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Abstract: Wireless Sensor Networks (WSNs) have the characteristics of large-scale deployment,
flexible networking, and many applications. They are important parts of wireless communication
networks. However, due to limited energy supply, the development of WSNs is greatly restricted.
Wireless rechargeable sensor networks (WRSNs) transform the distributed energy around the
environment into usable electricity through energy collection technology. In this work, a two-phase
scheme is proposed to improve the energy management efficiency for WRSNs. In the first phase,
we designed an annulus virtual force based particle swarm optimization (AVFPSO) algorithm for
area coverage. It adopts the multi-parameter joint optimization method to improve the efficiency
of the algorithm. In the second phase, a queuing game-based energy supply (QGES) algorithm was
designed. It converts energy supply and consumption into network service. By solving the game
equilibrium of the model, the optimal energy distribution strategy can be obtained. The simulation
results show that our scheme improves the efficiency of coverage and energy supply, and then extends
the lifetime of WSN.

Keywords: wireless rechargeable sensor network; coverage optimization; virtual force; particle
swarm optimization; queuing game

1. Introduction

5G networks support more devices, ushering in a new era of ubiquitous connectivity. As important
parts of 5G networks, wireless sensor networks (WSNs) will be used more widely based on the original
network architecture [1] and bring more convenient services for mobile Internet users [2]. Due to
the large scale of deployment, diverse functions, and complex terrain in most target areas in WSNs,
the traditional battery power supply mode struggles to maintain the long-term operation of the
network. In order to charge sensor network nodes, distributed energy around the environment,
such as solar energy, thermal energy, vibrations, and electromagnetic waves, can be collected and
converted into usable electrical energy. Wireless rechargeable sensor networks (WRSNs) use those
energy harvesting technologies to increase the lifetime of WSN nodes, and have attracted much
attention. In practice, microwave power transmission (MPT) has relatively high efficiency, and energy
supply is realized by transmitting and receiving electromagnetic waves with antennas [3]. Changes in
hydro-meteorological conditions, such as cloudy and rainy weather, will affect the charging of solar
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equipment, and too-low temperatures will lead to the acceleration of battery discharge speed. In order
to simplify the system model, the influence of hydro-meteorological conditions is not considered in this
paper. To efficiently supplement the energy of WSN nodes, the fixed platforms, mobile air platforms,
or unmanned aerial vehicles (UAVs) can be set up over the target area for network coverage.

The coverage effect of WSNs affects the range and transmission quality of information within
the target area. It can be changed by adjusting the antenna’s azimuth, tilt, transmitting power,
and other parameters. Coverage optimization mainly focuses on the supplementary coverage blind
area, the reduction of repeatability of the overlapping area, and the improvement of the effectiveness
and rapid convergence of the optimization algorithm [4]. As the adjustable parameters show a
non-linear sharp increase with the growth of network size, how to achieve the optimization of the
coverage algorithm under the premise of saving network resources is an important challenge [5]. After
coverage, the design of the energy supply scheme, to a large degree, determines the performance and
lifetime of WRSNs. If the power supply node (PSN) continues to charge the sensor nodes, the energy
supplied may exceed the node demand, resulting in a waste of resources. However, periodic energy
supply may cause the nodes with high loads to fall into dormancy or death due to their fast energy
consumption. Therefore, it is necessary to design a reasonable energy supply scheme according to the
different energy demands of nodes.

The optimization problems of area coverage and energy distribution are relatively complex.
In consideration of limited resources, such as computing power and energy, for WSNs, a two-phase
algorithm was designed to optimize the coverage of the region first and then optimize the energy
distribution on this basis. In this paper, a power supply node with multiple antennas is configured
on a platform with a certain height to carry out network coverage to the ground. Considering
the interaction between multiple isomorphic antennas on a node, an annulus virtual force based
particle swarm optimization (AVFPSO) algorithm is proposed to improve the performance of coverage.
Then, a queuing game-based energy supply (QGES) algorithm is designed. It divides the energy
provided by the nodes into energy packets with the same size, and establishes the system model of
sending energy packets to multiple nodes in the covered area. Each energy packet wants to be used
more efficiently, creating a competitive relationship. In the process of energy packets entering the
storage of sensor nodes and being consumed, the nodes need to pay a price, such as reduced life
of power components and waiting for network task transformation. The optimal strategy of node
energy supply is obtained by minimizing the cost and solving the Nash equilibrium. By combining the
two algorithms, a two-phase energy management (TPEM) scheme for WRSNs is obtained. The main
contributions can be summarized as follows.

1. By introducing virtual force (VF) and combining it with particle swarm optimization (PSO),
an efficient energy supply region coverage optimization algorithm is proposed. The joint
debugging of antenna azimuth and tilt improves the effectiveness of the algorithm.

2. With the queuing game theory, the finite energy supply problem in WRSNs is transformed into
a mathematical model of discrete energy packet service. The QGES algorithm provides energy
to nodes with different energy consumption rates on demand, thereby improving the optimal
allocation of limited resources.

3. In the solution of the energy supply system model, the influence of the random distribution of
node energy consumption on the social welfare can be obtained. It has theoretical significance for
the design of energy saving schemes, such as sensor node sleep strategy.

The remainder of this paper is organized as follows. The related work of the target area coverage
optimization and the energy supply scheme are presented in Section 2. The system model and problem
formulation of the two-phase energy management in WRSNs are described in Section 3. In Section 4,
the AVFPSO algorithm is designed while considering the interaction between multiple antennas at the
node. The optimal strategy of node charging is obtained by solving the energy supply system model,
and a QGES algorithm for WRSNs is designed. The TPEM scheme is proposed by combining the two
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algorithms. Section 5 deals with the simulation and comparison results, followed by the conclusion in
Section 6.

2. Related Work

The network structure of a WSN changes dynamically with the change of node state.
Therefore, the coverage optimization of WSNs has always been important. In traditional sensor
networks, the problem of directed sensor coverage is usually solved by an optimization algorithm [6–8].
In [6], an optimization strategy based on the genetic algorithm was proposed to achieve full target
coverage by adjusting the direction and perception range of the sensors. In [7], nodes in a heterogeneous
WSN were processed by clustering. The angle and coverage of nodes were adjusted by a greedy
search algorithm, so as to achieve the fence coverage of directed sensor networks. For WRSNs,
reference [9] proposed a hybrid integer linear programming method to complete network coverage
through heuristic searching. They mainly studied the coverage of two-dimensional scenes under
specific circumstances, but the number of parameters used for optimization was not large, and the
scale of joint optimization was small. In [10], a differential evolution algorithm was adopted to solve the
coverage problem of a directional sensor network in a three-dimensional environment. Reference [11]
proposed a multi-objective optimization scheme of a comprehensive, three-dimensional, uncertain
coverage model based on the fuzzy ring concept. The problem of three-dimensional environmental
optimization conformed to the situation of large-scale joint optimization. However, eliminating the
redundancy of solution space was not mentioned in these works, and the computational time would
grow significantly with the increase of network size.

The research on wireless charging of sensor networks mainly focuses on cases wherein the sensor
node is charged by the mobile charging node [12–15] and the charging node is fixed [16,17]. In [12], a
charging model of the sector search algorithm using directional antenna was proposed. It had a better
performance than the golden section search method with the all-directional antenna charging model.
Reference [14] proposed HeuristicMaxLifetime and HeuristicMinCost algorithms by solving a partial
energy charging model for sensor charging. They maximized the sum of the sensor lifetimes and
minimized the travel distance of the charger. In reference [15], an annular charging model was adopted
in consideration of different node energy consumption in different regions. Corresponding charging
strategies were used for the nodes in and out of the ring. Mobile charging nodes themselves have
high energy consumption, and environmental energy harvesting efficiency is random and unstable,
which is difficult to be applied in practice. For charging nodes deployed at fixed heights, reference [16]
proposed the greedy cone coverage algorithm and the adaptive cone coverage algorithm to deploy
as few chargers as possible to make WRSNs sustainable. While focusing on the wireless charging
efficiency, reference [17] proposed a fair charging model with radiation constraints in consideration of
radiation hazards. These schemes usually did not consider the case of supplying energy simultaneously
to multiple sensor nodes with different power consumption capacities. Under the condition of limited
energy, the energy supply on demand improves the efficient allocation of resources and thus extends
the life of the sensor network.

In recent years, some researchers have used game theory to design charging strategies [18,19].
In reference [18], a game collaborative scheduling algorithm was proposed with the introduction of
the unique dynamic warning threshold and sacrifice-charge mechanism. The device that needs to
choose the charging node was taken as the player of the game, and non-cooperative game theory
was used to build the system model. The overall energy efficiency of the system was improved by
solving the Nash equilibrium. Reference [19] adopted the non-cooperative Stackelberg game model
and realized a new architecture with better performance than cache architecture and energy recovery
architecture. The energy cache strategy, excitation strategy, and energy transfer strategy of the charging
node were considered comprehensively. These solutions consider the system from a global perspective,
rather than being limited to performance improvements in a particular scenario. Due to limited energy
resources in WRSNs, there will be resource competition among node participants. Meanwhile, in order
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to achieve the common goal of the players in the small set, there will also be a cooperative relationship
between players. These specific behaviors correspond to the description of game players’ elements in
game theory.

This paper introduces virtual force and queuing game theory [20] to establish the energy
management system model of WRSNs. A TPEM scheme is proposed to improve coverage optimization
and energy supply efficiency for WRSNs. In the first stage of the TPEM scheme, an AVFPSO algorithm
is designed by introducing the interaction force between multiple antennas on the node. In the process
of particle optimization, the virtual force is added to pull the particles, so that the algorithm can
converge to the global optimal solution faster. In the second phase, the system is modeled based on
queuing game theory, with constraints such as limits on the modes and amount of energy supply, and
the randomness of nodes’ demand for energy. The arrival rate of energy packets selected to enter
different sensor nodes is obtained by solving the minimization cost function, and the QGES algorithm
of WRSNs based on the queuing game is designed.

3. System Model and Problem Formulation

MPT technology improves the lifetime of the WSN. The PSNs carried by fixed, aerial platforms or
UAVs replenish energy for sensor nodes, which replaces the difficult charging scheme of changing
batteries for each node. Fixed and aerial platforms have advantages of geographical location and large
scale. In addition to its own large power supply, the PSN converts solar or wind into electric energy
through energy harvesting technologies to charge the sensor nodes. Here, we focus on the system
modeling for the target coverage optimization and energy supply of WRSNs, and formulate these
two problems.

3.1. System Model

It is assumed that there are m PSNs in region R of the WRSNs. The PSNs are installed on fixed or
mobile platforms with a certain height and equipped with a large-capacity power system, as shown in
Figure 1. The mobile platforms, such as aerial platforms and UAVs, can be returned to recharge after
completing the power supply mission and perform the next mission. B = {B1, B2, . . . , Bm} represents
the set of PSNs, where Bi denotes the ith PSN. A = {A11, A12, . . . , A1z, A21, . . . , A2z, . . . , Am1 . . . , Amz}
represents the set of antennas mounted on a node, where Aik denotes the kth antenna of the ith PSN.
P = {P1, P2, . . . , Pn} represents the set of signal strength sampling points, where Pj denotes the jth
sampling point. There are n sampling points in this region, which are generated at equal intervals after
meshing the region. Each antenna charges multiple sensor nodes in the area covered. Remote field
charging is realized by using MPT technology with high charge efficiency.

To achieve the target coverage of WRSNs, the azimuth φik and tilt θik of antenna Aik of the PSN
can be adjusted. The relationship between antenna angle parameters and sampling point position is
shown in Figure 2. Assuming that the location of the PSN is known, the problem of node location
selection is not considered in this paper.

WRSNs are usually used in areas where maintenance is inconvenient and energy resources of
PSNs are limited. In our scheme, the antenna charges all sensor nodes automatically according to the
designed QGES algorithm in the area coverage. The energy is divided into multiple energy packets for
a fixed duration. In an energy supply cycle, it is assumed that each antenna transfers energy packets
in a Poisson distribution with time intervals following parameters λ to supply energy to the nodes.
The energy packet consumption rates µ of different sensor nodes in the coverage area of the antenna
obey the general distribution. The players in the game are the energy packets. Nodes receive energy
packets and store them in the power system, where they wait for consumption, and then convert
them into network value to obtain benefit ε. During charging and waiting, a sensor node needs to pay
corresponding cost C per unit time, which indicates the decline of power life and the energy conversion
efficiency of nodes. To maximize the social welfare of the energy supply system, the problem can be
transformed into an optimal strategy for energy packets to be allocated to different sensor nodes with
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minimal cost. As shown in Figure 3, the power supply system model is composed of PSN antennas,
sensors, and a power supply strategy based on a queuing game.
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Figure 1. A coverage and power supply system model of WRSNs.
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3.2. Problem Formulation

Problem 1. Two-parameter joint optimization of power supply target coverage. Under the constraint of azimuth
φ and tilt θ of independent variables, the maximum of the coverage function is solved. To describe Problem 1,
the following definitions are given.

Definition 1. Evaluate whether a sampling point meets the coverage requirements according to the value of
reference signal receiving power (RSRP). gj(φ, θ) represents the coverage at sampling point Pj, which can be
expressed as:

gj(φ, θ) =

{
1, hrj(φ, θ) > ThRSRP
0, otherwise

(1)

where 1 indicates covered, 0 indicates not covered, and ThRSRP denotes the threshold value of RSRP. hrj(φ, θ)

denotes the RSRP of the point Pj, which is the maximum power of the RSRP from all antennas at the point.
It can be given by

hrj(φ, θ) = max(hsj(φ11, θ11), hsj(φ12, θ12), . . . , hsj(φ1n, θ1n), . . . , hsj(φmz, θmz)) (2)
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Definition 2. The function hsj(φik, θik) that represents the RSRP from the antenna Aik at the point Pj can be
given by

hsj(φik, θik) = PT + hgj(φik, θik) + GR − Li,j (3)

where PT denotes is the transmitting power of the antenna, which is set as a constant; GR denotes the receiver
gain and is set as a constant; Li,j denotes the path loss from the charging node Ci to the sampling point Pj. Based
on COST231-HATA [21], the path loss Li,j can be obtained as

Li,j =46.3 + 33.9log10( f0)− 13.82log10(hi,j)− (3.2(log10(11.75hp))
2 + 4.97)

+ (44.9− 6.55log10(hi,j))log10(dij,k) + CM
(4)

where hi,j denotes the height of antenna Aij, hp denotes the height of the sampling point Pj, dij,k denotes the
horizontal distance between the antenna Aij and the sampling point Pj, and CM denotes the model correction
factor. The directional gain is a function of horizontal and vertical angles. According to the approximate model
given by 3GPP [22], it can be expressed as

G(φ, θ) = −min{−[GH(φ) + GV(θ)], Gm}+ Gmax

GH(φ) = −min[12(
φ

φ3dB
)

2
, Gm]

GV(θ) = −min[12(
θ

θ3dB
)

2
, SLAV ]

(5)

where Gmax denotes the maximum gain of the antenna, φ3dB denotes the angle of the half power waveform width,
Gm denotes the maximum value of the reverse attenuation, and SLAV denotes the attenuation of the lateral lobe.
The function hgj(φik, θik) that represents the directional gain of the antenna Aik towards the sampling point Pj
can be given by

hgj(φik, θik) = G(φik,j, θik,j) (6)

where φik and θik denote the azimuth and tilt of the antenna Aij respectively; aik,j and bik,j denote the horizontal
and vertical angles of the sampling point Pj relative to the antenna Aij. φik,j and θik,j denote their relative angles
respectively, which can be calculated as follows.

If aik,j = φik,

φik,j = 0

θik,j = bik,j − θik
(7)

If aik,j 6= φik,

φik,j = arctan

(
cos(θik)

tan(aik,j − φik)
+

sin(θik) · tan(bik,j)

sin(aik,j − φik)

)−1

θik,j = arctan

(
sin(φik,j) ·

(
− sin(θik)

tan(aik,j − φik)
+

cos(θik) · tan(bik,j)

sin(aik,j − φik)

)) (8)

The two-parameter joint optimization problem can be described as
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max

{
f (φ, θ) =

1
N

N

∑
j=1

gj(φ, θ)

}
(9)

subject to:

φik ∈ [0, 2π], i = 1, 2, . . . , m, k = 1, 2, . . . , z

θik ∈ [0, 2π], i = 1, 2, . . . , m, k = 1, 2, . . . , z
(10)

where the function f (φ, θ) represents the overall coverage in the region. The detailed calculation formula of
the coverage calculation function f (φ, θ) has been given. The corresponding coverage rate can be obtained
by modifying the antenna azimuth φ and tilt θ. Then, according to the characteristics of the antennas on the
PSN, Equation (6) should be changed reasonably to reduce the number of calculations and improve the speed
of calculation.

Problem 2. Energy supply strategy with the minimum cost. The antenna of the PSN provides limited energy
packets. The energy packets pay the cost when they enter sensor nodes with different power consumption capacity
and are translated into network value. Under the condition of minimum cost, the optimal rate of energy packets
being assigned to each sensor node is solved.

It is assumed that each antenna of the PSN covers A sensor nodes and provides energy packets
in a Poisson distribution with rate Λ (Λ > 0). Energy packets are sent from the antennas of the PSN,
allocated to different sensor nodes, received and stored in the power system of the node through
electromagnetic transformation, waiting to provide energy for network tasks. The process of energy
packet allocation to sensor nodes follows the Poisson distribution with parameter λa, and satisfies
∑A

a=1 λa = Λ. The time interval Ta of the energy packets consumed by sensor node a follows the
general distribution. It satisfies E (Ta) =

1
µa

, E
(
T2

a
)
= q

µ2
a
, and ∑A

a=1 µa > Λ. Each energy packet that
enters the sensor node obtains a fixed benefit ε. Each energy packet a needs to pay a waiting cost ca

per unit time in the node. Sort the sensor nodes and get c1
µ1
≤ c2

µ2
≤ ca

µa
.

The solution to the optimal problem of the system is to find an allocation strategy
(
λ∗1 , λ∗2 , · · · , λ∗A

)
of energy packets to the sensor node with the minimum cost of the entire energy supply system.
According to the assumption, the queuing model of each sensor node is M/G/1. Γa (λa) represents
the average number of energy packets in the node queue. The average cost function of the system can
be given by

ψ
(⇀

λ
)
= ∑A

a=1 caΓa (λa) (11)

subject to:

∑A
a=1 λa = Λ (12)

In equilibrium, the average cost of the system reaches a minimum, and each energy packet cannot
reduce the system cost by entering any other node. Problem 2 can be described as a minimization cost
function ψ

(
~λ
)

and the optimal strategy of energy supply allocation is obtained by solving ψ
(
~λ
)

.

4. A Two-Phase Energy Management Scheme for WRSNs

To solve Problems 1 and 2, we designed AVFPSO algorithm and QGES algorithm respectively.
In the first phase, the PSN uses AVFPSO algorithm to jointly debug azimuth and tilt for full coverage
of the target area. In the second phase, QGES algorithm is applied to realize energy supply on demand
for sensor nodes with different energy consumption capacities under the condition of limited energy.
The two-phase algorithms are integrated to form an efficient energy management scheme for WRSNs.
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4.1. AVFPSO Algorithm for Problem 1

4.1.1. Annulus Virtual Force Algorithm

The virtual force algorithm was originally applied to the deployment of sensor nodes [23–25].
After the sensor node random position is initialized, the final position is changed through the
interaction of virtual forces to achieve the enhancing effect of coverage. Each node makes a strategy
selection based on the position relationship with other nodes. When the distance is less than a
threshold, repulsive forces appear between nodes. On the contrary, when the distance is greater than
the threshold, there is an attractive force between nodes. When the distance is exactly equal to the
threshold, the interaction force between nodes is zero, and the nodes appear to be static.

There are l sensor nodes S = {s1, s2, . . . , sl} in the area, where the coordinates of the uth and vth
nodes are su(xu, yu) and sv(xv, yv) respectively. The distance du,v between the two nodes is defined by

du,v =

√
(xu − xv)

2 + (yu − yv)
2 (13)

The force
−→
F u,v between node su and node sv is defined as

−→
F u,v =


(ωA(du,v − dth), αu,v), i f du,v > dth

0, i f du,v = dth

(ωR/du,v, αu,v + π), i f du,v < dth

(14)

where dth denotes the threshold value of the distance between nodes, which is responsible for
controlling the distance between nodes. ωA denotes the coefficient of attraction between nodes,
ωR denotes the coefficient of repulsion between nodes, and αu,v denotes the angle between the
line between nodes and the horizontal direction. A node may be acted upon by multiple nodes,
and
−→
F u =

−→
F u,1 +

−→
F u,2 + . . .

−→
F u,l means that node u is acted upon by all other nodes.

The traditional virtual force algorithm considers the interaction forces between nodes in Euclidean
space. Differently from the traditional virtual force algorithm, we consider the interaction force between
isomorphic antennas on the charging nodes. Assume that the azimuth distribution of the antenna on
the Bith charging node is shown in Figure 4, which are ϕi,1, ϕi,2, . . . , ϕi,z respectively. Their distribution
is not the coordinates in the Euclidean space, but the angle distribution on the ring structure and can
be circulated.

The dotted line in the Figure 4 represents the circle with an azimuth, the position pointed at by the
arrow represents a different azimuth, and the band interval near the azimuth represents the threshold
limit range of azimuth. Then, the distance du,v

i between azimuth ϕi,u and azimuth ϕi,v is defined as

du,v
i = |ϕi,u − ϕi,v| (15)

The force
−→
F u,v

i between azimuth ϕi,u and azimuth ϕi,v is defined as

−→
F u,v

i =


ωA(d

u,v
i − dth

i ), i f du,v
i > dth

i

0, i f du,v
i = dth

i

ωR/du,v
i , i f du,v

i < dth
i

(16)

where ωA and ωR have the same meaning as Equation (14), and dth
i represents the virtual force

threshold of the antenna on the PSN. By observing the overlap of the limited threshold range of each
azimuth in Figure 4, the type of force between the azimuths can be judged. There is no coincidence
area between azimuth ϕi,1 and azimuth ϕi,2, so there is attraction between them. Azimuth ϕi,2 and
azimuth ϕi,3 overlap in some regions; i.e., there is repulsion between them. As a result, there is a
tendency for the two azimuths to be adjusted to non-coincident states. Azimuth ϕi,z and azimuth ϕi,1
are just in adjacent states, so there is no interacting force between them.
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Figure 4. The azimuth distribution of the antenna on a power supply node (PSN).

The other difference between the ring virtual force algorithm and the traditional virtual force
algorithm is that only the adjacent azimuths interact with each other, while the non-adjacent azimuth
angles do not interact with each other. For example, there is no force between azimuth ϕi,1 and azimuth
ϕi,3, and the coincidence problem of their limited threshold range is not taken into account.

4.1.2. AVFPSO Algorithm

Particle swarm optimization is an algorithm developed by simulating the unpredictable motion
of a flock of birds. It evolves around the advantages of sharing information in groups. The initial PSO
algorithm was formed by adding the nearest neighbor speed match and adding the multidimensional
search, in addition to considering the accelerated search based on distance. Then the PSO algorithm
was optimized by introducing parameters such as inertia weight ωP. Suppose the qth particle in the
population is denoted as Xq = (xq,1, xq,2, . . . , xq,W). The best position it has ever experienced, the value
with the best fit, is represented by pbestq = (pq,1, pq,2, . . . , pq,W), where W denotes the dimension of
the particle. The best adaptive value is given by

gbest = arg max( f (Xq)), q ∈ (1, 2, . . . , W) (17)

The moving velocity of particle is denoted by Vq(vq,1, vq,2, . . . , vq,W). The updating formula of
velocity and position is given by

Vq,w(t + 1) = ωPVq,w(t) + c1r1(pbestq,w − xq,w(t)) + c2r2(gbestw − xq,w(t)) (18)

and
xq,w(t + 1) = xq,w(t) + Vq,w(t) (19)

where c1 and c2 denote acceleration constants, and r1 and r2 denote random values within the range of
[0,1].

When the PSO algorithm and ring virtual force algorithm are combined to solve the coverage
problem, f (Xq) in Equation (17) is replaced by f (φ, θ) in Equation (9) to calculate the optimal fitness
value pbest∗q as follows:

pbest∗q = arg max( f (φ, θ)) (20)
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After completing the speed update, when updating the positions of particles, the azimuths of the
antennas on the same PSN are adjusted by virtual force according to Equation (16).

4.2. QGES Algorithm for Problem 2

4.2.1. Solution of the Model

For the solution of the multi-node energy supply system model, the situation of the single-sensor
node energy supply system is first considered. Similarly, each energy packet entering the sensor
node receives fixed benefit ε, and the waiting cost per unit time is c. The ultimate goal is to select
the appropriate energy packet delivery rate, so as to minimize the total cost. Since the energy packet
emission rate obeys the Poisson distribution with parameter λ, and the energy packet consumption of
sensor nodes obeys the general distribution with parameter µ, the queuing model of the energy supply
system of the single-sensor node can be described as M/G/1. Assume that:

Xb: represents the number of energy packets left in the node when the bth energy packet is
consumed, and the consumed energy packet is numbered as b.
Tb: represents the elapsed time (from the time when the bth energy packet is consumed) of the
next ((b + 1) th) energy packet when the bth energy packet is consumed. E (Tb) =

1
µ , E

(
T2

b
)
= q

µ2 .
Yb: represents the number of new energy packets entering the node during the period when the
(b + 1) th energy packet is being consumed.

According to the queuing situation,

Xb+1 =

{
Yb, Xb = 0,

Xb + Yb − 1, Xb > 0.
(21)

Let dβ = P (Yb = β) > 0; then, it can be proved that {Xb} forms a Markov chain, which is
generally called an embedded Markov chain. If pαβ = P (Xb+1 = β|Xb = α), p0β can be given as

p0β = (Xb+1 = β|Xb = 0) = P (Yb = β) = dβ (β ≥ 0) (22)

When Xb > 0,

pαβ = P(Yb = β + 1− Xb|Xb = α) =

{
0, α > β + 1

dβ+1−α, α ≤ β + 1
(23)

Since the time {Tb, b ≥ 1} consumed by the energy packet is an independent identically
distributed sequence of random variables, its public distribution function is denoted as G (t) =

P (Tb ≤ t). Then,

dβ = P (Yb = β) =
∫ ∞

0
P (Yb = β| Tb = t)dG (t) (24)

where P (Yb = β| Tb = t) represents the probability of β new energy packets entering the system in
time interval (0, t). Since the energy packet arrives according to Poisson flow, we can get

P (Yb = β| Tb = t) =
(λt)β

β!
e−λt (25)

Substituting Equation (25) into (24),

dβ =
∫ ∞

0

(λt)β

β!
e−λtdG (t) (26)

Since d0 = p00 > 0 and the states of the Markov chain are interconnected, this Markov chain is
periodically irreducible. It satisfies
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E (Yb) = ∑∞
β=0 βdβ = ∑∞

β=0 β
∫ ∞

0

(λt)β

β!
e−λtdG (t)

=
∫ ∞

0
∑∞

β=0
(λt)β−1

(β− 1)!
e−λtλtdG (t) =

∫ ∞

0
λtdG (t)

= λE (Tb) = ρ

(27)

and

E
(

Y2
b

)
= ∑∞

β=0 β2dβ = ∑∞
β=0 β2

∫ ∞

0

(λt)β

β!
e−λtdG (t)

=
∫ ∞

0

(
∑∞

β=0
(λt)β

(β− 2)!
+ ∑∞

β=1
(λt)β

(β− 1)!

)
e−λtλtdG (t)

=
∫ ∞

0

[
(λt)2 + λt

]
dG (t) = λ2E

(
T2

b

)
+ λE (Tb) = qρ2 + ρ

(28)

It can be verified that the Markov chain is traversed when ρ < 1, so there is a stationary
distribution

{
pβ, β ≥ 0

}
which satisfies

pβ = ∑∞
α=0 pα pαβ (β ≥ 0) (29)

Constructing the generating function to solve pβ, let P (x) = ∑∞
β=0 pβxβ and D (x) =

∑∞
β=0 dβxβ. It can be obtained from Equations (22), (23) and (29) that when β = 0, x0 p0 =

(p0d0 + p1d0) x0; when β = 1, xp1 = (p0d1 + p1d1 + p2d0) x; . . . ; when β = b, xb pb =

(p0db + p1db + p2db−1 + · · ·+ pb+1d0) xb. Add up all the equations to get

P(x) = p0D(x) + p1D(x) + p2xD(x) + p3x2D(x) + · · ·+ pbxb−1D(x) + · · ·

=
D(x)

x
(p0x + p1x + p2x2 + p3x3 + · · ·+ pbxb + · · · )

=
D(x)

x
[p0(x− 1) + P(x)]

(30)

Therefore, the generating function of energy packet quantity distribution in the system can be
deduced as

P (x) =
(1− x) p0D (x)

D (x)− x
(31)

Since D′ (x) = ∑∞
β=0 βdβxβ-1, D′ (1) = ∑∞

β=0 βdβ = E (Yb) = ρ. P (1) = ∑∞
β=0 pβ = 1 and

D (1) = ∑∞
β=0 dβ = 1. L ’Hopital’s rule is applied to Equation (31),

lim
x→1

P (x) = lim
x→1

(1− x) p0D (x)
D (x)− x

=
p0

1− ρ
⇒ p0 = 1− ρ (32)

Substituting Equation (32) into (31),

P (x) =
(1− x) (1− ρ) D (x)

D (x)− x
(33)

Combining Equations (27) and (28),

D′′ (1) = ∑∞
β=0

(
β2dβ − βdβ

)
= E

(
Y2

b

)
− E (Yb)=qρ2 (34)
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With Equations (34) and (31), applying L ’Hopital’s rule twice more, the average number of energy
packets in the system can be obtained as

Γ (ρ) = E (Xb) = P′ (1) =
[
(1− x) (1− ρ) D (x)

D (x)− x

]′∣∣∣∣∣
x=1

= (1− ρ)
−2[D′ (1)]2 + 2D′ (1) + D′′ (1)

2[D′ (1)− 1]2
= ρ +

qρ2

2 (1− ρ)

(35)

In the single-node power supply system with the queuing model M/G/1, the cost minimization
problem of a single-node power supply system can be described as

min [cΓ (ρ)− ελ] = min
[

ρ +
qρ2

2 (1− ρ)
− ελ

]
(36)

where λ satisfies 0 ≤ λ < µ.
Since Equation (36) is a differentiable strictly convex function, Γ′ (λ) represents the first derivative

of Γ (ρ) with respect to λ, which can be given as

Γ′ (λ) =
1
µ
+

q (2µ− λ) λ

2µ(µ− λ)2 (37)

Therefore, the optimal arrival rate λ∗ satisfies
cΓ′ (λ∗)− ε = 0, λ∗ > 0

cΓ′ (λ∗) =
c
µ

, λ∗ = 0
(38)

Combining Equations (38) and (37),

1
µ
+

q (2µ− λ∗) λ∗

2µ(µ− λ∗)2 =
ε

c
(λ∗ > 0) (39)

ε is a fixed value satisfying ε > 0, and λ∗ (ε) is the optimal arrival rate. The solution of
Equation (39) can be obtained as

λ∗ (ε) = µ− µ

√
q

q + 2µε/c− 2
(λ∗ > 0) (40)

Due to 0 ≤ λ < µ, the optimal arrival rate of the energy packets is

λ∗ (ε) = max
{

0, µ− µ

√
q

q + 2µε/c− 2

}
(41)

From the system model of Equations (11) and (12), the problem of minimizing cost for multi-node
energy supply system can be described as

f ∗
(⇀

λ
)
= min ∑A

a=1 caΓa (λa) (42)

subject to

∑A
a=1 λa = Λ (0 ≤ λa < µa, a = 1, 2, · · · , A) (43)

According to the generalized Lagrangian multiplier method, Equation (42) satisfies Equation (38)
for each sensor node a and partial benefit ε. Therefore, the optimal arrival rate similar to the single
node can be obtained as
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λ∗a (ε) = max
{

0, µa − µa

√
q

q + 2µaε/ca − 2

}
(44)

where ∑A
a=1 λ∗a (ε) = Λ. Since Λ > 0, there is at least one solution λ∗1 (ε) > 0. Then, µ1 −

µ1

√
q

q+2µ1ε/c1−2 > 0; that is, ε > c1
µ1

. In this case, ∑A
a=1 λ∗a (ε) is a strictly increasing function of ε.

Thus, there is one and only one ε∗, such that ∑A
a=1 λ∗a (ε

∗) = Λ. If ε > ca
µa

, λ∗a (ε) > 0. Therefore,
when h < a, λ∗h (ε) > 0, which means that under the equilibrium state of the system, the former a
sensor nodes obtain energy packets according to the arrival rate of λ∗a (ε) to be charged. Other sensor
nodes are not selected because of low energy efficiency and insufficient energy. Therefore, in the
designed model of multi-node power supply system, ε > cA

µA
needs to be set for supplying energy to

all active sensors.
In the multi-node energy supply system with queuing model M/G/1 of each sensor node,

the optimal arrival rate of each node energy packet can be obtained as

λ∗a =

(
µa − µa

√
q

q + 2µaε∗/ca − 2

∣∣∣∣∑A
a=1 λ∗a (ε

∗) = Λ
)

, ε∗ >
cA
µA

(45)

In this case, the lowest cost of the energy supply system is

f ∗
(⇀

λ
)
= ∑A

a=1 ca

1−
√

q
q + 2µaε∗/ca − 2

+
q
(

1−
√

q
q+2µaε∗/ca−2

∣∣∣)2

2
√

q
q+2µaε∗/ca−2

 (46)

where ∑A
a=1 λ∗a (ε

∗) = Λ and ε∗ > cA
µA

.

4.2.2. Model Analysis

When building the energy supply system model, it assumes that the energy consumption random
process of sensor nodes follows the general distribution with parameter µ. It satisfies E (Tb) =

1
µ and

E
(
T2

b
)
= q

µ2 . When q = 2, D (Tb) =
1

µ2 , which means that the node energy consumption process is
simplified to a negative exponential distribution. Then

λ∗a (ε) = µa −
√

µaca

ε

(
ε >

ca

µa

)
(47)

Combining ∑A
a=1 λ∗a (ε) = Λ,

√
ε =

∑A
a=1
√

µaca

∑A
a=1 µa −Λ

(48)

In the multi-node power supply system with each sensor node queuing model M/M/1,
the equilibrium solution can be obtained as

λ∗a = µa −
√

µaca

∑A
a=1
√

µaca

(
∑A

a=1 µa −Λ
)

(49)

When q = 1, D (Tb) = 0. In this case, the energy consumption time of the sensor node follows the
deterministic distribution; when 1 < q < 2, it follows the 1

q−1 -order Irish distribution. By analyzing
the random process of node energy consumption in WRSNs, the random distribution which minimizes
the cost of energy supply system is gotten under the same system parameters. According to this
conclusion, the energy consumption time distribution of sensor nodes can be designed by adding a
sleep mechanism.
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4.3. Realization of the TPEM scheme

The AVFPSO algorithm and QGES algorithm are combined to realize the TPEM scheme for
WRSNs, as shown in Figure 5.

In the first phase of the TPEM scheme, the threshold interval of antenna azimuth on the same PSN
is determined by the initialization of AVFPSO algorithm. The initial particle swarm is then generated
within the range of each parameter. After that, the fitness of each particle swarm is calculated and
iterated. Then we determine the relationship between the position and the threshold. If the adjacent
azimuth threshold interval overlaps, the azimuth is adjusted by repulsion. If the adjacent azimuth
threshold interval diverges, the azimuth is adjusted by attraction. If the adjacent azimuth threshold
intervals happen to be next to each other, the next step is entered. The search for the maximum
coverage is completed by the cross-iterative updating of two particle swarms. Finally, the optimal
solution of azimuth and tilt is obtained to achieve the area coverage. The pseudocode of AVFPSO
algorithm is described in Algorithm 1.

End

Solve the equilibrium 
solution of the energy 

supply model

Yes

No

Calculate the 
fitness of particle 

swarm 

The next round 
of searching

Assign the  nodes 
according to the 

coverage

Charge the nodes 
with WSP

Meet coverage 
requirements?

Adjacent
azimuth threshold areas 

overlap?

Start

Initialization Of 
parameters, particle 

swarm, and AVF 
threshold 

Repulsion 
adjustment

AVFPSO Algorithm

QGES 

Algorithm

No

Yes

Adjacent
azimuth threshold 

region is right next to 
each other?

Attraction 
adjustment

Yes

No

Figure 5. The flow of the TPEM scheme.
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Algorithm 1: AVFPSO algorithm.

1 initialize all particles and virtual force threshold;
2 evaluate the fitness values of particle swarm;
3 t← 1;
4 calculate pbest and gbest;
5 while t < Nt do
6 forall q ∈ Np do
7 update Vq,w(t + 1);
8 forall azimuth in the same PSN do
9 calculate the distance between adjacent azimuth du,v

i ;
10 if du,v

i > dth
i then

11 Use attraction;
12 end
13 else if du,v

i < dth
i then

14 Use repulsion;
15 end
16 end
17 update xq,w(t + 1);
18 end
19 gbestw ← the position of the particle with best fitness;
20 t = t + 1;
21 end

After the completion of the first phase, the TPEM scheme executes the QGES algorithm in the
second phase to charge sensor nodes. The parameter information of nodes µa, ca, and q in the coverage
area is obtained by the PSN. Random flow of energy packets with arrival rate Λ

(
0 < Λ < ∑A

a=1 µa

)
is generated from the PSN. The arrival rate λ∗a of energy packets received by each sensor node is
calculated according to Equation (45). λ∗a is taken as the weight of sensor node a, and the PSN
adopts the smooth weighted polling (SWP) algorithm to provide energy packets for each sensor node.
The pseudocode of QGES algorithm is described in Algorithm 2.

Algorithm 2: QGES algorithm.
Input: Energy packets with arrival rate Λ are generated from the PSN.

1 initialization:;
2 The energy packet consumption time Ta of sensor node a obeys the general distribution which

satisfies E (Ta) =
1

µa
, E
(
T2

a
)
= q

µ2
a

and ∑A
a=1 µa > Λ.

3 Each energy packet entering the sensor node receives fixed benefit ε and the waiting cost per
unit time is ca. It satisfies c1

µ1
≤ c2

µ2
≤ ca

µa
.

4 forall i ∈ A do
5 µ=µ + µi
6 µ= ∑ µi

7 end
8 According to Theorem 2, calculate the value of ε∗, and λ∗a .
9

λ∗a =

(
µa − µa

√
q

q + 2µaε∗/ca − 2

∣∣∣∣∑A
a=1 λ∗a (ε

∗) = Λ
)

, ε∗ >
cA
µA

10 The PSN adopts the smooth weighted polling (SWP) algorithm to provide energy packets for
each sensor node a with the weight λ∗a .



Processes 2020, 8, 1324 16 of 22

5. Simulations and Comparisons

5.1. Parameter Settings

In the validation of the AVFPSO algorithm, COST-231 transmission model [21] was selected to
calculate the path loss Li,j. The adjustable parameters were antenna azimuth objective: max f (φ, θ) and
tilt objective: max f (φ, θ) with the effective range [0, 2π). The DSNPSO algorithm [26], a modified PSO
algorithm suitable for directed sensor networks, was selected as the comparison algorithm. In the
simulation, real data with terrain height in real environment were used to verify the effectiveness of
the AVFPSO algorithm. The parameters are described below in Table 1.

Table 1. Specifications of the parameters of the AVFPSO algorithm.

Parameter Name Meaning Value

f0 Antenna operating frequency 2600 MHz
ThRSRP Receiving signal strength threshold −88 dBm

CM Model correction factor 3 dBm
Gm Antenna reverse radiation 32 dBm

SLAV Lateral lobe attenuation 32 dBm
Gmax Maximum antenna gain 18 dBm
Np Particle swarm number 10, 20
Nt Iterations 100
C1 Acceleration factor 1 1.494
C2 Acceleration factor 2 1.494
ωP Inertia weight 0.8
ωA Coefficient of attraction 1
ωR Coefficient of repulsion 600

In the validation of the QGES algorithm, the energy packet consumption rate of sensor node
determined the operating efficiency of the network element. Parameter q =

{
2, 3

2 , 1
}

was set to
simulate the energy consumption interval obeying negative exponential distribution, 2-order Irish
distribution, and deterministic distribution respectively. We set the number of sensor nodes with
charging requirements as A = 3 and the energy consumption rate as µ = {10, 20, 35}. The energy
packet generation rate of the PSN obeyed the Poisson distribution with parameter Λ = 50. Each energy
packet was consumed and converted into a network value for data acquisition, storage, or forwarding.
The network value return of each energy packet was set as ε. After the energy pack is charged into the
sensor node, it needs to pay the waiting cost c before it is consumed. c is composed of the node energy
storage space occupied by the energy pack and the reduction of power life. The cost of waiting can be
translated into the loss of the data service and thus associated with the social welfare.

5.2. Numerical Simulation

The corresponding parameters of QGES algorithm were put into Equation (45) for numerical
calculation in MATLAB, and the results are shown as Figure 6. It depicts the relationship between the
optimal energy packet allocation rate λ∗, the value of q, and energy consumption rate µ = {10, 20, 35}
of the sensor node. When q increases from 1 to 2, it basically remains unchanged, indicating that
different distribution of energy consumption interval has little influence on the optimal solution of the
energy supply system. Obviously, the bigger µ is, the bigger the corresponding λ∗ is. It demonstrates
that the nodes with higher energy consumption rate obtain more energy supply, which is consistent
with normal rational cognition. However, under the optimal solution condition, the excess of the total
energy consumption rate over total demand is not distributed uniformly among the nodes, but in
a way that is proportional to the square root of their energy consumption rate. According to this
conclusion, the design of energy supply strategy achieves the system cost minimization.
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Figure 6. The optimal allocation rate with a changing value of q.

Based on Equation (46), the minimum cost of the energy supply system can be obtained with
the energy consumption rate µ = {10, 20, 35}. Figure 7 depicts the trend of the system minimum cost
with the value q. q = 1 represents the energy consumption time interval of the nodes following the
deterministic distribution; 1 < q < 2 represents the nodes following the 1

q−1 -order Irish distribution;
and q = 2 represents the nodes following the negative exponential distribution. From Figure 7,
the minimum cost of the energy supply system increases with the increase of the value q. In other
words, the system cost is the lowest when the node energy consumption time interval follows the
deterministic distribution. Therefore, when designing the working scheme of sensor nodes, making
the energy dissipation interval obey the random distribution with as small a variance as possible
should be considered. Finally, maximize the social welfare of the system.

The value of q
1 1.2 1.4 1.6 1.8 2

T
he

 m
in

im
um

 s
ys

te
m

 c
os

t f
*

110

120

130

140

150

160

170

180

190

Figure 7. The trend of the system’s minimum cost while the value of q changes.
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5.3. System Simulation

Figure 8 shows the actual network deployment map, where the yellow circle represents the
location of the PSN. Other colors represent different actual terrain, such as green for forests and blue
for rivers. Three directional charging antennas are configured on the yellow PSN nodes. This scenario
contains 23 PSNs and the number of covered assessment sampling points is 62,730.
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m

)

Figure 8. The actual network deployment map.

Firstly, the number of particle swarms was set to 10. As shown in Figure 9, the coverage
implemented by AVFPSO algorithm was higher than that of DSNPSO algorithm in the whole iteration
running interval. The AVFPSO algorithm also converged faster. Then we increased the number
of particle swarms to 20. As shown in Figure 10, similarly to the previous results, the AVFPSO
algorithm was still better than DSNPSO in terms of overall coverage performance and algorithm
convergence. In the case of a larger particle swarm, the gap between the two was slightly larger than
before. By comparing the AVFPSO algorithm with 10 particles and the DSNPSO algorithm with 20
particles, it can be observed that the performance of AVFPSO algorithm was still better than that of
DSNPSO algorithm, even if the number of particle swarms was small. It means that the AVFPSO
algorithm can get a faster search speed with the aid of virtual force algorithm.
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Figure 9. The coverage rate with 10 particles.
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Figure 10. The coverage rate with 20 particles.

A real-time demand scheduling scheme (RCSS) [26] has been selected for a comparison of QGES
algorithms. As shown in Figure 11, the Y-coordinate indicates the total electric quantity of the system.
If the power is 0, it means that the system cannot work normally due to the power failure of one or
more sensor nodes. Both algorithms start with the same initial electric quantity. The electric quantity
obtained by each node is not uniform. When the electric quantity of some nodes is too low, the RCSS
algorithm charges them to ensure the normal operation of the system. QGES algorithm is a balanced
charging method based on the strategy of each node. The power of the system decreases slowly in
a wave mode, indicating that each node in the network can maintain a relatively balanced power.
As shown in Figure 12, within a short time after the system is started, the total power of the network
charged by the RCSS algorithm decreases significantly. Overall, the QGES algorithm allows the system
to maintain a higher power level than RCSS, allowing the network to operate for longer periods with
the same amount of power.
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6. Conclusions

The laying of 5G networks provides a foundation for future scenarios where things are connected.
As the ends and edges of the Internet, WSNs provide massive data for the core network and reduce
resource costs, such as manpower and equipment. The main constraint to the applications of WSNs is
energy supply. In this paper, a TPEM scheme based on virtual force and the queuing game is proposed
to extend the life cycles of WRSNs effectively. In the first phase, according to the position distribution
characteristics of multiple antennas on the nodes, the AVFPSO algorithm was designed to achieve
the coverage of the target area by solving the optimal azimuth and tilt. By using the virtual force
to pull particles and by adjusting the optimal direction, the optimization algorithm can jump out
of the local optimal solution and converge to the global optimal solution more quickly. After the
coverage is completed, the limited energy is divided into energy packets and the queuing game theory
is used to construct the energy supply system model. By solving the optimal energy supply strategy
at the minimum cost, the QGES algorithm is designed to realize the optimal resources allocation
of WRSNs. The change of system cost was analyzed with different random distributions of the
energy consumption interval of nodes. The results show that the smaller the variance of the random
distribution is, the lower the cost of the energy supply system—that is, the greater the social welfare
that will be obtained. This conclusion can provide theoretical guidance for designing mechanisms



Processes 2020, 8, 1324 21 of 22

such as node sleep scheduling. The system simulation results show that compared with the RCSS
algorithm, the TPEM scheme achieves efficient energy management of WRSNs with lower total energy
consumption in the same running time.
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