2016 Kim et al. [72] Turbine 520 RE/REC/PH/PREC/
various cascade cycles

2180/2200/2750/2230
3230

2017 Shu et al. [48] ICE 777 SIM/PRE/REG/
PRE+REG

3.7/5.5/4.6/
9.1

2017 Sharma et al. [58] ICE 368 REG+REC 5.6
2017 Khadse et al. [73] Turbine 630 REG/REC 110,000
2017 Cao et al. [74] Turbine 440–543 REG+ORC 21,000
2017 Gao et al. [75] Turbine 538 REG/REC/PH/cascade 38,000
2018 Tozlu et al. [76] Turbine 567 REG >1000
2018 Zhang et al. [77] Turbine 490 two stage SIM 6170
2018 Hou et al. [59] ICE 466 REC+REF 5000
2018 Manjunath et al. [60] ICE 550 two stage s-CO2/t-CO2 3694
2018 Astolfi et al. [82] Generic WHR 200–600 SIM/REG/REC 15,000
2019 Liang et al. [61] ICE 423–488 REG+ORC(R1233zdE) 40.9
2019 Olumayegun et al. [83] Turbine 380 REG+REC 5000
2019 Luo et al. [84] Turbine 500 SIM+REF ---
2019 Tao et al. [80] Turbine 550 REG+REC 300
2019 Sanchez et al. [78] Turbine 598 PH 74,000
2020 Ryu et al. [46] Fuel cell 360 REC/REC+REH 281.6/282.6
2020 Feng et al. [62] ICE 268 SIM+Kalina 242.6
2020 Liang et al. [63] ICE 380 SIM+REF 16.5
2020 Pan et al. [64] ICE 557 SIM+REF 20.8
2020 Zhang et al. [65] ICE 450 REC 39.5
2020 Song et al. [66] ICE 460 SIM+ORC 215
2020 Zhou et al. [79] Turbine 435 two stage s-CO2/t-CO2 55,000

SIM: simple. REG: regenerative. REH: reheat. REC: recompression. PRE: preheat.REF: refrigeration. ORC: organic
Rankine cycle. LNG: liquid nature gas. PH: partial heating. PREC: pre-compression. SPL: flow split.

Figure 6 presents the heat source temperature and maximum power output of the s-CO2 bottoming
cycle with various configurations. The maximum power output is presented on a logarithmic scale
to clearly identify the system operation maps. It can be found that system size below 1 MW and
above 1 MW are equally divided in the observed research data. Among them, power output of the
s-CO2 cycles used to recover waste heat of the fuel cell are distributed around 1 MW, while most of
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the systems used to recover waste heat from gas turbines are mostly larger than 10 MW. Research of
small-scale system has mainly focused on waste heat recovery from the ICE. This is due to the flexible
operating range and multiple application scenarios of the internal combustion engines. It can be also
observed that temperature range of waste heat sources studied in this field is between 400–700 ◦C and
the positive correlation between heat source temperature and system output work can obviously be
found by the fitting curve.Processes 2020, 8, x FOR PEER REVIEW 11 of 18 
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In summary, for low and medium temperature waste heat sources, the transcritical CO2 cycles
were mainly considered, and their performance as bottoming cycles were evaluated against ORC or
Kalina cycles. Whereas, the supercritical CO2 cycles were competitive technology for medium- and
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high temperature sources to replace the air- or steam Rankine cycles. It can be found that the selection
of proper configurations of s-CO2 cycles for waste heat sources with different temperature level was
the main research content of this field. Based on the results of the existing literatures, the simple and
regenerative configuration were more suitable for the transcritical cycles. The reason is that application
scenarios with low- and medium temperature waste heat sources often have limited device space,
so that the layout simplicity and compactness should be taken seriously. However, for the waste heat
of medium- and high temperature, two-stage or cascade configurations have been more studied to
form a thermal-power cogeneration system.
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5. Further Perspectives

Generally speaking, many technical characteristics of s-CO2 power cycles reflect the advantage
of its application in waste heat recovery. First of all, the smaller and compact system size makes the
flexible and on-site arrangement for recovering the fragmented waste heat sources possible and reduces
the investment cost. Secondly, the relative higher cycle efficiency leads to increased power production
for lower thermal energy input. Moreover, the wide range of applicable heat source temperatures
makes it possible to cascade the recovered waste heat resources at different temperatures grades and in
different forms. Thirdly, a reduction in water consumption and greenhouse gas emissions brings more
environmental benefits and enhances the market competitiveness of such waste heat recovery units
simultaneously. However, the application of s-CO2 cycles for waste heat recovery still faces several
challenges which are presented in the following paragraphs.

First, while, the expansion turbine and heat exchangers of s-CO2 cycles are theoretically smaller
and more compact than other competitive thermal cycles with similar size, such components do not
yet exist at the commercial level. A component design of the s-CO2 Rankine cycle is a very crucial area
of research, and relevant investigations are still in progress [85–88]. Another component design-related
problem is the piping pressure drop. Since the working fluid mass flow rate of the CO2 cycle is
obviously higher than that of a conventional steam based Rankine cycle by the same plant scale, the
compression process of supercritical carbon dioxide fluid is much more energy consuming. Optimal
design of construction of waste heat exchanger, as well as the pipeline to reduce the pressure drop is
also crucialfor improving the performance of the entire system [89].

Secondly, further investigations are needed to consider the large scale power plants. Experimental
data is still scarce, especially for megawatt-level systems. Furthermore, much larger scale industrial
process plants are taken into account, a heat exchanger network (HEN) is typically constructed for
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recovery heat between different streams [90,91]. Understanding how to integrate waste heat recovery
units, such as s-CO2 and ORC into the HEN for further enhancement of energy utilization efficiency,
is still an open question.

The third challenge to be addressed is the off-design, as well as the transient performance of the
plant. This is due to fluctuation in the availability of waste heat resources leading to the variability
of output power and a mismatch between the energy source and user demand in terms of time and
spatial dimensions [2]. Therefore, the off-design performance of the s-CO2 cycles should be studied
further. As the part-load performance plays a decisive role in the stable and economical operation of
the whole combined power plant, in this context, energy storage will be necessary to maintain stable
input and sufficient output [92]. Research in this area is on the rise.

With reference to completed and ongoing engineering projects, the pioneering megawatt-level
commercial s-CO2 cycle for waste heat recovery was developed by Echogen (USA) [93]. A simple
recuperating cycle with a turbine-generator was built for recovering waste heat from the exhaust of a
gas turbine (500–600 ◦C, 60–75 kg/s) to generate nearly 2.4 MW of power. Moreover, in a gas compressor
station owned by the Canadian energy company, TC Energy, Siemens Energy is currently working to
install a system for converting waste heat to power with turbines driven by s-CO2. The s-CO2 turbine
is expected to go on the grid in 2021, and it will supply electricity for more than 10,000 households [94].
Owing to the above-mentioned challenges, as well as some uncertainties in technological advancement,
performance, and component costs, further research and development is needed to better understand
the applications of s-CO2 power cycles for waste heat recovery. The potential market of s-CO2 power
cycles will continue to depend upon several technical, economic, environmental, and social factors.

6. Conclusions

The s-CO2 power cycle has the technical and economic potential to be applied in waste heat
recovery. The comprehensive analysis presented herein gives an extensive overview of the background,
technical barriers, and current advances of s-CO2 cycles for waste heat recovery. It aims to help
researchers who are trying to solve problems related to waste heat recovery with s-CO2 cycles, and its
main aspects have been summarized as follows:

(1) Unlike the stand-alone s-CO2 power cycle, whose objective is to solely achieve a high
thermodynamic efficiency, the aim of the s-CO2 bottoming cycle for waste heat recovery is to
achieve both the high cycle thermodynamic efficiency and larger waste heat regenerative amount.
The improvement in total heat recovery efficiency is mainly a consequence of more effective heat
extraction from the waste heat source and a higher cycle thermal efficiency resulting from the cycle
optimization. Moreover, great attention should be paid to study to a unique characteristic of a waste
heat source, which is the common problem faced by all waste heat recovery technologies.

(2) Although the cascade configuration could theoretically be more efficient, the optimization
cannot leave out of consideration of simple constructions when system economics and dynamic
performance are taken into account.

(3) Unlike the organic Rankine cycle whose commercial modules are widely available, operation
data from experimental investigations or commercial proto types of the s-CO2 power cycle are
still limited.

The perspectives for solving the above-mentioned issues are provided as follows:
(1) A comprehensive evaluation system shall be proposed to solve the technical barriers through

the trade-off between the characteristics of the heat source, the thermodynamic performance of the
system, and economics.

(2) It is necessary to carry out transient performance analysis and exploit dynamic control strategies
for both the s-CO2 bottoming cycle and the entire cascade system to ensure the stable and safe operation
of the system.

(3) Extensive experimental research and engineering practices are needed to improve the design
accuracy of key components and verify the mechanism of the cycle performance. In addition to the
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prototypes, broader scales of the s-CO2 cycle should be further developed to fill gaps in the current
commercial market.
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