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Abstract: In recent times, optimization began to be popular in the turbomachinery field.
The development of computational fluid dynamics (CFD) analysis and optimization technology
provides the opportunity to maximize the performance of hydro turbines. The optimization techniques
are focused mainly on the rotating components (runner and guide vane) of the hydro turbines.
Meanwhile, fixed flow passages (stay vane, casing, and draft tube) are essential parts for the proper
flow uniformity in the hydro turbines. The suppression of flow instabilities in the fixed flow passages
is an inevitable process to ensure the power plant safety by the reduction of vortex-induced vibration
and pressure pulsation in the hydro turbines. In this study, a CFD-based shape design optimization
process is proposed with response surface methodology (RSM) to improve the flow uniformity in the
fixed flow passages of a Francis hydro turbine model. The internal flow behaviors were compared
between the initial and optimal shapes of the stay vane, casing, and the draft tube with J-Groove.
The optimal shape design process for the fixed flow passages proved its remarkable effects on the
improvement of flow uniformity in the Francis hydro turbine.
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1. Introduction

Hydropower is considered a reliable renewable source for electricity production. The hydraulic
turbine is an essential component of the hydropower plant. Among various types of hydraulic turbines,
Francis turbines are widely used over a wide range of flow rates and heads [1]. The main hydro passage
parts of the Francis turbine are composed of a spiral casing, stay vane, guide vane, runner and draft
tube. The flow instabilities in the fixed flow passages can cause failure in the whole hydro turbine
system. The design of the fixed flow passages is dependent on the moving components of the runner
and guide vane in the Francis turbine.

The fixed flow passages are designed to keep the proper flow uniformity by suppressing the
pressure pulsation, vortex-induced vibration and swirl flow. The main objective of the stay vane is to
maintain the uniform flow from the casing to guide vane and runner flow passages [2]. The non-uniform
flow distribution from the stay vane causes the vortex-induced vibration, which initiates the failure
in the stay vane [3]. The purpose of the spiral casing is to direct the fluid from the penstock pipe to
the stay vane and guide vane. Kurokawa and Nagahara [4] explained the free-vortex, accelerating
and decelerating types of the spiral casing. The flow behavior is dependent on the casing shape.
The improper flow distribution causes pressure pulsation and secondary vortex, which induces the
cracking in the casing wall. Price indicated that the severe pressure fluctuation in the spiral casing
causes the brittle crack in the casing wall [5]. The draft tube is designed to improve the dynamic
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energy in the runner outlet and recover the suction head [6]. The existence of swirl flow in the draft
tube causes the flow instabilities [7–9]. J-Groove installation suppresses the flow instabilities in the
draft tube of the Francis hydro turbine [10]. J-Groove is the groove engraved on the wall of the draft
tube that induces reverse jet flow through the shallow groove channels to suppress the swirl flow [11].

The computational fluid dynamics (CFD) analysis has become one of the main tools for
turbomachinery flow analysis. The application of CFD analysis makes it easier to evaluate a large
number of design cases with precise and accurate results. It is used to predict the internal flow
behavior of the turbomachinery, flow separation, and loss distribution in Francis turbine components.
Many researchers have conducted CFD analysis on the Francis hydro turbine for the prediction of
performance [12], part-load performance [13], suction performance [14], unsteady flow behavior [15].
The CFD analysis and optimization techniques were integrated for the optimization of the runner
blade [1]. The maximum improvement in the moving components (runner and guide vane) was
achieved via CFD-based optimization [16–19]. However, few studies related to the fixed flow passages
(spiral casing, stay vane and draft tube) of Francis hydro turbines are available [20,21].

Nowadays, design optimization using numerical analysis is widely used for turbomachinery.
Wu et al. performed the CFD-based design optimization for a Francis hydro turbine. They showed a
comparison between the initial and optimal design of turbines at the design point [19]. They mainly
focused on the optimization of the runner blade of the Francis hydro turbine. The conventional blade
design approaches integrated with the advanced CFD analysis are powerful and effective tools for
the design optimization of turbomachinery. A CFD-based design optimization system that integrates
internally developed parametrized mathematical geometry models, automatic mesh generators and
commercial 3D Navier–Stokes code like ANSYS CFX 19.2 permits designers to interactively generate,
modify and visualize the geometric model of turbine components. The design process can be
repeated until a fully optimized model with satisfactory performance is obtained. Nakamura and
Kurosawa [22] conducted the design optimization of a high specific speed Francis turbine using a
multi-objective genetic algorithm (MOGA). The design optimization of hydraulic machinery can be
performed by multilevel CFD techniques [23]. The multilevel CFD technique reduced the computation
time. Sosa et al. [6] performed the design optimization of the draft tube by using CFD analysis.
Si et al. [24] proposed a multi-point design process based on CFD and an intelligent optimization
method for the automotive electronic pump. Ayancik et al. [1] conducted a simulation-based design of
a Francis hydro turbine runner that was performed by following a surrogate model-based optimization.
The conventional CFD-based design process is executed through trial and error; hence, designing a
runner for a Francis hydro turbine can take several months. Due to these drawbacks of conventional
CFD-based design, CFD-based optimization design approaches can be followed for the reduction of
calculation time and better shape design.

It is essential to integrate a robust and flexible design tool in a CFD-based design optimization
system to allow automatic generation and modification of the design geometry. The objective of
this study is to propose a CFD-based shape design optimization process for fixed flow passages in
the Francis hydro turbine. For the CFD-based shape design optimization, the surrogate model was
prepared by using response surface methodology (RSM). The various RSMs were evaluated by the
goodness of fit test for the precise and accurate response surface. The multi-objective genetic algorithm
(MOGA) was applied for the optimization of the fixed flow passages. The hydraulic design and
optimization framework for stay vane, casing, and a draft tube with J-Groove can be generalized for
reaction hydro turbines (Francis turbine and Pump turbine). The CFD-based optimization process
included the parametric design of stay vane, casing, and the draft tube with J-Groove, fluid domain
modeling, meshing, ANSYS CFX solver, post-processing, design of experiment (DOE), response surface
preparation and multi-objective optimization.
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2. Hydro Turbine Design and Optimization Methodology

2.1. Hydro Turbine Design

2.1.1. Process of Hydraulic Design

Figure 1 illustrates the hydraulic design process of the Francis hydro turbine proposed in this
study. The conceptual design of the turbine components is based on the turbomachinery theory.
The conceptual design for the Francis hydro turbine was prepared according to the turbine specification.
Generally, the hydro turbine design is commenced with the runner design. The guide vane is designed
according to the flow angle at the runner inlet. The stay vane design should match the inlet flow angle
of the guide vane. The proper flow distribution at the stay vane inlet should be maintained by casing
design. The runner outlet flow angle is a constraint for the draft tube design. A fixed flow passage
design is linked with each other. Therefore, the initial shape design was completed in serial order as in
the conceptual design by theory and detail design by 3D shape modeling. It was challenging to obtain
the whole turbine passages optimization at once because it consisted of numerous design variables
and overlapping constraints. Hence, the fixed flow passages shape was optimized for each passage
separately to reduce the computational cost and make an effective optimization process. In this study,
runner and guide vane design conditions were fixed, which created the constraints for the optimization
process followed.
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Figure 1. Hydraulic design process of the Francis hydro turbine with computational fluid dynamics
(CFD)-based optimization.

2.1.2. Francis Turbine Specification and Performance

The design specification of the 100 MW class Francis hydro turbine model is shown in Table 1.
The minimum and maximum heads of the Francis hydro turbine are 66.5 m and 110 m, respectively.
The design flow rate of the prototype turbine is 125.4 m3/s. The turbine maximum output power is
113 MW, and the minimum output power is 62.3 MW. The specific speed Ns, unit discharge Q11 and
unit speed N11 are evaluated by using Equations (1)–(3), respectively.

Ns =
n
√

P

H
5
4

(1)

Q11 =
Q

D2
e
√

H
(2)

N11 =
nDe
√

H
(3)

where n is the rotational speed in min−1, P is the output power in kW, H is effective head in m, Q is
flow rate in m3/s, De is the runner outlet diameter.
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Table 1. Design specification of the 100 MW class Francis turbine.

Nomenclature Unit Values

Effective head, H m 90
Flow rate, Q m3/s 125.4

Power, P MW 100
Rotational speed, n min−1 180
Inlet diameter, Di mm 4863

Outlet diameter, De mm 3995
Specific speed, Ns kW-min−1-m 205

Francis turbine fluid domain by initial design is shown in Figure 2a, which consists of a spiral
casing, 20 stay vanes, and 20 guide vanes with 13 runner blades, and the elbow-type draft tube.
The runner inlet and outlet diameters are Di = 4863 mm and De = 3995 mm, respectively. The installed
capacity of the Francis turbine is 100 MW. The efficiency hill chart of the Francis hydro turbine by
initial design and CFD analysis is shown in Figure 2b. The various guide vane openings are used to
regulate the flow rate for the Francis hydro turbine. The guide vane opening from 8◦ to 41◦ is used to
change the flow rate. The design point for the Francis hydro turbine is determined at N11 = 76.12 and
Q11 = 0.87. The best efficiency of the Francis hydro turbine is located in the range of guide vane angles
of 23◦ to 26◦ and unit speeds of N11 = 70 to N11 = 80.
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initial design.

2.1.3. Stay Vane Design

The purpose of the stay vane (SV) is to guide the water flow from the casing to guide vane and
runner, and for structural purpose. The main design parameters for the stay vane are vane angles,
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thickness, ellipse ratio at the leading edge, and trailing edge. The design parameters for the stay vane
are shown in Figure 3a. The design parameters for the stay vane are defined as in Equation (4).

dSV = [α1, . . . ,α5, δ1, . . . , δ5, ale, ate]
T (4)

where dSV is the design variables matrix of the stay vane, αi is the vane angle at ith section of the stay
vane, δi is the thickness at ith section of the stay vane, ale is the ellipse ratio at the leading edge (LE),
ate is the ellipse ratio at the trailing edge (TE) and superscript T indicates the transpose of the design
variables matrix.
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Figure 3. (a) Parametric design schematic view and (b) initial stay vane shape.

Figure 3b shows the initial stay vane shape using the vane angle and thickness distributions.
The inlet vane angle is 30◦, and the outlet vane angle is 33◦. The thickness of the stay vane is 46 mm at
the LE and 28 mm at the TE. The maximum thickness of the stay vane is 150 mm at 0.4 normalized
distance from the LE. The vane angle and thickness distribution are the same throughout the stay vane.

2.1.4. Casing Design

The spiral casing shape is dependent on the cross-section radii [20]. Figure 4a,b indicates the
parametric design parameters and initial shape design of the casing, respectively. The parametric
design of the casing shape is defined as in Equation (5).

dCA = [r0, r2, · · · , r11]
T (5)

where dCA is the design variables matrix of the casing, ri is the cross-section radius at ith section of the
spiral casing.
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2.1.5. Draft Tube Design with J-Groove Installation

The diffuser angle of the draft tube is generally determined in the range of 3◦ to 10◦ for minimum
energy loss, which is an important design parameter for the discharge pressure recovery and flow
uniformity in the draft tube [25]. The conceptual design of the draft tube shows that the diffuser angle
of 3.5◦ provides maximum pressure recovery. Figure 5 shows the technical design of the draft tube.
Moreover, in the case of the off-design condition, there exists swirl flow in the draft tube of the Francis
hydro turbine, and J-Grooves can be an effective countermeasure of the flow instability in the draft
tube [10]. J-Grooves are the grooves that are installed on the draft tube inner wall of the Francis turbine.
The design parameters of the J-Groove are defined as angle (θJG), length (lJG), depth (dJG) and number
(nJG), which are shown in Figure 6. The J-Groove is used to suppress the swirl flow in the draft tube by
the reverse flow mechanism through the J-Groove passage [11].
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The parametric design for the J-Groove is represented in Equation (6).

dDT =
[
dJG,θJG, lJG, nJG

]T
, (6)

where dDT is the design variable matrix of the J-Groove, dJG is the J-Groove depth, θJG is the J-Groove
angle, lJG is the J-Groove length and nJG is the number of J-Grooves.

The grooves are evenly distributed in the circumference of the draft tube. Therefore, the number
of J-Grooves can be calculated as in Equation (7). The initial shape of the J-Groove is defined as
dJG = 106 mm, lJG = 2000 mm, θJG = 12◦ and nJG= 15.

nJG =
180◦

θJG
(7)

2.2. Optimization Methodology

2.2.1. Process of Shape Optimization

The optimization process for the shape optimization of Francis hydro turbine fixed flow passages
is illustrated in Figure 7. The design of experiments (DOE) was generated by using the optimal-space
filling (OSF) method. The optimization for the fixed flow passages was carried out by using response
surface methodology (RSM) and multi-objective genetic algorithm (MOGA). RSM is considered a
sensitivity analysis tool, which is used to improve the sensitivity between the objective functions
and input parameters [26]. RSM can be expressed as in Equation (8). The RSM uses a first-order
and second-order polynomial form to develop the precise and concise correlation model, and the
mathematical expressions of RSM are shown in Equations (9) and (10):

y = f (x1, x2, · · · , xn) + e (8)

y = α +
n∑

i=1

αixi + e1 (9)
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y = α +
n∑

i=1

αixi +
n∑

i=1

αiix2
i +

n−1∑
i=1

n∑
j=i+1

αi jxix j + e2 (10)

where y is the response of the system, x1, x2, · · · , xn are the independent variables and e is the error,
xi is the ith input parameter, α is the coefficient of the response surface.
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RSM was used to decrease the computational cost in the optimization process. The response
surface for the objective functions can be generated by using various RSMs such as genetic aggregation
(GA) [27], radial basis function (RBF) [28], polynomial response surface (PRS) [29], Kriging (KG) [30],
non-parametric regression (NPR) [31], neural network (NN) [32]. All these methodologies have their
pros and cons. The selection of the RSM is based on the accuracy and consistency of the methodology.
Among different RSMs, the accuracy is measured by using the goodness of fit test. The goodness of
fit test can be calculated by using the coefficient of determination (CoD), maximum relative residual
(MRR) and root mean square error (RMSE), which are expressed in Equations (11)–(13).

CoD = 1−

∑ns
i=1(yi − ŷi)

2∑ns
i=1

(
yi − yi

)2 (11)

MRR = max
i

[
Abs

(
yi − ŷi

y

)]
(12)

RMSE =

√√
1
ns

ns∑
i=1

(yi − ŷi)
2 (13)

where ns is the number of verification points, yi is the response from CFD analyses, ŷi is the corresponding
response from the surrogate model and y is the arithmetic mean of yi. The verification points are used
to evaluate Equations (11)–(13). If the result of the goodness measure shows CoD = 100%, MRR = 0%
and RSME = 0%, it means that the response surface is highly precise and accurate.

The goodness measures concluded that the genetic aggregation was most suitable for the
approximation of response surface, compared to other RSMs. The results of the goodness of fit test
are shown in Table 2. Therefore, in this study, the genetic aggregation method was implied for the
preparation of the response surface. The optimization was carried out using MOGA. Table 3 indicates
the setting criteria for the optimization process.
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Table 2. Results of goodness of fit test. (CoD is Coefficient of Determination, MRR is Maximum Relative
Residual, RMSE is Root Mean Square Error).

Goodness
Measure RSM

Stay Vane Casing Draft Tube

η(dSV) γ(dSV) Hl(dSV) γ(dCA) Hl(dCA) η(dJG) S(dJG) Hl(dDT)

CoD

GA 98% 97% 90% 98% 98% 100% 97% 99%
SP 98% 96% 89% 100% 99% 77% 95% 77%
KG 100% 100% 100% 100% 100% 100% 100% 100%
RBF 100% 100% 100% 100% 100% 100% 100% 100%
NPR 99% 99% 100% 100% 100% 100% 100% 100%
NN 99% 98% 92% 88% 89% 28% 77% 34%

MRR

GA 0.19% 2.28% 3.57% 0.16% 8.50% 0.13% 0.19% 9.56%
SP 0.10% 3.04% 35.74% 0.13% 31.20% 0.11% 0.69% 16.65%
KG 0.09% 1.86% 42.96% 0.42% 20.06% 0.23% 2.94% 18.08%
RBF 0.09% 0.09% 57.45% 0.10% 17.83% 0.13% 0.94% 14.05%
NPR 0.19% 1.97% 38.10% 0.52% 9.78% 0.08% 0.88% 10.11%
NN 0.15% 1.47% 28.3% 0.54% 20.13% 0.05% 0.65% 6.17%

RMSE

GA 0.01% 0.51% 0.02% 0.03% 1.46% 0.01% 0.02% 0.01%
SP 0.01% 1.36% 0.04% 0.13% 31.20% 0.01% 0.06% 0.02%
KG 0.01% 0.89% 0.05% 0.42% 20.06% 0.06% 0.09% 0.07%
RBF 0.01% 0.06% 0.04% 0.10% 17.83% 0.01% 0.06% 0.01%
NPR 0.02% 1.37% 0.04% 0.38% 7.54% 0.01% 0.06% 0.01%
NN 0.01% 0.82% 0.03% 0.35% 16.51% 0.03% 0.04% 0.01%

Table 3. Information of setting criteria for MOGA.

Parameter Value

Number of initial samples 300
Maximum number of cycles 30

Number of samples per cycle 100
Crossover probability 0.95
Mutation probability 0.05

Maximum allowable Pareto percentage 97
Convergence stability percentage 2

2.2.2. Process of Stay Vane Shape Optimization

In this study, the turbine efficiency η(dSV), flow uniformity γ(dSV), head loss Hl(dSV), effective
head H(dSV), and flow rate Q(dSV) were considered for the evaluation of stay vane design as in
Equations (14)–(18). The measurement locations of the flow uniformity at SVout and head loss are
calculated by the difference between the total pressure at SVin and SVout, as shown in Figure 3.

η(dSV) =

[
τω

ρgQH

]
× 100% (14)

γ(dSV) =

1−
∮ √

(u− u)2

2Au
dA

× 100% (15)

Hl(dSV) =
∆ptotal@SV

ρg
(16)

H(dSV) =
pt

inlet − pt
outlet

ρg
(17)

Q(dSV) =
moutlet
ρ

(18)
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where τ is torque generated by runner (Nm) and ω is rotational speed of runner (rad/s). u is the average
velocity in stay vane passage (m/s), u is the local velocity in stay vane passage (m/s) and A is the
cross-section area of stay vane passage (m2). ∆ptotal@SV is the change in total pressure in stay vane
passage (Pa), pt

inlet and pt
outlet are total pressures at inlet and outlet of the turbine (Pa). moutlet is mass

flow rate of water at the turbine outlet (kg/s).
The optimization formulation for the stay vane is elaborated as in Equation (19).

maximize η(dSV), γ(dSV)

minimize Hl(dSV)

subject to 80 m ≤ H(dSV) ≤ 95 m
120 m3/s ≤ Q(dSV) ≤ 135 m3/s

dL
SV ≤ dSV ≤ dU

SV

(19)

where dL
SV and dU

SV are lower and upper bounds for the design variable dSV, respectively, and their
values are summarized in Table 4. The turbine efficiency η(dSV) and flow uniformity γ(dSV) were
maximized to obtain more output power, while vortex-induced vibration was suppressed. At the same
time, the head loss Hl(dSV) was minimized to prevent loss of power in the stay vane. The effective
head H(dSV) and flow rate Q(dSV) of the turbine were used as constraints for the stay vane design.

Table 4. Bounds for design variables of stay vane.

Design Variable Lower Bound (dL
SV) Upper Bound (dU

SV)

α1 26◦ 32◦

α2 29◦ 36◦

α3 34◦ 42◦

α4 32◦ 39◦

α5 30◦ 36◦

δ1 40 mm 52 mm
δ2 120 mm 155 mm
δ3 135 mm 155 mm
δ4 95 mm 120 mm
δ5 25 mm 35 mm

ale, ate 0.7 1.25

The optimal Pareto front for the stay vane design is shown in Figure 8. The Pareto front is plotted
between turbine efficiency and flow uniformity. The trade-off between turbine efficiency and flow
uniformity is required to obtain the optimal design of stay vane. Flow uniformity is measured at the
outlet of the stay vane. The measuring location plays a vital role in the calculation of flow uniformity.
If the measuring location changes, the nature of the Pareto front will change. The main objective of
the design optimization is to have smooth flow distribution in the stay vane flow passage. The flow
uniformity of the optimal stay vane should be above 90%. Based on the above assumptions, the optimal
stay vane (OSV) was selected with flow uniformity 91.97% and turbine efficiency 96.37%.
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2.2.3. Process of Casing Shape Optimization

In order to evaluate the flow condition in the casing, the flow uniformity γ(dCA) and head loss
Hl(dCA) were examined. The flow uniformity, which determines the deviation of flow velocity in the
casing shape, is calculated as in Equation (20). The flow uniformity was measured as an averaged
value at the location of the whole casing outlet of 1.00 De from the runner axis center, which is shown
in Figure 4a by a red circle. The head loss was defined by the losses in the spiral casing passage due to
flow mixing and wall friction, as in Equation (21), and the head loss was calculated by the difference
between inlet and outlet of casing.

γ(dCA) =

1−
∮ √

(u− u)2

2Au
dA

× 100% (20)

Hl(dCA) =
∆ptotal@casing

ρg
(21)

where u is the average velocity in casing passage (m/s), u is the local velocity in casing passage (m/s),
and A is the cross-section area of casing passage (m2), ∆ptotal@casing is change in total pressure in casing
passage (Pa).

The design optimization problem of the casing is formulated as in Equation (22).

maximize γ(dCA)

minimize Hl(dCA)

subject to γ(dCA) ≥ 97%
dL

CA ≤ dCA ≤ dU
CA

(22)

where dL
CA and dU

CA are lower and upper bounds for the design variable dCA, respectively.
The bounds for design variables of the casing are shown in Table 5. The Pareto front for the casing

shape optimization was prepared by using head loss and flow uniformity. Figure 9 shows the Pareto
front for the optimization of the casing. The Pareto front shows the trade-off between flow uniformity
and head loss. Thus, the selection of the optimal design is based on the requirement of the user. In this
study, the main objective was to increase the flow uniformity above 97%. Therefore, the optimal design
was selected considering flow uniformity above 97% with minimum head loss.

Table 5. Bounds for design variables of casing.

Design Variable Lower Bound (dL
CA) Upper Bound (dU

CA)

r0 1900 mm 2400 mm
r1 1800 mm 2300 mm
r2 1700 mm 2200 mm
r3 1600 mm 2000 mm
r4 1500 mm 1900 mm
r5 1350 mm 1750 mm
r6 1250 mm 1600 mm
r7 1100 mm 1400 mm
r8 950 mm 1250 mm
r9 800 mm 1000 mm
r10 600 mm 800 mm
r11 500 mm 700 mm
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2.2.4. Process of Draft Tube Shape Optimization

The optimization was carried out to obtain the optimal solution for the draft tube shape with
the J-Groove installation. The turbine efficiency η(dDT), swirl intensity S(dDT), head loss Hl(dDT),
effective head H(dDT), and flow rate Q(dDT) were considered for the evaluation of draft tube shape
design, as in Equations (23)–(25). The measurement locations of the swirl intensity were set in the
range of z/R0 = 1.15 to 3.60, as shown in Figure 6.

η(dDT) =

[
τω

ρgQH

]
× 100% (23)

S(dDT) =

∫
vθvar2dr

R
∫

v2
ardr

(24)

Hl(dDT) =
∆ptotal@JG

ρg
(25)

where τ is torque generated by runner (Nm), ω is rotational speed of runner (rad/s), ρ =997 kg/m3 is
the density of water at 25 °C, g = 9.81 m/s2 is gravitational acceleration, Q is the flow rate (m3/s), and H
is the effective head (m), vθ is the local tangential velocity in the draft tube (m/s), va is the local axial
velocity in the draft tube, r is the radial position, R is the cross-section radius, ∆ptotal@JG is the change
in total pressure in draft tube passage (Pa), z is the vertical distance from the axis of turbine, R0 is the
runner outlet radius.

In order to investigate the flow instability and to express the complicated and unique internal flow
behavior in the draft tube effectively, swirl intensity S(dDT) was adopted to determine the strength
of swirl flow in the draft tube. The swirl intensity represents the ratio of the axial flux of angular
momentum to axial momentum, as shown in Equation (24).

The optimization formulation for the draft tube is elaborated as in Equation (26).

maximize η(dDT)

minimize S(dDT), Hl(dDT)

subject to 80 m ≤ H(dDT) ≤ 95 m
120 m3/s ≤ Q(dDT) ≤ 135 m3/s

dL
DT ≤ dDT ≤ dU

DT,

(26)

where dL
DT and dU

DT are lower and upper bounds for the design variable dDT, respectively, and their
values are summarized in Table 6. The turbine efficiency η(dDT) was maximized to obtain more output
power. At the same time, the swirl intensity S(dDT) and head loss Hl(dDT) were minimized to suppress
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the swirl flow and prevent energy loss in the draft tube flow passage. The effective head H(dDT) and
flow rate Q(dDT) of the turbine were used as constraints for the draft tube design, which are expressed
as in Equations (17) and (18), respectively.

Table 6. Bounds for design variables of draft tube shape.

Design Variable Lower Bound (dL
DT) Upper Bound (dU

DT)

dJG 50 mm 200 mm
θJG 8◦ 20◦

lJG 1500 mm 3000 mm
nJG 9 21

The lower and upper limits of draft tube design variables are indicated in Table 6.
The optimization of the draft tube design was carried out at the design point. The Pareto front was

prepared by the trade-off between turbine efficiency and swirl intensity, which is shown in Figure 10.
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3. CFD Methodology

The CFD analysis for the turbomachinery requires a highly reliable computational system for
the calculation of complex internal flow phenomena. Moreover, while conducting the optimization,
numerous samples are needed, which demand extensive computational cost and time for CFD analysis.
Figure 11 shows the numerical scheme of CFD analysis adopted in this study, in combination with the
optimal design process. The CFD analysis process is directly connected to the optimum design process.
The CFD analysis method was adopted from previous studies [33–35].

The CFD analysis for the casing DOE samples was performed without stay vanes because the flow
field in the spiral casing is independent of the flow field of the stay vane [36]. Furthermore, the single
flow passage analysis for the stay vane was used for the calculation of DOE. It provides precise CFD
analysis results and reduces the computation time. However, the full domain analysis was required
for the DOE of the draft tube with the J-Groove installation because the flow field in the J-Groove is
dependent on other components of the Francis hydro turbine.

The CFD analysis was conducted using a commercial code of ANSYS CFX 19.2 [37]. The numerical
analysis was performed by solving the governing equations and Reynolds-averaged Navier–Stokes
(RANS) with the turbulence model. In this study, the Shear Stress Transport (SST) turbulence model
was selected because the SST model combines the capabilities of the κ-ω model away from the walls
and the robustness of the κ-ε turbulence near the walls by using blending functions of the automatic
near-wall treatment. The Rhie–Chow algorithm was used to interpolate the pressure–velocity coupling
mechanism. The high-resolution order was used to solve the advection term, and the first-order
upwind difference was used to solve the turbulence numeric [37].
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The proper numerical grids are required for precise and accurate computational analysis.
The structured mesh for the numerical analysis was generated using ANSYS ICEM 19.2 [37].
The numerical grids for the 100 MW class Francis hydro turbine are shown in Figure 12. The mesh
dependence test was carried out to determine the optimum number of nodes. The results of the
mesh dependence were compared with efficiency and output power. Figure 13 shows the mesh
dependence test results, and we concluded that 8.2 million nodes was the optimum number for
computational analysis. Table 7 presents the information on the numerical grids used for CFD analysis.
The non-dimensional wall distance y+ values for the several components of the Francis hydro turbine
were less than 100, which was suitable for the SST turbulence model with automatic near-wall treatment
within the reliable resolution range of 1 < y + < 100. Table 8 shows the summary of boundary conditions
for CFD analysis. The performance curves of the 100 MW Francis hydro turbine are shown in Figure 14.
The performance curves indicated that the design point and best efficiency point were matched well.
They verified that the conceptual design of the 100 MW Francis hydro turbine was acceptable.Processes 2020, 8, 1392 16 of 24 
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Table 7. Numerical grids information.

Components Node Number Mesh Size (mm) Y + Value

Casing 435,922 7.5 29.5
Stay Vane 1,561,220 2.5 22.9

Guide Vane 2,520,000 3.0 34.3
Runner 2,294,595 5.0 84.2

Draft Tube 1,428,835 9.0 14.4

Total 8,240,572

Table 8. Summary of boundary conditions for CFD analysis.

Parameter/Boundary Condition/Value

Inlet Total Pressure
Outlet Static Pressure

Rotational speed 180 min−1

Turbulence model Shear Stress Transport (SST)
Grid interface connection General Grid Interface (GGI)

Physical time scale Steady State/0.0531 s
Time step Unsteady State/0.00185 s (2◦ per time step for 1 revolutions)

Interface model Steady State/Frozen rotor Unsteady State/Transient rotor stator
Walls No slip wall (roughness: smooth)
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4. Results and Discussion

4.1. Stay Vane Shape Optimization

Figure 15 shows the comparison of the vane angle and thickness between the initial stay vane (ISV)
and optimal stay vane (OSV) shapes. The inlet vane angle was changed from 30◦ to 32◦. The position
for the maximum thickness was modified from the normalized distance of 0.4 to 0.3. The maximum
thickness was increased from 150 mm to 158 mm. The 3D view of the initial and optimal stay vane
shapes are shown in Figure 15. Table 9 shows the results of stay vane optimization for the 100 MW
class Francis turbine. The targeted objectives of turbine efficiency, flow uniformity and head loss were
all improved remarkably.

Processes 2020, 8, 1392 17 of 24 

 

 
Figure 14. Validation of conceptual design of the 100 MW Francis hydro turbine by CFD analysis. 

4. Results and Discussion 

4.1. Stay Vane Shape Optimization 

Figure 15 shows the comparison of the vane angle and thickness between the initial stay vane 
(ISV) and optimal stay vane (OSV) shapes. The inlet vane angle was changed from 30° to 32°. The 
position for the maximum thickness was modified from the normalized distance of 0.4 to 0.3. The 
maximum thickness was increased from 150 mm to 158 mm. The 3D view of the initial and optimal 
stay vane shapes are shown in Figure 15. Table 9 shows the results of stay vane optimization for the 
100 MW class Francis turbine. The targeted objectives of turbine efficiency, flow uniformity and head 
loss were all improved remarkably. 

 
Figure 15. Comparison of initial and optimal stay vane designs for the 100 MW class Francis turbine. 

Table 9. Results of stay vane optimization for the 100 MW class Francis turbine. 

Parameter Initial Stay Vane (ISV) Optimal Stay Vane (OSV) 

Head (m) 89.23 89.23 
Flow Rate (m3/s) 130.36 130.64 

Power (MW) 106.95 107.23 
Efficiency (%) 93.91 93.96 

Flow Uniformity (%) 91.73 95.04 

0
20
40
60
80
100
120
140
160
180
200

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Po
w

er
, P

(M
W

)

Ef
fic

ie
nc

y,
 η

Unit Discharge, Q11

Efficiency
Power

Design Point

0

20

40

60

80

100

120

140

160

180

0

5

10

15

20

25

30

35

40

45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Th
ic

kn
es

s, 
δ i

(m
m

)

V
an

e 
an

gl
e,

 α
i(

°)

Normalized distance from LE to TE

Vane Angle [Initial Stay Vane] Vane Angle [Optimal Stay Vane]
Thickness [Initial Vane Angle] Thickness [Optimal Stay Vane]

Initial Stay Vane [ISV] Optimal Stay Vane [OSV]

Figure 15. Comparison of initial and optimal stay vane designs for the 100 MW class Francis turbine.

Table 9. Results of stay vane optimization for the 100 MW class Francis turbine.

Parameter Initial Stay Vane (ISV) Optimal Stay Vane (OSV)

Head (m) 89.23 89.23
Flow Rate (m3/s) 130.36 130.64

Power (MW) 106.95 107.23
Efficiency (%) 93.91 93.96

Flow Uniformity (%) 91.73 95.04
Head Loss (m) 0.438 0.403

The flow uniformity was measured at the outlet of the stay vane. The flow uniformity encountered
the average deviation of local velocity in the reference area. The flow deviation in the small section did
not show a significant effect on flow uniformity. Therefore, flow angle distribution and vorticity were
evaluated for internal flow patterns in stay vane passage. The comparison of the flow angle between
the ISV and OSV is shown in Figure 16. The flow angle (θu) is defined by Equation (27).

θu = tan−1
(vθ

vr

)
(27)

where vθ and vr are tangential and radial velocity components.
Figure 16 shows the comparison of flow angle in the ISV and OSV at the design point. The peak

value of the flow angle at the hub and shroud indicated the occurrence of the secondary flow near the
hub and shroud walls. The flow angle difference in the passage between the outlet of stay vane and
inlet of guide vane in the OSV became remarkably smaller than that of the ISV. It meant that the OSV
had a relatively larger ability to maintain a proper flow angle. The smaller difference caused the lower
vorticity in the passage between the stay vane and guide vane in the OSV.
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Figure 16. Comparison of flow angle in the ISV and OSV at the design point.

Figure 17 shows the strength of vorticity in between the cascade passages of the stay vane and guide
vane. The decrease in the vorticity at the OSV flow passage made the flow smoother. Thus, the possibility
of occurrence of secondary flow and vortices at the OSV flow passage decreased significantly in the
OSV. Therefore, the OSV made a more uniform flow distribution in the vane’s passage.
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Figure 17. Comparison of vorticity in ISV and OSV flow passages (a) 0.25 span and (b) 0.75 span at
design point.

4.2. Casing Shape Optimization

Figure 18 indicates the cross-section radius comparison between the initial and optimal shape of
the casing. The cross-section radius of the optimal casing shape was greater than the initial casing
shape at the central angles below θ = 180◦, but the cross-section radius near the casing tongue of
θ = 345◦ was almost the same.
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Table 10 shows the flow uniformity and head loss by the initial and optimal casing shapes,
which was compared to the design point. The flow uniformity increased slightly in the optimal casing
in comparison with that of the initial casing shape; furthermore, the optimal casing design showed a
significant decrease in the head loss in comparison with that of the initial casing design.

Table 10. Results of casing optimization for the 100 MW class Francis turbine.

Parameter Initial Design Optimal Design

Flow Uniformity (%) 97.46 97.51
Head Loss (m) 0.256 0.145

The secondary vortex intensity Jn
ABS was used to evaluate the internal flow behavior in the

casing quantitatively. The area integral of vorticity around the casing was calculated as defined in
Equation (28).

Jn
ABS =

1
A

Ax

0

∣∣∣∣∇×→un∣∣∣∣dA (28)

where
→
u

n
is the velocity at normal direction to the cross section, A is the cross section area.

Figure 19 shows the comparison of secondary vortex intensity between the initial and optimal
casing designs. The secondary vortex intensity is in increasing order from the inlet to the casing tongue.
The vortex intensity was suppressed significantly by optimal design in comparison to the initial casing
shape. Therefore, it was clear that the flow uniformity and head loss could be improved effectively by
the current optimum design process.

4.3. Draft Tube Shape Optimization

Table 11 shows the comparison of the design parameter sizes of the J-Grooves for draft tube shape
optimization. The 3D model of the J-Grooves installed on the draft tube wall is shown in Figure 20.

Table 11. Comparison of design parameter size of J-Grooves for draft tube shape optimization.

Design Parameter of J-Groove Initial Size Optimal Size

Length, lJG (mm) 2000 2455.5
Depth, dJG (mm) 106 169

Angle, θJG (◦) 12 8.7
Number, nJG 15 21
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Figure 20. Comparison between (a) initial (b) optimal J-Groove models installed on the draft tube walls.

Figure 21 shows the comparison of the swirl intensity in the draft tube by J-Groove shapes at
the design point. The swirl intensity was suppressed significantly with the installation of J-Groove.
There was a 12.12% swirl intensity reduction with initial J-Groove installation from the case without
J-Groove installation. Moreover, the additional 6.64% swirl intensity reduction was achieved by the
optimized J-Groove shape from the initial J-Groove shape. Therefore, it was clear that the installation of
an optimal J-Groove in the draft tube had a significant effect on the suppression of the flow instability
caused by the swirl flow. Table 12 reveals the results summary of the draft tube shape optimization.
The study results indicated that the installation of the J-Groove on the wall of the draft tube had
almost no influence on the turbine performance but suppressed the flow instability of the swirl
flow remarkably.

Table 12. Summary of draft tube shape optimization results for the 100 MW class Francis turbine.

Parameters Without J-Groove Initial J-Groove Optimal J-Groove

Head (m) 88.41 88.40 88.42
Flow Rate (m3/s) 125.4 125.53 125.50

Power (MW) 102.16 101.79 102.1
Efficiency (%) 94.12 94.09 94.08

Swirl Intensity Reduction (%) at z/R0 = 2.25 12.12 18.79
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5. Conclusions

In the present study, the fixed flow passage shapes of a 100 MW class Francis hydro turbine
were optimized for the internal flow uniformity by a CFD-based shape design optimization process.
The stay vane, casing, and draft tube were optimized separately to understand the flow characteristics
in each flow passage. The objective of the optimization was to maximize the flow uniformity and
minimize the head loss in each flow passage.

A CFD-based shape design optimization process of the parametric conceptual design, detailed
design, and optimal design of the fixed flow passage of the Francis hydro turbine was accomplished.
The design and optimization process can be generalized for the reaction hydro turbine stay vane, casing,
and draft tube with J-Grooves. Moreover, better flow uniformity was achieved in the Francis hydro
turbine by the fixed flow passages optimization process. For the optimization process, response surface
methodology was used to generate the response surface, and a multi-objective genetic aggregation
method was used to determine the global optimum solution via the optimal Pareto front.

The optimum stay vane shape was achieved with the remarkably decreased vorticity around the
stay vane flow passage, which resulted in the highly improved flow uniformity in the vane passage.
The optimal casing passage shape was achieved with the increased flow uniformity and the significantly
decreased head loss in comparison with that of the initial casing shape. The secondary vortex intensity
was suppressed effectively by casing shape optimization. The installation of a J-Groove on the wall of
the draft tube had almost no influence on the turbine performance but suppressed the flow instability
of swirl flow remarkably in the draft tube passage.
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