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Abstract: Castor bean (Ricinus Communis) oil has been reported as one of the most important bio-based
fuels; however, high amounts of toxic solid residue are generated in the production. This toxicity is
due to several molecules, ricin protein being the most studied compound. The inhibition of the ricin
protein is essential for eliminating its toxicity. The objective of this study is to predict the possible
inhibition process via the interactions between the ricin protein and the flavonoids quercetin (Q)
and epigallocatechin gallate (EGCG). The molecular structures of the complexes formed between
the ricin protein and flavonoids were studied using quantum-chemical and molecular docking
calculations to analyze the type of interaction, active site of the protein, binding energies, and different
conformations in the inhibition process. Different methodologies were applied for the molecular
structure determination; the best approximation was obtained with B3LYP/6-31G (d,p) theoretical
methodology. Mappings of electrostatic potential (MEP) and frontier molecular orbitals were used
for the identification of the probable sites of interaction, which were confirmed by molecular docking.
The adjustment and alignment of flavonoid groups before and after the interaction, and charge
transfer parameters, showed that Q and EGCG act as electron donors inside of the active site in ricin.

Keywords: ricin; quercetin; epigallocatechin gallate; molecular interactions; charge transfer; molecular
docking; DFT; MEP

1. Introduction

Recently, castor bean seeds (Ricinus Communis) have been used as an alternative source of biofuels
due to the high demand that currently exists for biomass fuels. However, during the extraction of castor
oil, significant amounts of solid residue are generated; this residue presents a problem because of the
high toxicity [1–3]. The solid residue is composed of an agglutinin, and a protein called ricin; ricin is a
toxic lectin produced by the castor seed (Ricinus communis), which is found in nature as a wild plant [4].
This protein is the most studied of the ribosome inactivating proteins (RIPs), and it is composed of
two polypeptide chains linked by a disulfide bridge [5]. Previous studies have suggested that the
detoxification of this protein can be done with ammonia, caustic soda, lime, and heat [6–10]. Recently,
some in vitro evaluations have confirmed the detoxification of the solid residue when combined with
polyphenolic compounds [11].

Processes 2020, 8, 1393; doi:10.3390/pr8111393 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0003-4454-8935
https://orcid.org/0000-0002-5886-8617
https://orcid.org/0000-0002-4954-2631
http://www.mdpi.com/2227-9717/8/11/1393?type=check_update&version=1
http://dx.doi.org/10.3390/pr8111393
http://www.mdpi.com/journal/processes


Processes 2020, 8, 1393 2 of 17

Phenols are abundant phytochemical compounds in vegetables and fruits; there are 8000 phenolic
structures [12]. The phenolic compounds are considered important antioxidants for human health [13].
These structures are classified in subcategories, depending on the structural skeleton that is classified
according to the number of carbon atoms present in each conformation [14]. Flavonoids are constituents
of the phenolic compounds, and they are a part of the human diet. Flavonoids are present in vegetables,
seeds, fruits, and beverages such as wine and beer; they also provide color and flavor to food. Flavonoids
are divided into several classes according to their oxidation degree in the heterocycle [13]. See Scheme 1.
The structure of a flavonoid consists of a diphenylpropane (c6-c3-c6), formed by two aromatic rings
linked through three carbon atoms that constitute a heterocycle oxygenated [15], and they are divided
among six families, flavones, flavanones, isoflavones, flavonols, flavanols, and anthocyanidins [16].
Flavonols are colorless molecules that accumulate mainly on external and aerial tissues, such as fruit
and vegetable leaves, since their biosynthesis is stimulated by light. Chemically, these molecules
differ from many other flavonoids because they have a double bond between 2,3 positions and
oxygen (ketone group) at the fourth position of the C ring; among them are quercetin, kaempferol,
isorhamnetin, glycosides, and myricetin [17]. Quercetin is the most representative molecule of flavonols
since, in addition to being a powerful antioxidant, it can chelate metals, eliminates oxygen free
radicals and prevents oxidation of low-density lipoproteins, and it is also a water-soluble natural
pigment that is usually present as O-glycosides in high concentrations, especially in onions, apples,
and grapes [18]. Other important flavonoids are the flavanols family; these are represented by catechins
such as epigallocatechin gallate (EGCG), a flavanol mainly found in green tea; it is considered as one
of the most active molecules with antioxidant properties [19]. The principal reason for the study of
this flavanol (epigallocatechin gallate, EGCG), is because this compound can inhibit the actions of a
protein called Dyrk 1A, which is produced in excess in Down syndrome, causing damage to brain
function [20]. The EGCG presents helpful effects in the prevention of pathological disorders such as
obesity, insulin resistance, dyslipidemia, and hypertension [21]. In the EGCG skeleton, the saturation
of the heterocyclic ring prevents the delocalization of electrons between rings A and B [22], allowing it
to slow down lipid oxidation [20,23]. Furthermore, the EGCG has eight hydroxyl groups distributed
in its A and B rings; has a gallate group that gives it its excellent antioxidant power [24]; and does
not have a C2=C3 double bond, allowing it to generate cis–trans isomers, epimerizers, and racemic
mixtures, and naturally, polymerize tannin [25]. See Scheme 1.

According to reported analysis, the most representative molecules are quercetin and epigallocatechin
gallate, because these compounds are some of the most studied flavonoids in vivo for interactions
with different proteins [26–28], principally for their inhibitory potential [29]. In the case of the EGCG,
Dyer et al. found in experimental trials that this flavonoid inhibits the ricin toxin, suggesting that this
molecule may reduce the lethality of the ricin [11]; however, the types of interactions present between
this protein and groups of polyphenolic compounds have not been analyzed at a molecular level.

It is well known that theoretical analysis and quantum-chemical calculations can provide
quantitative predictions of the behavior of organic compounds, such as chemical reactivity or
physicochemical properties [30]. Currently, there is a great interest in the theoretical studies in
polyphenolic groups [31]. However, the electronic structure methods, such as ab initio and density
functional theory (DFT), are the most used due to the accurate descriptions, geometrical structures,
and electronic properties obtained in these analyses [32]. Additionally, those methods are very helpful
in getting the correct descriptions of the molecular interactions. For example, several functionals
have been used for the prediction of many properties, the M06-2X hybrid meta-Generalized Gradient
Approximation (GGA) functional being the most widely used method for biological and pharmaceutical
theoretical studies, showing a higher correlation with experimental data [33–35]. On the other hand,
the B3LYP hybrid functional is considered the best method to analyze organic molecules due to the
precision of its results [36,37]. Alternatively, derivatives of flavonoid groups have been analyzed by
the B3LYP and M06-2X functional, determining the molecular factors of their structural and energetic
properties [38,39]. These theoretical calculations can be incredibly helpful in the prediction of chemical
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reactivity parameters and molecular structure; the last method mentioned is used for alignment and
adjustment of a ligand, which is necessary because the initial pose of a ligand in a free solution is
different from the pose of the protein-bound ligand [40–42]. The conformation of the ligand not only
depends on the low energy in a coupling, but also on its conformational selection and the accessibility
of the protein during the interactions [43,44].
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gallate belongs to flavanols.

Another computational procedure is molecular docking; this is a technique that attempts to predict
noncovalent binding between macromolecules and ligands. Several reported studies have analyzed
the molecular interactions between two or more constituent molecules, especially protein–ligand
docking, thereby predicting the structures of the formed intermolecular complexes, showing how these
molecules could potentially bind in vivo [45].

The objective of this research was to develop molecular docking calculations between ricin protein
and specific flavonoid compounds such as quercetin and epigallocatechin gallate, in order to obtain
significant and useful information about the molecular interactions present in these couplings, to predict
whether these interactions are the possible cause of ricin detoxification. The DFT electronic structure
method was used for geometric optimization and chemical reactivity calculations. Once the molecular
interactions were defined, the electronic properties such as ionization potential, electron affinity,
chemical hardness, chemical potential, and electronegativity were predicted by quantum-chemical
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calculations. Additionally, in order to obtain valid and reliable models, molecular alignment was
employed for the quercetin and epigallocatechin gallate geometries, before and after the interaction
with the ricin protein. Additionally, an exploration of the oxidation process inside of the active site
was performed by a charge transfer flow direction analysis.

2. Computational Details

In this theoretical study, the ricin protein and its molecular interactions with quercetin (Q)
and epigallocatechin gallate (EGCG) flavonoids were analyzed. The molecular structures of ricin
(PDB ID:2AAi) and of the amino acids involved in the active site were obtained from the Protein Data
Bank (http://www.rcb.org) based on X-ray diffraction data.

2.1. Quantum-Chemical Calculations

The computational strategy was carried out as follows. The ground state geometry optimization
and frequency calculations of flavonoids were done using the electronic structure method DFT, with the
hybrid density functionals B3LYP [46–48] and PBE1PBE [49], and the meta-GGA functionals M06 [50]
and M06-2X [50]. All the functionals were combined with the 6–31G (d,p) basis set. The optimized
geometries were used for the analytical frequency calculations, which were carried out for each
stationary structure to verify whether it is the minimum of the potential energy hypersurfaces.
The solubility in water is an important requirement for those compounds that can be good candidates
for biological applications. For this reason all the calculations were carried out using water as a
solvent, this being an analysis of great importance not only in chemistry but also in other topics
of science, such as biology, medicine, and the food industry, among others [51]. All the theoretical
properties have been determined in the solvent phase using water as a solvent. The solvent phase
calculations were made with the polarizable continuum model (PCM) using the integral formalism
variant (IEFPCM) [52,53].

The calculated geometry of EGCG molecule was compared with X-ray diffraction experimental
data reported for the structure. Statistical analysis for each methodology versus experimental
values was applied. This test allowed the selection of the best method for flavonoids’ geometry
optimizations. Subsequently, the energies of the molecules in their neutral (EN), anionic (EN+1),
and cationic (EN-1) forms were calculated with B3LYP/6-31G (d,p) methodology. The obtained
energies were used for the calculation of global reactivity parameters such as ionization potential
(I), electronic affinity (EA), electronegativity (χ), chemical hardness (η), and chemical potential (µ).
See Equations (1)–(5). These reactivity parameters were applied for the determination of the charge
transfer (∆N), which describes the fractional number of transferred electrons from system A (flavonoids)
to system B (any amino acids from the active site). See Equation (6). From the neutral molecule, the
frontier molecular orbitals HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied
molecular orbital) were mapped. The molecular electrostatic potential (MEP) was calculated using
B3LYP/6-31G (d,p) methodology. All the quantum-chemical calculations were performed in Gaussian
09 [54] program.

I = EN−1 − EN (1)

EA = EN − EN+1 (2)

χ =
I + EA

2
(3)

η =
I − EA

2
(4)

µ = −χ =
I − EA

2
(5)

∆N =
µB − µA

2(ηA + ηB)
(6)

http://www.rcb.org
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2.2. Preparation of Protein for Molecular Docking Calculations

The crystal structure of ricin (PDB ID:2AAi) with a resolution of 2.5 Å was taken from the Protein
Data Bank. This protein is composed of two polypeptide chains (A and B) linked by a disulfide bridge.
Before the docking calculations, the ricin protein was prepared using PyMOL program [55], where water
molecules were dismissed. Docking studies were carried out separately for the polypeptide chains A
and B.

2.3. Molecular Docking Calculations

In the second stage, the optimized structures of flavonoids were used as ligands in the molecular
docking analysis using the Autodock 4.2 software [56]. In this study, the molecular docking between
each ligand (Q and EGCG) and the macromolecule (ricin protein) was performed, showing all
the possible molecular interactions between both systems. The macromolecule was placed rigidly;
in contrast, the ligands were flexible. The water molecules in the macromolecule were eliminated and
we only kept the polar hydrogen atoms. Three boxes were designed for the Docking, one in A chain
and two in B chain (B1 and B2) of the ricin protein; these boxes are located in the active sites of the
chains. The conditions were: in the A chain a grid box size of 124 × 122 × 126 Å was used, centered at
the coordinates x = 22.932, y = 64.561, z = 53.505, with the spacing grid point of 0.169 Å; in the B chain,
the B1 the grid box was 34 × 34 × 22 Å centered at the coordinates x = 32.643, y = 42.605, z = 10.995,
with a spacing grid of 0.506 Å; and in B2 the grid box was 22 × 32 × 28 Å centered at the coordinates
x = −0.433, y = 34.935, z = 54.086, with a spacing grid of 0.528 Å. The coupling conformations were
obtained through a genetic algorithm in combination with the Lamarckian algorithm, by selecting the
lowest binding energy of the given ten conformations.

3. Results and Discussion

3.1. Quantum-Chemical Calculations

The obtained geometrical parameters are shown in Table 1. These parameters were calculated using
different methodologies: PBE1PBE/6-31G (d,p), M06/6-31G (d,p), M06-2X/6-31G (d,p), and B3LYP/6-31G
(d,p). The bond lengths and bond angles of the Q and EGCG molecules (calculated in the solvent
phase) were compared with the reported X-Ray diffraction values [57,58]. The correlation analysis
showed that the best methodology employed to analyze the molecular structure of Q and EGCG
was B3LYP/6-31G (d,p), with a correlation of 0.94 for bond lengths and 0.82 for bond angles for Q,
and correlations of 0.95 and 0.93 for bond lengths and bond angles in EGCG. The absence of imaginary
frequencies confirmed the global minima on the potential energy surface. These optimized structures
of Q and EGCG calculated with B3LYP/6-31G (d,p) in the solved phase were used in the molecular
docking calculations (See Figure 1).
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Table 1. Q and EGCG geometrical parameters calculated in the solvent phase (water) using IEFPCM solvation model, and the X-ray diffraction data reported for the
same compounds.

Model
Bond Distance

(Å)
DFT Functional/6-31G (d,p)

Exp (a,b) Angles (◦)
DFT Functional/6-31G (d,p)

Exp (a,b)
B3LYP PBE1PBE M06 M06-2X B3LYP PBE1PBE M06 M06-2X

Q

O1-C2 1.375 1.365 1.367 1.365 1.371 C2-01-C9 122.8 122.9 122.83 122.5 121.7
O1-C9 1.360 1.351 1.351 1.352 1.368 O1-C2-C3 119.0 120.0 119.25 120.0 120.1
C2-C3 1.372 1.368 1.366 1.361 1.362 O1-C2-C11 112.3 112.3 112.55 112.2 111.5

C2-C11 1.465 1.460 1.459 1.468 1.469 C3-C2-C11 128.6 128.3 128.19 127.8 128.4
C3-O3 1.358 1.348 1.349 1.353 1.358 C2-C3-O3 123.7 124.1 123.70 123.5 121.1
C3-C4 1.449 1.445 1.446 1.453 1.431 C2-C3-C4 121.4 121.1 121.46 121.1 121.2
C4-O4 1.265 1.260 1.256 1.250 1.269 O3-C3-C4 114.9 114.8 114.83 115.4 117.6
C4-C10 1.432 1.427 1.429 1.435 1.423 C3-C4-O4 118.7 118.6 118.62 119.0 120.6

Correlation
coefficient (r) 0.944 0.921 0.930 0.946 Correlation

coefficient (r) 0.812 0.779 0.805 0.809

EGCG

O1-C2 1.440 1.426 1.423 1.424 1.460 C2-O1-C9 113.6 114.3 114.2 114.6 114.0
O1-C9 1.374 1.364 1.365 1.368 1.390 C3-C2-C11 114.6 114.3 113.2 112.4 112.4
O2-C3 1.440 1.428 1.425 1.428 1.440 O1-C2-C3 109.3 109.2 109.5 110.5 109.0
O3-C5 1.366 1.356 1.355 1.358 1.380 O1-C2-C11 106.2 104.5 102.4 105.3 105.0
O4-C7 1.366 1.356 1.355 1.358 1.370 O2-C3-C2 107.1 114.9 114.4 112.2 113.3

O5-C14 1.394 1.384 1.383 1.385 1.380 O2-C3-C4 111.4 110.7 111.2 112.2 111.3
O6-C13 1.361 1.351 1.351 1.355 1.390 C2-C3-C4 111.4 111.4 111.1 109.5 111.8
C2-C11 1.523 1.515 1.512 1.517 1.530 C3-C4-C10 108.5 109.0 108.5 109.7 108.7

Correlation
coefficient (r) 0.955 0.944 0.94 0.946 Correlation

coefficient (r) 0.939 0.801 0.873 0.918

(a) Quercetin (Q): Spek et al., Acta Crystallographica (1984). C40, 2068–2071. (b) Epigallocatechin gallate (EGCG): Jin, G.Z. et al., Acta Crystallographica (1990). C 46, 310–313.
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3.2. Global Chemical Reactivity

The optimized geometries obtained with B3LYP/6-31G (d,p), were used for global chemical
reactivity calculations. The reactivity parameters were calculated according to the approximations of
energies in their neutral (EN), anionic (EN+1), and cationic (EN-1) states, based on the optimization of the
fundamental state geometry. The calculated parameters were: ionization potential (I), electronic affinity
(EA), chemical potential (µ), electronegativity (χ), and chemical hardness (η).

The obtained results are shown in Table 2, in which is observed that Q presents a higher capacity
to form anions due to the electronegativity value (χ), which represents a greater tendency to attract
electrons. Regarding chemical hardness (η), Q shows a lower value compared to EGCG; this parameter
is indicative of the good interaction of this molecule with the surrounding environment. The chemical
harness and chemical potential values were applied in the calculation of the fractional number of
transferred electrons (∆N).

Table 2. Chemical reactivity parameters and total electronic energy of quercetin (Q) and epigallocatechin
gallate (EGCG) calculated with B3LYP/6-31G (d,p) in solvent phase. For the reactivity calculation
parameters see Equations (1)–(5). All the values are in eV.

Compound Electronic Energy I EA µ X η

Q
(EN) −30,047.53

5.48 2.01 −3.75 3.75 3.47(EN-1) −30,042.05
(EN+1) −30,049.54

EGCG
(EN) −45,625.14

5.81 1.23 −3.52 3.52 4.58(EN-1) −45,619.33
(EN+1) −45,626.37

3.3. Molecular Electrostatic Potential (MEP)

The molecular electrostatic potential (MEP) can predict the reactive sites of electrophilic and
nucleophilic attack in a molecule. These MEPs were realized to show the electron density within
the Q and EGCG on surfaces that surround the molecules, and the locations of sites for nucleophilic
and electrophilic attacks. Red indicates negative regions promoting electrophilic attack and blue
indicates the positive parts showing favorable sites for nucleophilic attack. Molecular electrostatic
potentials of Q and EGCG were calculated using B3LYP/6-31G (d,p) methodology. The surface map
is shown in Figures 2 and 3. Figure 2 shows MEP map of quercetin with three possible electrophilic
attack sites localized on O4 (−0.655 e), O5 (−0.590 e), and O13 (−0.586 e) atoms, while the possible
nucleophilic attack sites are localized on hydrogens, mainly H7 (0.353 e) and H14 (0.357 e). Figure 3
shows the MEP map of EGCG with five possible electrophilic attack sites localized on O7′′(−0.531 e),
O3′′(−0.585 e), O7 (−0.560 e), O3′(0.582 e), and O1 (−0.570 e) atoms, and the possible nucleophilic
attack sites are localized on hydrogens of the three-ring, mainly H3′′ (0.356 e), H4′′ (0.360 e), H5′′

(0.346 e), H5 (0.351 e), H6 (0.342 e), H7 (0.345 e), H3′ (0.340 e), and H4′ (0.359 e). The values are shown
in units of electric charge.
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3.4. Electronic Density of the Frontier Molecular Orbitals (HOMO and LUMO)

The electron density of the frontier molecular orbitals was obtained by performing the energy
calculations of Q and EGCG molecules in neutral state. A detailed analysis of the molecular orbitals
can provide useful information about the electron density distribution of a molecule. It can be observed
for Q, that both the HOMO orbital (donor) and LUMO orbital (acceptor) are distributed throughout
the entire structure of the molecule (see Figure 4). The distribution of the electronic density of HOMO
is an indication of the susceptibility to electrophilic attacks, and the possible interactions of quercetin
(Q) with the active site of ricin protein.

In the epigallocatechin gallate (EGCG), it can be seen that the HOMO orbital is distributed in the
A and C rings of the structure, indicating this part of the molecule as an electron donor zone and the
more susceptible atoms for an electrophilic attack. See Figure 5. On the other hand, the D-ring appears
to be more susceptible to a nucleophilic attack; it was confirmed with the results of molecular docking.
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3.5. Docking Analysis

The molecular docking was realized between the ricin protein and the best geometries of quercetin
(Q) and epigallocatechin gallate (EGCG). The ricin protein presents two chains, A and B; these chains
have different active sites, one site for the A chain and two active sites for the B chain, which are
distinguished as site 1 (B1) and site 2 (B2); this analysis was carried out with the Autodock 4.2
program [56].

The results show the interactions between the active site of A chain and the ligands Q and EGCG.
The obtained result for Q with A chain showed four hydrogen bonds with one π–π interaction between
TYR 80 and C7 in A ring, while in the results for EGCG with A chain showed six hydrogen bonds
(Figure 6).

Processes 2020, 8, x FOR PEER REVIEW 9 of 16 

 

 

Figure 5. Localization of (A) HOMO and (B) LUMO molecular orbitals of epigallocatechin gallate 
(EGCG), calculated with B3LYP/6-31G (d,p) methodology. 

3.5. Docking Analysis 

The molecular docking was realized between the ricin protein and the best geometries of 
quercetin (Q) and epigallocatechin gallate (EGCG). The ricin protein presents two chains, A and B; 
these chains have different active sites, one site for the A chain and two active sites for the B chain, 
which are distinguished as site 1 (B1) and site 2 (B2); this analysis was carried out with the Autodock 
4.2 program [56]. 

The results show the interactions between the active site of A chain and the ligands Q and 
EGCG. The obtained result for Q with A chain showed four hydrogen bonds with one π–π 
interaction between TYR 80 and C7 in A ring, while in the results for EGCG with A chain showed 
six hydrogen bonds (Figure 6). 

 
Figure 6. Detailed molecular interactions of (A) quercetin (Q) and (B) epigallocatechin gallate 
(EGCG) both with the active site of the A chain of the protein ricin. 

On the other hand, Figure 7 shows the interactions between the active sites of B chain (B1 y B2) 
and the ligands Q and EGCG. It was observed that the ligands are joined in a shallow pocket site in 
the B chain, where five hydrogen bonds were found in Q with B1 and B2 interactions, and only two 
π–cation interactions between LYS 40 with C1´and C3´ in B1 site. In the EGCG interactions with B 

chain, seven (in B1) and two (in B2) hydrogen bonds were observed. 

Figure 6. Detailed molecular interactions of (A) quercetin (Q) and (B) epigallocatechin gallate (EGCG)
both with the active site of the A chain of the protein ricin.



Processes 2020, 8, 1393 10 of 17

On the other hand, Figure 7 shows the interactions between the active sites of B chain (B1 y B2)
and the ligands Q and EGCG. It was observed that the ligands are joined in a shallow pocket site in
the B chain, where five hydrogen bonds were found in Q with B1 and B2 interactions, and only two
π–cation interactions between LYS 40 with C1’ and C3’ in B1 site. In the EGCG interactions with B
chain, seven (in B1) and two (in B2) hydrogen bonds were observed.Processes 2020, 8, x FOR PEER REVIEW 10 of 16 
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Figure 7. Detailed molecular interactions of quercetin (Q) and epigallocatechin gallate (EGCG) with
the active sites of the B chain of the protein ricin. (A) Q with B1. (B) Q with B2. (C) EGCG with B1.
(D) EGCG with B2.

The results in Table 3 show that the most stable energy was obtained for A chain with both
molecules: registered values of −6.30 kcal/mol for Q and −7.43 kcal/mol for EGCG, which coincide
with Monzingo and Robertus, who found that the rings of Tyr80 and Tyr123 in the active site of chain
A, are the most energetically favorable region for stacking of aromatic molecules and formation of
hydrogen bonds [59]. In the case of B chain, the most stable energy was found in B1 site for both
molecules. The amino acids of the active sites match with those reported in the literature [60,61],
particularly for the A chain; the docking of EGCG with B chain (B1) shows a higher number of hydrogen
bonds due to the conformation of the structure in the active site.

The coupling between ricin and ligands had more interactions in the case of the quercetin molecule,
as shown by five hydrogen bonds and two π–cation interactions in B1 and five hydrogen bonds in B2

active site; and in the A chain this molecule presented four hydrogen bonds and one π–π interaction.
Besides that, the EGCG, presented seven hydrogen bonds in the B1 active site, and six hydrogen bonds
in the A active site, which can be attributed to the higher number of –OH groups in the structure; this
agrees with M. Sahihi et. al., who reported that the number of hydrogen bond interactions increases
when the number of –OH groups in flavonoids structure increases [62].
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Table 3. Molecular interaction analysis for the ricin protein (A and B chains) and quercetin (Q) and epigallocatechin gallate (EGCG).

Ligands/Protein Chain Ebinding (kcal/mol) * Amino Acids in Active Site Hydrogen Bonds π Interaction

Q/A −6.30 TYR123, ASN122, GLY121, TYR80, ASP96, ARG180 4 1

Q/B1 −5.28 GLN35, ASP22, ASP25, ASN46, LYS40, TRP37, ASP44 5 2π-cation
Q/B2 5.16 HIS251, ASP253, ASN255, ALA237, ASP234, ILE246, ARG236, TYR248 5 -

EGCG/A −7.43 PHE93, ASN78, GLY120, GLY121, ASN122, TYR80, ARG180, TYR123, GLU208, ASN209, ASP96 6 -

EGCG/B1 −5.47 ASP44, ALA45, ASN46, GLY26, ASP25, ASP22, GLN35 7 -
EGCG/B2 −3.91 HIS251, ASP253, PRO254, ASN255, SER238, ALA237, ASP234, ILE246, ARG236 2 -

* The amino acids in bold coincided with previously reported results [60,61].
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3.6. Adjustment and Alignment after Interaction

The molecular docking results were verified with a superimposition of the ligands. This analysis
was determined with the adjustment and alignment of the Q and EGCG geometries, before (in green)
and after (in blue) the interactions in the active sites of A and B chains. The energy difference between
both geometries allows one to know the feasibility of the interaction with the active site of the protein.
The structural changes in the molecules depend on the interactions with the amino acids of the
active sites. The obtained results did not show a considerable energy difference for the quercetin
before and after the interaction, with values in the range of −0.036 to −0.042 kcal/mol in both chains.
For EGCG, the difference is remarkable: values of −0.11 kcal/mol for A chain, −0.12 kcal/mol for
B1, and −0.25 kcal/mol for B2 site; this means that EGCG requires more energy to interact with the
active site B2 due to several rotational angles in the structure. Figure 8 shows the geometries of the
Q and EGCG before and after the interactions with the active sites, specifying a difference of total
electronic energy.
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3.7. Fractional Number of Transferred Electrons (∆N)

Charge transfer between amino acids of the active site of A and B (B1 and B2) chains with the
ligands was calculated using Equation (6). The active amino acid sites were isolated using PyMOL [38]
software, without modifying their compositions or conformations. The reactivity parameters of
chemical hardness (η) and chemical potential (µ) were used for the determination of the charge transfer
parameter (∆N) [63]. This parameter describes the fractional number of electrons transferred from A
system to B system. In this case, the polyphenols Q and EGCG were selected as the A system, and the
amino acids in the active site were selected as B system. If ∆N values are positive, it indicates that the
system is an electron donor. In contrast, if ∆N values are negative, the system is an electron acceptor.
For the interaction between Q and the A, B1, and B2 active sites, the obtained values of ∆N yielded
only negative values, indicating that the charge transfer flows from quercetin to the amino acids of
ricin, thereby meaning Q acts as an electron donor. In the case of EGCG, the ∆N parameter showed
some positive values, such as the TYR80 with 0.001 and ARG180 with 0.788 in the A chain, and ASP25
with 0.196 in B1 active site, thereby it acts as an electron acceptor with those amino acids. The rest
amino acids of the active site presented negative values of ∆N, so the EGCG acts as an electron donor.
These results are shown in Figures 9 and 10.
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4. Conclusions

This study provides essential information about quantum-chemical calculations of quercetin (Q)
and epigallocatechin gallate (EGCG) molecules, and valuable information about the interactions of Q
and EGCG with the ricin protein for possible inhibition.

For geometrical parameters of Q and EGCG, the methodology B3LYP/6-31G (d,p) was defined as
the best approximation with X-ray diffraction experimental values.

According to molecular electrostatic potential (MEP), the site for nucleophilic attack situated in
quercetin (Q) coincided with the interactions obtained in A, B1, and B2 chains. For epigallocatechin
gallate (EGCG) the electrophilic attack sites coincided with both chains A and B1. In contrast,
the nucleophilic attack partially coincided with the interactions obtained for the A chain and the
B1 and B2 chains. This behavior in EGCG could be related to the dihedral angles in the structure,
which generated a steric impediment between the molecule and amino acids of the active site.

The analysis of the frontier molecular orbitals (HOMO and LUMO) showed that the electronic
density of quercetin is distributed throughout the entire structure of the molecule, confirming the
molecular coupling results. For epigallocatechin gallate, the HOMO orbital is positioned in the A and
B rings, which coincides with the interactions shown for A and B1 chains, whereas the LUMO orbital
matches with the interactions obtained for A, B1, and B2.

The comparison of the Q geometry before and after the interaction with the ricin chains showed
the lowest values of ∆E. In contrast, for EGCG, these values indicated a greater deformation of the
structure. Moreover, the charge transfer parameter (∆N) calculated for both molecules, Q and EGCG,
showed that the tendency of these systems is toward electrons donation because of the negative values;
it is an indication that these compounds suffer an oxidation process inside of the active site.

Based on the above-mentioned results, we can say that both flavonoids present significant
interactions with the ricin protein, which could be considered as a probable inactivation of the protein,
triggering a possible detoxification process.
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