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Abstract: Buerger’s disease or Thromboangiitis Obliterans (TAO) is a nonatherosclerotic segmental
vascular disease which affects small and medium arteries and veins in the upper and lower extremities.
Based on pathological findings, TAO can be considered as a distinct form of vasculitis that is most
prevalent in young male smokers. There is no definitive cure for this disease as therapeutic
modalities are limited in number and efficacy. Surgical bypass has limited utility and 24% of patients
will ultimately require amputation. Recently, studies have shown that therapeutic angiogenesis
and immunomodulatory approaches through the delivery of stem cells to target tissues are potential
options for ischemic lesion treatment. In this review, we summarize the current knowledge of TAO
treatment and provide an overview of stem cell-based treatment modalities.
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1. Introduction

Thromboangiitis Obliterans (TAO), commonly described as nonatherosclerotic segmented occlusive
vascular disease, is caused by inflammation of the peripheral blood vessels leading to impaired blood
circulation, coagulation, and critical limb ischemia (CLI) [1]. TAO was first medically described by
the Austrian-Belgian surgeon Alexander von Winiwarter in 1879 and later named as Buerger’s disease
after Leo Buerger for his contributions to the pathological understanding of this disease. While TAO has
a global distribution, it is most prevalent in Middle and Far Eastern nationalities, which may be due to
the differences in diagnostic criteria. Overall, the prevalence of TAO in Western Europe ranges between 0.5
to 5.6 percent. However, in Eastern countries such as Korea and Japan, the prevalence of TAO represents
up to 16 to 66 percent of patients with some form of peripheral arterial diseases (PAD). Interestingly,
TAO makes up to 80 percent of the PAD in Ashkenazi Jews in Israel [1,2]. Although the precise etiology
still remains unknown [1], it predominantly affects young male and female smokers [3–6]. Subjection to
tobacco product usage especially in form of smoking, as well as chewing tobacco, is well known to be
associated with majority of the onset, maintenance, and progression of TAO. In addition, almost 60 percent
of patients afflicted with TAO also have concurrent severe periodontal disease or chronic anaerobic
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oral infections. Anaerobic bacterial DNA fragments have been found in both TAO’s arterial lesions
and periodontal lesions within TAO patients, which indicated association between periodontal disease
and development of TAO [7]. Still, around 5% of cases may be caused by other non-smoking related
factors such as frostbite, extremity trauma, or even sympathomimetic drug abuse [4,5,8,9].

TAO is a rare form of vasculitis which is distinguished from other types by cellular inflammatory
thrombus formation with relative sparing of the vessel wall. TAO has also shown to contain elevated level
of pro- and anti-inflammatory cytokines and autoantibodies [10–12]. While the precise pathophysiology
behind TAO is controversial, it is believed to be due to an IL-33-mediated immune response resulting in
vascular abnormalities [10,13]. In keeping with its inflammatory nature, in various studies, TAO patients
have been shown to have increased cellular immunity to type I and III collagen, higher titers of
anti-endothelial cell antibodies, anticardiolipin antibodies, and prothrombin gene mutation [14–17].
TAO has clinical manifestations in both the arms and legs, differentiating it from atherosclerotic PAD that
typically only involves the legs. The progression of TAO may be broken down into three phases. First is
the acute phase, characterized with inflammatory thrombus and high levels of polymorphonuclear
neutrophils occluding the vessel lumen while sparing the wall. Then comes the subacute phase with
progression of occlusion. Lastly, the chronic phase is when the inflammation has died down while
vascular fibrosis takes place. TAO can be differentiated from atherosclerosis or other vascular disease via
the preservation of internal elastic lamina. [18] Also, TAO and CLI have different pathophysiologies.
TAO is a vasculitis that does not affect large vessels as seen in the case of CLI.

The diagnosis of TAO is done via confirmation of 5 clinical criteria, as there is neither a specific test
nor serologic markers for diagnosing TAO. Specifically, the 5 clinical criteria include: (1) smoking history;
(2) onset of disease before age of 50; (3) infrapopliteal arterial occlusions; (4) either upper limb involvement
or phlebitis migrans; and (5) absence of atherosclerotic risk factors other than smoking [2]. On imaging
studies, Martorell’s sign, corkscrew collaterals, is also commonly observed, though it is not pathognomonic
for TAO [19]. The clinical pathogenesis of TAO begins with lower extremity pain during physical activity
which progresses to pain while resting. Previous study has shown that 100 percent of the TAO patients
had lower extremities involvement while upper extremity complications were seen in 44 percent of
the time [20]. Additionally, patients may experience Raynaud’s phenomena. Many patients also develop
ischemic ulcerations that eventually progress to gangrene [3–5]. Clinical presentations are typically due to
the occlusive nature, complications such as coldness, numbness, Raynaud’s phenomena, claudication,
pain and ulceration of fingers and toes, and phlebitis migrans are fairly common [21].

Despite considerable advances in treatment options, TAO is still associated with high morbidity [22].
While pharmacological approaches and surgical intervention remain generally palliative, novel therapeutic
approaches such as gene and stem cell therapy to promote angiogenesis have been considered promising for
the treatment of TAO [23–26]. The chief aim of this paper is to provide an overview of the current treatment
modalities of TAO and outline approaches using stem cell therapy that may provide new therapeutic
solutions to halt the pathogenesis of TAO.

2. Conventional Approaches

If TAO patients are left untreated, the disease is likely to progress to amputation. All patients
with TAO are advised to stop smoking and avoid second-hand smoke exposure. From a study looking
at 110 patients, 43% of patients underwent 108 amputation procedures. All of these amputations were
done to patients who continued to smoke after the TAO diagnosis [27]. However, cessation does not
completely prevent disease development and progression [28]. Proper foot care is essential to monitor
for and treat ischemic ulceration. Often emollient skin cream is helpful to prevent fissure formation.

2.1. Pharmacologic Treatment

Pharmacological treatment of TAO is focused on anticoagulation (Aspirin), vasodilators (calcium channel
blockers), systemic anti-inflammatory drugs (prostacyclins analogs) and analgesics. [29,30] Previous studies
have demonstrated that iloprost is effective for analgesia and improved wound healing potential.
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These properties are superior with intravenous infusion. Additionally, thrombolytic therapy with streptokinase
and urokinase have demonstrated utility for the treatment of toe and foot gangrene [31]. It has been also
reported treatment with bosentan (endothelin receptor antagonists) could improve healing of the ulcers [32].
Calcium-channel blockers like nifedipine can increase distal blood flow due to peripheral vasodilation
and improve circulation to the distal ischemic limb. They also can be beneficial in combination with antibiotics
and iloprost [3,33].

2.2. Surgical Procedures

Surgical modalities such as revascularization offer limited efficacy for the treatment of TAO patients with
clinical symptoms such as rest pain, claudication, ulceration, and gangrene. Unfortunately, revascularization is
rarely possible since there is poor outflow, because of the absence of distal vascular targets, and thus results of
surgical intervention are poor. In addition, according to one study, there was a 53% graft failure rate, which was
mainly due to complications of anastomosis to a diseased artery, disease progression as patients continued to
smoke, and vein graft stenosis. Furthermore, failure of secondary revascularization procedure increased
the risk of both persistent disabling claudication and amputation [34]. Endovascular treatment modalities
have demonstrated utility lessening the progression of TAO [35]. In the setting of multi-level occlusion
the stent puncture technique can help overcome vascular access challenges. [36]. Further, sympathectomy
may be useful in relieving pain and promoting the healing of ulcers in some patients; however, these effects
were not consistent [34]. Spinal cord stimulation may also be used for relief or treat pain in these patients [37].

3. Gene Therapy

In 1998, a benchmark publication demonstrated that vascular endothelial growth factor (VEGF)
gene transfer shows utility in the treatment of TAO. Isner et al. revealed the feasibility of intramuscular
gene transfer of naked plasmid DNA encoding—VEGF165 in six patients affected by TAO. Following
this gene transfer, patients began to show marked improvement in healing of ischemic ulcers associated
with increased blood flow in affected limbs. Patients also showed improvement in ankle-brachial index
(ABI) in addition to demonstrating new vessel growth with magnetic resonance angiography (MRA)
and serial contrast angiography [23]. Furthermore, phase I clinical trial data demonstrated the safety
of intramuscular injections of plasmid DNA expressing two isoforms of hepatocyte growth factor
(HGF) (VM202) for patients with CLI, a PAD with similar morbidities as TAO. Following plasmid DNA
injection, the median ABI and transcutaneous oxygen pressure (tcPO2) values showed a positive shift,
and patients responded clinically with a reduction in reported pain profile [38]. To demonstrate clinical
efficacy of intramuscular plasmid injections, Belch and colleagues have evaluated intramuscular
injections of non-viral 1 (NV1) fibroblast growth factor (FGF) in a phase 3 clinical trial in CLI patients.
In this study, patients who were not considered suitable for revascularization were randomized to
treatment with NV1FGF (naked DNA plasmid with gene encoding FGF1) or placebo. In a one-year
follow-up study, the NV1FGF treated group didn’t show a significant improvement in major amputation
rates and mortality over the placebo group [39]. While advancements in gene therapy show hope for
future therapeutic options, stem cell therapy may also play an important role in improving the quality
of life in patients affected by TAO.

4. Stem Cell-Based Approaches

Clinical trials have evaluated the potential benefits of stem cell therapy in CLI, which has similar clinical
symptoms as TAO [40,41]. Reported benefits include more rapid angiogenesis, reduced inflammation,
increased temperature and perfusion of the ischemic limb, and overall increased healing rates as observed by
the size of the wound. Clinically, patients have lower rates of surgical amputation and report lower
rates of claudication. These treatment approaches are based on the stem cells’ ability to stimulate
immunomodulation [10,42] and formation of new blood vessel formation (angiogenesis) and vessel growth
(vasculogenesis) [25,43,44]. It has been recently reported that cell therapy using mononuclear stem cells
(MNCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and pluripotent stem cells
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(PSCs) may have useful roles in prevention of the progression of disease and reduction in major amputation
rates [25,43].

4.1. Mononuclear Stem Cells (MNC)

MNCs isolated from bone marrow (BM-MNC) and peripheral blood (PB-MNC) have widely been
used for cardiovascular disease applications [45]. Both BM-MNC and PB-MNC consist of heterogenous
populations of hematopoietic stem cells, MSC, and EPC, and their cellular compositions vary depending
on the purification procedure. The MNC-based cell therapy is popular because of the ease with which
they are harvested, and the implantation can be done in short turnaround time [46].

Research studies on bone marrow mononuclear cells (BM-MNC) implantation have shown that
cell therapy could increase tissue angiogenesis, neovascularization, and collateral vessel formation
in both experimental models and clinical trials. (Table 1) The first clinical therapeutic effect of cell
transplantation in angiogenesis process was shown by Tateishi-Yuyama et al. who evaluated therapeutic
angiogenesis for patients with severe peripheral vascular disease and limb ischemia by autologous
implantation of BM-MNC. Their results revealed that use of BM-MNC is a safe and effective method to
achieve therapeutic angiogenesis [47]. A more recent double-blind randomized placebo-controlled
study containing 20 patients demonstrated significant improvement in rest pain, increase in ABI,
and ankle pressure. The safety and efficacy of utilizing BM-MNC therapy was tested for patients who
were not appropriate surgical candidates [48]. In a study by Idei et al., long term clinical outcomes of
BMMNC transplantation was assayed in patients with CLI including peripheral arterial disease (PAD)
and TAO. Reduction of long-term major amputation risk was observed in patients with PAD who
were treated with autologous BM-MNC. In TAO patients, ABI and TcPO2 were markedly enhanced at
1 month after cell therapy and these effects remain at a high level during the 3-year follow-up [49].
In long-term clinical trial, involving 115 patients, using autologous BM-MNC injected have been
shown to have equivocal safety and efficacy to conventional revascularization therapies in extending
the amputation-free interval in chronic limb ischemia. 6 months post BM-MNC injection resulted in
improved pain-free walking time, rest pain, and tissue oxygen pressure that were not observed in
PB-MNC. The improvement in the ischemic pain scale, ulcer size, and pain-free walking time was
maintained over the course of 2 years of follow-ups [50].

Moriya et al. have shown that treatment with PB-MNCs improves ischemic symptoms and amputation
rates in TAO [57]. It has been demonstrated that some factors such as granulocyte colony stimulating
factor (G-CSF), granulocyte/macrophage colony stimulating factor (GM-CSF), VEGF, and estrogen induce
EPC mobilization from BM into PB, and the mobilized EPC then localize to the neovascularization site
and contribute to the repair of damaged vessels [58]. In a phase I/IIa clinical trial, cell therapy outcome
was evaluated in patients with PAD or TAO. It has been reported that following intramuscular injection
of PB-MNC containing G-CSF-mobilized CD34+ stem cells, ischemic signs and symptoms involving
Wong-Baker FACES pain rating scale (WBS), toe brachial pressure index (TBPI), TcPO2, total or pain-free
walking distance, and size of ulcer improved in all patients. Furthermore, no mortality or major amputations
were observed in this clinical study [59].
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Table 1. Stem cell therapy clinical studies in TAO patients.

Study Year Patients (n) Cell
Source Cell Route Follow up Main Results Ref.

Kim et al. 2006 27 BM-MSC Fenestration of
the tibia bone

19.1 ± 3.5 months
(range 12.4 ± 25 months) Improved angiogenesis [24]

Heo et al. 2016 37 BM-MSC IM 11.9 ± 7.2 months Improvement of TBPI and healing of ischemic wounds, pain relief [41]

Idei et al. 2011 26 BM-MSC IM 4.8 years Increase in ABI, TcPO2
In 3 years follow up [49]

Kim et al. 2006 4 UCB-MSC IM 1 and 4 months Disappearance of ischemic rest pain, healing of necrotic skin lesions,
increase in number and size of capillaries [51]

Lee at al. 2012 15 male CLI patients including TAO ADSC IM 6 months Improved angiogenesis [43]
Ra et al. 2017 17 ADSC IM 2 years Increase in TWD, PFWD and decrease in rest pain [52]

Baran et al. 2019 25 males and 3 females PB-MNC IM 139.6 ± 10.5 months Improved angiogenesis and increase in quality of life [53]
Aoyama et al. 2017 6 PB-MNC IM 3 months Decrease in major amputation [54]

Guo et al. 2018 40 BM-MNC IM 10 years Decreased ulcer size and pain, increase in TBA and TCPO2,
and 85.3% amputation-free survival [55]

Kondo et al. 2018 108 BM-MNC IM 10 years 87.9% major amputation-free and 80.9% amputation-free [56]

BM-MSC, bone marrow mesenchymal stem cell; UC-MSCs, umbilical cord blood derived mesenchymal stem cells; ADSCs, adipose tissue derived mesenchymal stem cells; TBPI,
toe brachial pressure index; TcPO2, transcutaneous partial oxygen pressure; ABI, ankle-brachial index. TWD, total walking distance; PFWD, pain free walking distance; IM, Intramuscular.
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4.2. Endothelial Progenitor Cells (EPC)

The stimulation of angiogenesis is critical to reversing the pathogenesis of TAO. Several factors are
involved in the angiogenic process. It has been shown that growth factors, angiogenic genes, and stem
cells including EPCs, are involved in modulation of angiogenesis [60]. It has been hypothesized
that stem cell therapy for ischemic limbs could promote vascular angiogenesis by supplying EPCs,
cytokines, and angiogenic factors. EPCs refer to the cell population that carries the ability for
differentiation into endothelial cells. CD34+ or CD133+ (AC133+) MNC-enriched EPC can be derived
from adult bone marrow (BM) or peripheral blood (PB) [61]. Human cord blood–derived CD133
progenitors implanted into the ischemic hind limbs of mice are capable of being incorporated into
the capillary networks and improved neovascularization and vessel perfusion [62]. The safety
and efficacy of therapeutic angiogenesis using EPC was evaluated with twenty-eight patients with CLI
who were not suitable for surgical or endovascular revascularization. Apheresis was performed to
obtain the necessary EPC and they were implanted into the ischemic limb. No safety concerns arose,
while tissue perfusion improved and patients obtained a high amputation-free rate [63].

4.3. Mesenchymal Stem Cells (MSC)

MSC are multipotent stem cells and can be derived from various sources such as bone
marrow, liver, adipose tissue, blood, and liver [64,65]. Thus, the availability and plasticity of MSC
make them attractive agents of cellular based therapies. As a multipotent stem cell, MSC can be
predominantly differentiated into cells of musculoskeletal and fat lineages and also to endothelial
lineage [66]. Besides differentiating into cells of the endothelial lineage, MSC have further contributed
to immunomodulatory and angiogenic response by secreting paracrine factors and cytokines such as
VEGF, basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF), interleukin-10
(IL-10) [42,65]. Investigations have been performed examining the potential of MSC derived from bone
marrow (BM-MSC), umbilical cord blood (UC-MSC), and adipose tissue (ADSC).

BM-MSC have widely been used to treat wounds and/or ischemic tissue due to their immunomodulatory
and angiogenic effect [42,45,65]. In a recent study, Martin-Rufino et al. investigated the efficacy of sequential
intravenous allogeneic MSC administration in treating TAO instead of usual local intramuscular injections [10].
The idea was to illicit a systemic anti-inflammatory effect in the vasculature and thus to modulate the immune
response. In this single patient clinical study, the patient with TAO and at risk of amputation was treated
with four sequential intravenous infusions of allogeneic BM-MSC, a total of 3.4 × 108 cells, from a healthy
donor. The infusion of BM-MSC passed the safety issue and showed no allograft rejection. Six months
after the infusions the result showed significantly healed foot ulcer accompanied with reduced rest pain.
Furthermore, the infusion resulted in the improvement of Walking Impairment Questionnaire scores
and quality of life and the patient did not need any amputation sixteen months after the infusion. The success
of this therapy can be attributed to the immunomodulatory activity BM-MSC against IL-33 mediated
inflammation in TAO [10,13].

Studies have revealed that paracrine factors secreted by UC-MSC stimulate angiogenesis.
A preclinical study has shown that UC-MSC therapy is better than BM-MSC transplantation in
improving angiogenesis in an ischemic limb disease (ILD) mouse model. UC-MSC cells can secrete
high levels of HGF and upon stimulation with TNFα also produce higher amounts of VEGF compared
to the BM-MSC, which are key elements for angiogenesis process during ischemia [67]. Kim et al.
have also demonstrated UC-MSC transplantation can produce effective outcomes in TAO. Cell therapy
improves ischemic symptoms including alleviation of ischemic rest pain, healing of necrotic skin
lesions associated with an increase in the size and density of capillaries [51].

Studies have been recently reported that adipose tissue derived-MSCs (ADSC) can be differentiated
into endothelial cells and enhance micro-vascularity and blood flow in CLI animal models.
The mechanism by which ADSC induce therapeutic angiogenesis is through the secretion of angiogenic
factors such as VEGF [68–71]. In a pre-clinical study, by Moon et al., ADSC were extracted from digested
human adipose tissue and transplanted into three different sites of the athymic nude murine hindlimb
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one to seven days after femoral artery ligation. The transplanted group demonstrated increased blood
flow and restored tissue function in ischemic limbs, directly correlated with the number of ADSC
administered. The results suggest that ADSC may stand as an easily attainable source for MSC-based
treatment of ischemic tissue injury [72]. Lee et al. determined the safety and efficacy of multiple
intramuscular transplantations of ADSC are safe and effective demonstrating improved pain rating
scales and pain-free walking distances and limb amputation rates. The collateral vascular network
formation was also detected in the affected arteries using angiography [43,52]. A seven-patient phase
I trial using adipose-derived stroma cells strongly improved revascularization and tissue perfusion
in CLI. CLI is considered to be the end stage of PAD that often has no therapeutic options. The seven
enrolled patients with non-vascularizable CLI showed improved ulcer evolution, wound healing,
and increased transcutaneous oxygen pressure [73].

4.4. Pluripotent Stem Cells (PSC)

Pluripotent stem cells have the ability to self-renew infinitely and can be any cells of the body.
These PSC can be derived either from inner cell mass of the blastocyst to become embryonic stem
cells (ESC), or from somatic cells by expressing specific transcription factors (e.g., Oct4, Sox-2, Klf-4
and c-myc) to form induced pluripotent stem cells (iPSC) [74,75]. The use of iPSCs are advantageous
as they avoid ethical concerns associated with ESC. Both ESC and iPSC have already been used to
derive vascular cells such as endothelial (EC) and vascular smooth muscle cells (VSMC) to induce
neovascularization. In two separate studies Cho et al. [76] and Huang et al. [77] demonstrated
efficacy of ESC-derived endothelial cells in inducing neovascularization in animal model of CLI.
While intramuscular (IM) injection of ESC-EC by Cho et al. resulted in improved blood perfusion
and limb salvage, the study by Huang et al. compared various routes of cell delivery and found
systemic route to be more efficient in improving blood perfusion and neovascularization than IM [76,77].
In another study, Yamahara et al, used a combination of ESC-derived EC and VSMC to treat ischemic
limb [78]. The result showed formation of mature vasculature compared to EC or SMC alone. These
initial studies have led to the generation of clinical grade ESC-EC product developed using good
manufacturing practice for use in perfusing ischemic limb in patients [79].

Similar to ESC, iPSC have been used to derive functional EC. An initial study by Rufaihah et al.
showed the efficacy of these cells in improving blood perfusion and neovascularization in an animal
model of limb ischemia [80]. In order to further establish PSC as a functional source of EC, Lai et al.
compared EC derived from various sources including bone marrow (BM-EC), ESC, and iPSC in their
ability to improve neovascularization and secretion of paracrine factors [81]. The ESC- and iPSC-EC
outperformed BM-EC in their ability to secrete paracrine factors and have similar in vivo efficiency
in inducing neovascularization as compared to EC derived from human umbilical vein. These data
further support the feasibility of using human PSC-EC in developing novel cell therapies for patients
with CLI and TAO.

5. Pre-Clinical Insights into Cellular Dysfunction in Vascular Diseases

However, despite all the medical advances in stem cell-based therapy, the cessation of smoking
and nicotine exposure is still paramount as both stressors can affect the success of stem cell therapy.
In preclinical mice studies, prolonged nicotine exposure between 3–6 months has been shown to
decrease EPC numbers, and the ability of EPC to proliferate and migrate. In a 6-month long-term
nicotine exposure study in mice model, the mice subjected to systemic nicotine via drinking water
demonstrated significant decrease in EPC numbers, and their ability to proliferate and migrate.
A potential mechanism was found to be the significantly decreased nicotinic acetylcholine receptor
subunit expression, thus decreasing cholinergic angiogenic pathways. This suggests that continued
nicotine use during and after EPC cell therapy may lead to decreased therapeutic efficacy [82].
High nicotinic concentration, 1.5 mg/mL, increased rate of apoptosis, while changing cellular structure
and motility of human UC-MSC [83]. Previous long-term exposure to nicotine may already have
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profound effect on the MSC’s overall efficacy as therapeutic agent. A study of MSC derived from
smokers were shown to have impaired angiogenesis via possible involvement of activin A when
compared to MSC from non-smoker counterparts [84]. Human adipose-derived MSC, when cultured in
cigarette smoke-infused media, showed decrease in proliferation and migration capacity, and decrease
in IL-6 and IL-8, which are markers of inflammation involved in the wound healing process [85].
A similar study with Human iPSC-EC also confirmed an increase in apoptosis rate along with elevated
reactive oxygen species generation when exposed to nicotine from e-liquids of electronic cigarettes.
There was no significant difference between traditional and E-cigarettes’ effects on the effector cell
population, which emphasized that the harms of nicotine may be independent of route of exposure [86].
An in vitro mouse ESC study has furthermore shown decreased cellular proliferation with less than
48 h of high nicotinic exposure; however, interestingly at lower concentration nicotine had the reversed
effect with elevated proliferation. Another mechanistic pathway study revealed nicotine exposure to
be disruptive on the Wnt pathway [87]. From the listed preclinical studies, the effect of nicotine on
stem cells and their efficacy appears to be profound. Thus, it is still strongly advisable to encourage
TAO patients to completely eliminate nicotine from their daily habits.

6. Future Application of Biomaterial-Based Approaches as Therapies for TAO

So far, a number of clinical trials using stem cells and genes have assessed the safety of the therapeutics
with limited success in functional recovery. In recent years pre-clinical proangiogenic and immunomodulatory
research has shown increased interest in the development of biomaterial-based approaches to enhance
the therapeutic efficacy of such modalities as delivery vehicles [88,89]. For example, in one of the studies
an injectable biomaterial was developed using elastin-like polypeptide to deliver proangiogenic endothelial
nitric oxide synthase (eNOS) and anti-inflammatory cytokine IL-10 plasmid DNAs. The biomaterial
delivery vehicle contained an injectable ELP scaffold encapsulating IL-10 and hollow spheres with eNOS
in them. This design allowed spatiotemporal release of IL-10 and eNOS and resulted in an enhanced
angiogenesis and reduced inflammation in mouse model of CLI. The therapeutics also improved functional
recovery in these animals [90]. In another study, Thomas et al. developed tunable collagen microgels
that improved the MSC encapsulation efficiency with enhanced proangiogenic and immunomodulatory
function. These MSC embedded within microgels improved vascularization with reduced inflammation
in vivo in mouse model of CLI [91,92]. Moreover, recently we encapsulated human iPSC-derived vascular
smooth muscle cells (hiPSC-VSMC) in biomimetic collagen scaffold to treat both acute and diabetic
wounds. Our study reported an enhanced level of proangiogenic paracrine secretion and anti-inflammatory
IL-10 release from the cells. The hiPSC-VSMC containing scaffolds showed improved wound closure,
vascularization, and immunomodulation [93,94]. These studies and several other have now shown promising
results in delivering stem cells and genes using biomaterials. The utilization of biomaterials to promote
vascularization and immunomodulation via delivery of cells and gene thus will be a significant advancement
for the field of Buerger’s disease.

7. Conclusions

In the past two decades, stem cell-based therapy has demonstrated clinical efficacy in the form
of therapeutic angiogenesis in peripheral vascular disease. Use of cell therapy for induction of
angiogenesis as well as immunomodulation in the animal model has slowly progressed into human
clinical trials. While the angiogenic and immunomodulatory potentials of stem cell-based therapy
have been demonstrated in human clinical trials of both CLI and TAO, there are still many challenges.
The factors that would determine the success of these cell therapies in near future are (i) understanding
the mechanism and therapeutic potentials of cell-based therapy; (ii) establishing a large-scale
and renewable source of autologous cells; (iii) developing biomaterial strategies to improve cell potency
in vivo; (iv) deciding optimal dose, efficient route of administration, and frequency of application;
and further encouraging cessation of nicotine exposure during therapeutic intervention. Ultimately,
we will also need to understand how the in vivo tissue microenvironment affects the therapeutic activity.
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