
processes

Article

Artificial Immune System in Doing 2-Satisfiability
Based Reverse Analysis Method via a Radial Basis
Function Neural Network

Shehab Abdulhabib Alzaeemi and Saratha Sathasivam *

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia;
shehab_alzaeemi@yahoo.com
* Correspondence: saratha@usm.my

Received: 22 July 2020; Accepted: 22 September 2020; Published: 16 October 2020
����������
�������

Abstract: A radial basis function neural network-based 2-satisfiability reverse analysis (RBFNN-2SATRA)
primarily depends on adequately obtaining the linear optimal output weights, alongside the lowest
iteration error. This study aims to investigate the effectiveness, as well as the capability of the artificial
immune system (AIS) algorithm in RBFNN-2SATRA. Moreover, it aims to improve the output linearity
to obtain the optimal output weights. In this paper, the artificial immune system (AIS) algorithm will be
introduced and implemented to enhance the effectiveness of the connection weights throughout the
RBFNN-2SATRA training. To prove that the introduced method functions efficiently, five well-established
datasets were solved. Moreover, the use of AIS for the RBFNN-2SATRA training is compared with the
genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), and artificial bee
colony (ABC) algorithms. In terms of measurements and accuracy, the simulation results showed that the
proposed method outperformed in the terms of Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Root Mean Square Error (RMSE), Schwarz Bayesian Criterion (SBC), and Central Process
Unit time (CPU time). The introduced method outperformed the existing four algorithms in the aspect
of robustness, accuracy, and sensitivity throughout the simulation process. Therefore, it has been proven
that the proposed AIS algorithm effectively conformed to the RBFNN-2SATRA in relation to (or in terms
of) the average value of training of RMSE rose up to 97.5%, SBC rose up to 99.9%, and CPU time by
99.8%. Moreover, the average value of testing in MAE was rose up to 78.5%, MAPE was rose up to
71.4%, and was capable of classifying a higher percentage (81.6%) of the test samples compared with the
results for the GA, DE, PSO, and ABC algorithms.

Keywords: artificial immune system; differential evolution; genetic algorithm; artificial bee
colony; particle swarm optimization; radial basis functions neural network; 2-satisfiability based
reverse analysis

1. Introduction

Radial basis function neural network (RBFNN) has been widely used in many fields due to its
simpler network structure, faster learning speeds, and better approximation capabilities [1,2]. RBFNN
is a feed-forward neural network, which was first utilized by Moody and Darken [3]; they confirmed
that the RBFNN has faster learning speed than the multilayer perceptron neural network (MLP).
Moreover, RBFNN is simpler than MLP network, which may contain more than three layers of the
structure; thus, the process of training in RBFNN is generally faster than MLP [4,5]. The difficulty
of applying the traditional RBFNN lies in training the network, which should include selecting the
proper input variables, the number of hidden neurons, and estimating the parameters (centers, widths)
of the RBFNN [4]. The majority of the traditional RBFNN only focuses on determining the parameters

Processes 2020, 8, 1295; doi:10.3390/pr8101295 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0002-6884-0714
http://dx.doi.org/10.3390/pr8101295
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/10/1295?type=check_update&version=3

Processes 2020, 8, 1295 2 of 28

of RBFNN, while leaving the input variables and the number of hidden neurons fixed, and then
the trial-and-error method may be adopted to choose the number of hidden neurons [6]. Moreover,
2 Satisfiability (2SAT) logic will help finding the input data that is used to estimate the parameters
of the hidden layer and the logical rule to approximate the number of hidden neurons in RBFNN.
In RBFNN training, optimal results can be guaranteed by using the training algorithm to finding the
RBFNN output weights while solving the linear output of RBFNN-2SAT in a less time-consuming
manner [2]. In this study, we used different algorithms to train RBFNN-2SATRA.

RBFNN is one of the most popular feed-forward neural networks, which has three layers only
(i.e., output, hidden, and input). The value of the neurons moves from the input layer, and passes the
hidden layer to the output layer. The basis of including three layers strives for minimizing classification
and forecast errors in RBFNN [1]. The appropriate operation of RBFNN primarily relies on the adequate
parameter choice of its basic functions. The simplest approach to train an RBFNN involves assuming
fixed radial basis functions, which define the activation of the hidden units. Recently, researchers
have begun to train RBFNN by using different methods and algorithms. Yu et al. proposed a new
method for training RBFNN called an error correction algorithm. However, the introduced algorithm
focused on the hidden neuron parameters. The output weight has not been considered in the feature
extraction process by using the proposed algorithm [7]. Dash et al. used differential evolution (DE) to
optimize RBFNN by adaptively controlling the hidden parameter in the hidden layers [8]. This method,
nevertheless, lacks interpretability in the hidden layer of RBFNN [8]. Yang and Ma [9] tried to apply
the Sparse Neural Network (SNN) algorithm to optimize the hidden neuron number. The SNN core
mechanism is to reduce the errors through the trial and error tactic, to identify the hidden neuron
number expressly from the crowd of neurons. The SNN system restriction can be observed in the
aspect of high computation time in search of the best number of hidden neurons in the computational
process. Inspired by various works in [10–12], 2-satisfiability (2SAT) representation logic has been used
with RBFNN for identifying the relevant parameters as the center. Moreover, 2SAT has been chosen
because it can comply with the RBFNN representations and structure. There were several studies
that used logic programming as a symbolic rule in RBFNN. The first effort was to implement logic
programming in RBFNN by [13], where they proposed a new model by embedding higher-order logic
programming into RBFNN as a single network. The quest for finding the optimal model was continued
by Hamadneh et al. [14]. In their paper, they embedded HornSAT logic programming in RBFNN to
improve the performance of RBFNN. The result of the new method showed the HornSAT logic is
able to improve the performance of RBFNN. Unfortunately, the proposed RBFNN does not integrate
HornSAT to process real dataset. The final classification of the dataset via RBFNN only capitalizes
standard classification of RBFNN. No attempt to extract the knowledge from the dataset via logical
rule has been done.

Logic mining has been formally introduced by Sathasivam and Abdullah [15]. In this paper,
the proposed logic mining managed to extract the HornSAT logical rule in student’s dataset. One of
the limitations of the proposed logic mining is the ability to generalize the induced logical rule
that represents the dataset. The development of logic mining has been continued by the work
of Kho et al. [16], where they proposed a 2-satisfiability based reverse analysis method (2SATRA).
In 2SATRA, 2SAT represents explicit information of the datasets in terms of trend. The proposed
2SATRA utilizes systematic 2SAT in the Hopfield Neural Network (HNN) by extracting the optimal
logical rule in electronic games. The application of 2SATRA was reported in several applications,
such as palm oil price extraction [17], Amazon human resources [18], medical datasets [19], and social
media analysis [20]. The proposed 2SATRA managed to achieve acceptable accuracy and generalize
the behavior of the dataset. It is worth mentioning that, the induced logical rule is always
converged to global minimum energy. Although Hamadneh [21] has formally introduce logic
programming in RBFNN, but there is no attempt to extract the 2SAT logical rule by using RBFNN.
Hence, by implementing metaheuristics, such as AIS, the proposed RBFNN is able to reduce the
training error that leads to suboptimal induced logic.

Processes 2020, 8, 1295 3 of 28

Another main ingredient in integrating 2SAT into the reverse analysis method in RBFNN is
the traineeship system, which exerts a considerable effect on the RBFNN performance. In this
regard, an overabundance of global improvement techniques has been extensively applied to train
RBFNN because of its global search aptitude. The algorithm metaheuristics are global improvement
techniques—a popularly used algorithm to seek the near-optimal solution for RBFNN [13,22].
Numerous, naturally inspired, and latterly developed optimization algorithms include artificial
immune systems (AIS) [1], artificial bee colony (ABC) [23], particle swarm optimization [24], differential
evolution (DE) [25], genetic algorithm [26], etc. Some of these algorithms verified their appropriateness
to numerous problems of engineering optimization [27]. Each algorithm seeks a resolution within a
specific solution space via the movement towards the best solution in all the iterations, in most cases.

The theoretical basis for the genetic algorithm (GA) was developed in 1973 by Holland [26].
Goldberg and Holland [28] were the first researchers to implement GA in a problem that involved
controlling gas pipeline transmission. Other attempts were done by Hamadneh et al. [21], who utilized
GA for training the hybrid RBFNN model with higher-order SAT logic by managing a full-training
paradigm. In another study, a genetic algorithm and multiple linear regression approaches were
compared to predict temporal scour depth near the circular pier in non-cohesive sediment. The results
showed that prediction via utilizing GA is more accurate than that of multiple linear regression [29].
In up-to-date publications, whereby GA is integrated with RBFNN to develop a reliability analysis
method [30], GA has been used to optimize RBFNN to solve the constrained optimization problem.
The results confirmed the robustness, accuracy, and efficiency of GA in RBFNN.

Storn and Price were the first researchers who introduced the DE algorithm as a means for solving
numerous problems of global optimization. DE is a flexible algorithm; it is a powerful evolutionary
algorithm with the advantages of fast convergence, fewer parameters, and superlative simplicity [25].
DE has been merged into numerous neural nets, such as feed-forward neural networks [31] and
Hopfield neural net [32]. Other attempts were done by other scholars to utilize the DE algorithm for
training Wavelet Neural Network toward bankruptcy prediction in banks [33]. The results showed
that DE with Wavelet Neural Network outperformed in terms of sensitivity and accuracy. Recently,
Tao et al. [34] have developed a prediction model by integrating the DE algorithm and RBFNN for the
coking energy consumption process. The results showed that DE has improved RBFNN in terms of
stability and higher accuracy.

PSO was suggested by Kennedy and Eberhart in 1995 as one of the evolutional algorithms [24].
PSO is inspired by nature and mimics the effect of bird migration behavior [35]. In another work,
Qasem and Shamsuddin [36] proposed PSO to enhance RBFNN training by optimizing the hidden layer
and the output layer’s parameters. Another study by Alexandridis et al. [37] utilized the PSO algorithm
for optimizing the structure of RBFNN. Their model proved competence in solving the function
approximations and classification problems by enhancing generalization abilities and accuracy.

ABC is inspired by bee collective behaviors while gathering their honey in an optimum pattern [23].
ABC is proposed to acquire a computational advantage in optimizing the aptitude of global and
local search [23]. Accordingly, ABC is utilized to train numerous nets, such as RBFNN [12], Hermite
Neural Net [38], and Hopfield Neural Net [39]. ABC has been used to estimate the main parameters of
RBFNN, such as the centers, width, and output weights by Kurban and Besdok [40]. Yu and Duan [41]
introduced the hybrid ABC combined with Fuzzy C means Clustering into RBFNN to improve the
image fusion accuracy. There are many studies that used the hybrid ABC with RBFNN as a model in
many applications [42,43], including solving well-known datasets [44]. Jiang et al. [45] employed ABC
to optimize parameters in RBFNN and projected the ecological pressure. In another improvement,
ABC with RBFNN has been used to predict the solubility of CO2 in brine [46]. The performance
analysis confirmed that ABC in RBFNN showed higher accuracy compared to other proposed models.

AIS is inspired by immune systems, which utilize the immunomodulatory properties to develop
adaptive systems for accomplishing a wide range of tasks in different research areas, such as supervised
classification, intrusion detection, improvement, and aggregation [47,48]. In theory, the binary AIS

Processes 2020, 8, 1295 4 of 28

has produced a plethora of works, ranging from combinatorial optimization to real-life applications.
In 1996, an AIS was described as a natural immune system [49]. In 2012, AIS was developed by
integrating the affinity-based interaction for AIS with the Tabu search mechanism [50]. Such a prospect
has been expanded by Valarmathy and Ramani [51] when they introduced a hybrid AIS with RBFNN
for improving the classification accuracy of all images of the magnetic resonance. From the perspective
of the logic rule in RBFNN, there has not been an extensive study, so far, on optimizing the parameter
of RBFNN by using AIS.

From the viewpoint of the satisfiability logic rule in RBFNN, very limited research has been done
to utilize the metaheuristics algorithm for optimizing the parameter of RBFNN. Kasihmuddin et al.
successfully introduced 2SAT as the best logical rule in an artificial neural network system with different
metaheuristic algorithms [39]. The metaheuristics algorithm is a popular algorithm, which can be used
for searching a semi-optimum solution to RBFNN [52]. The work of Mansor et al. [53] identified AIS
as the best training model in the 3-SAT neural network system compared to another metaheuristics
algorithm. This paper aims to examine the impact of AIS on the training phase of the network by
constructing RBFNN, integrated with 2SAT. The adopted approach in this work has been inspired by
the work of Hamadneh et al. [14,21], whereby the emphasis is on establishing an ideal logic model of
RBFNN and reverse analysis (RA) by utilizing the comprehensive training process.

In this paper, the hidden neurons, and their parameters in the hidden layer, and the output weight
in the output layer of RBFNN, were trained with the help of the idea of 2SAT and the metaheuristics
algorithm. Once the RBFNN parameters are fixed by logic programming 2SATRA, the optimum set of
output weights and the optimum output of RBFNN-2SATRA can be directly determined by utilizing
the metaheuristics algorithm. To the best knowledge of the researchers, none of the existing studies
proposed merging 2SATRA in RBFNN with AIS.

Therefore, this study has several contributions. First, this work aims to investigate another
perspective in dealing with tacit knowledge, utilizing an explicit training model. Secondly, this study
is the first attempt to integrate 2SATRA into the feed-forward neural network; 2SATRA was inserted in
RBFNN as an alternative system for extracting information from real data set in the logical symbol
form. Third, this work aims to create a modified RBFNN-2SATRA system with AIS to improve the
training aspect of RBFNN-2SATRA, as wide-range experiments with numerous performances have
been carried out. This is to measure the effect of AIS on RBFNN-2SATRA. Finally, this study aims to
propose RBFNN-2SATRAIS to achieve a promising possibility of comparison with other models for all
types of datasets.

To evaluate the effectiveness and efficiency of the AIS algorithm, the proposed algorithm has been
applied to five popular real benchmark datasets namely: German Credit Dataset, Hepatitis Dataset,
Congressional Voting Records Dataset, Car Evaluation Dataset, and Postoperative Patient Dataset,
chosen from the University of California, Irvine (UCI) machine learning repository [54]. The outcomes
of the AIS algorithm were then compared with GA, DE, PSO, and ABC.

2. 2 Satisfiability Logic Representation

The representation is defined as a logic rule of determining the satisfiability of clause sets,
which consist of two literals in each clause [55]. The properties of 2SAT can be summarized as follows:

i. A set of m logical variables, x1, x2, . . . , xm. Each variable stores a binary value of xi ∈ {1, 0} that
exemplify TRUE and FALSE, respectively.

ii. Each variable in xi can be set of literals, where positive literal and negative literal is defined as
xm and ¬xm, respectively.

iii. Consisting of a set of n distinct clauses, C1, C2, . . . , Cn. Each Ci is connected by logical AND
(∧). Every k literals will form a single Ci and connected by logical OR (∨).

Processes 2020, 8, 1295 5 of 28

By using property (i) until (iii), the explicit definition of the 2SAT formulation can be defined
or P2SAT :

P2SAT =
n
∧

i=1
li, where li =

m
∨

i=1
Ci

m
∨

j=1
, n ∈ Z, m = 2 (1)

The example of P2SAT is:

P2SAT = (C∨D)∧ (E∨¬F)∧ (K ∨¬L) (2)

The formulation for P2SAT formulation must be represented in Conjunctive Normal Form (2CNF)
because the Satisfiability nature of CNF can be conserved compared to other forms, such as Disjunctive
Normal Form (DNF). In this paper, the information of the datasets is represented in the form of
attributes. The attributes are defined as variables in P2SAT and become the symbolic rule for Artificial
Neural Network (ANN). In this study, 2SAT is considered as the main driver because the focus of
logical programming involves ensuring that the program considers only two letters per item per
implementation. It has been proven in previous studies that many of the combinatorial problems can
be formulated using the 2SAT logic [56–58]. A key reason that makes the 2SAT logic an appropriate
approach of representing logical rules in the neural network involves choosing two literals per clause
in satisfiability logic, which can reduce the logic complexity of disclosing the relation between the
variables in the neural network.

3. Radial Basis Function Neural Network (RBFNN)

RBFNN is a feed-forward neural network, which was first utilized by Moody and Darken [3].
Compared to other networks, RBFNN has more integrated structure and faster learning speed. In terms
of composition, RBFNN involves three layers as the input layer, the hidden layer, and the output
layer [59]. According to [60], the Gaussian activation function was chosen due to the differentiability
of the function, and capability of establishing the non-linear relationship between the input neuron in
the input layer, and the output neuron in the output layer. The following equation shows the Gaussian
activation function ϕi(x) [60]:

ϕi(x) = e

‖

N∑
j=1

w′jix j−ci‖
2

2σ2
i (3)

We set w′ji = 1 because other values of w′ji will result in the biased selection, which leads to
weighted 2SAT [4,13,61]. ci is the center and σi is the width as shown in the following equations:

ci =
1
m

N∑
i=1

xi (4)

σ2
i =

1
m

N∑
i=1

‖xi − ci‖
2 (5)

where m is the number of neuron per clause as shown in the logic programming P2SAT in
Equation (1) [10,13], xi is a binary input value for N input neurons, and Euclidean norm ‖space‖
as follows:

‖

N∑
i=1

xi − ci‖ =

√√√ N∑
i=1

(xi − ci)
2 (6)

The final output of RBFNN f (wi) is given as follows [62]:

f (wi) =

j∑
i=1

wi ϕi(x) (7)

Processes 2020, 8, 1295 6 of 28

where f (wi) = (f (w1), f (w2), f (w3), . . . , f (wk)) are the RBFNN output value and wi = (w1, w2, w3, . . . , wN)

is the output weight. Figure 1 illustrates the structure of Satisfiability RBFNN.

Processes 2020, 8, x FOR PEER REVIEW 6 of 31

() ()
1

j

i i i
i

f w w xϕ
=

= (7)

where () () () () ()()1 2 3, , ,...,i kf w f w f w f w f w= are the RBFNN output value and

()1 2 3, , ,.....,i Nw w w w w= is the output weight. Figure 1 illustrates the structure of Satisfiability
RBFNN.

Figure 1. Structure of radial basis function neural network (RBFNN).

Figure 1 shows the structure of RBFNN in dealing with satisfiability logic programming. The
RBFNN process works as follows, firstly, the input neuron gets the input data to enter the network
through the input layer. After that, each neuron in the hidden layer calculates the center and the
width between the input data and the prototype stored inside it by using the Gaussian activation
function that helps to obtain the optimal output weight for the output layer. In this study, we have
established a new approach to determine the best RBFNN structure for 2-satisfiability reverse
analysis (2 SATRA).

4. 2-Satisfiability Based Reverse Analysis Method (2SATRA) in RBFNN

In this study, 2SAT enhanced the RA method (abbreviated as 2SATRA) [16] and is proposed to
extract the optimum 2SAT logic rule to explain the behavior of the real datasets. In this regard,
2SATRA is a logic mining tool that utilizes RBFNN-2SAT models for extracting the useful logic rule
from the dataset. The 2SAT logical rule is utilized to represent and map the datasets due to flexibility
and simplicity. Thus, the attributes in the datasets are transformed into a binary form {0, 1}.
Specifically, the 2SATRA method extracts the optimal logical rule, which represents the relationship
between the attributes of a specific real data set. Accordingly, the hidden information in the data set
is extracted to be utilized in classification or prediction. In this study, 2SATRA has been carried out
in the RBFNN to describe an intelligence system in doing data mining, and each attribute has been
transformed into the atoms inside the clauses. Therefore, six attributes from the datasets were
selected to form the 2SAT logical rule. The implementation of the 2SATRA method in the RBFNN
networks is demonstrated in the following algorithm:

Step 1: convert all raw dataset to binary, split into a training dataset, and test dataset with the
outcome learnP (60%) and testP (40%) [16,18].

Step 2: initialize the input data, width, and center of the neurons, and designation of all the
neurons with binary data from Step 1.

Step 3: segregate the collection of two neurons per clause 1 2, , ..., nL L L that leads to 1learnP = .
Step 4: obtain bestP by comparing the frequency of the 2SAT clauses in the overall learning

dataset.
Step 5: check the output weight of the clauses in the hidden layer of bestP by using GA, DE, PSO,

ABC, and AIS.

Figure 1. Structure of radial basis function neural network (RBFNN).

Figure 1 shows the structure of RBFNN in dealing with satisfiability logic programming. The RBFNN
process works as follows, firstly, the input neuron gets the input data to enter the network through the
input layer. After that, each neuron in the hidden layer calculates the center and the width between the
input data and the prototype stored inside it by using the Gaussian activation function that helps to obtain
the optimal output weight for the output layer. In this study, we have established a new approach to
determine the best RBFNN structure for 2-satisfiability reverse analysis (2 SATRA).

4. 2-Satisfiability Based Reverse Analysis Method (2SATRA) in RBFNN

In this study, 2SAT enhanced the RA method (abbreviated as 2SATRA) [16] and is proposed to
extract the optimum 2SAT logic rule to explain the behavior of the real datasets. In this regard, 2SATRA
is a logic mining tool that utilizes RBFNN-2SAT models for extracting the useful logic rule from the
dataset. The 2SAT logical rule is utilized to represent and map the datasets due to flexibility and
simplicity. Thus, the attributes in the datasets are transformed into a binary form {0, 1}. Specifically,
the 2SATRA method extracts the optimal logical rule, which represents the relationship between the
attributes of a specific real data set. Accordingly, the hidden information in the data set is extracted to
be utilized in classification or prediction. In this study, 2SATRA has been carried out in the RBFNN to
describe an intelligence system in doing data mining, and each attribute has been transformed into the
atoms inside the clauses. Therefore, six attributes from the datasets were selected to form the 2SAT
logical rule. The implementation of the 2SATRA method in the RBFNN networks is demonstrated in
the following algorithm:

Step 1: convert all raw dataset to binary, split into a training dataset, and test dataset with the
outcome Plearn (60%) and Ptest (40%) [16,18].

Step 2: initialize the input data, width, and center of the neurons, and designation of all the
neurons with binary data from Step 1.

Step 3: segregate the collection of two neurons per clause L1, L2, . . . , Ln that leads to Plearn = 1.
Step 4: obtain Pbest by comparing the frequency of the 2SAT clauses in the overall learning dataset.
Step 5: check the output weight of the clauses in the hidden layer of Pbest by using GA, DE, PSO,

ABC, and AIS.
Step 6: save the best output weight Wi of Pbest.
Step 7: find the final state of neurons by computing the corresponding output of RBFNN-2SAT

according to [63] as shown below:

sgn(f (wi)) =

{
1, f (wi) ≥ 0
0, Otherwise

(8)

Processes 2020, 8, 1295 7 of 28

where wi is the output weights and f (wi) is the RBFNN output value.

f (wi) =

j∑
i=1

wi ϕi(x) (9)

where ϕi is the activation function of input xi in the hidden layer and Wi is the weight between the
input data in the hidden layer and the output data in the output layer.

Step 8: induce all possible 2SAT logic PB
1 , PB

2 , . . . , PB
n from the neuron states.

Step 9: examine all of the induced logic PB
i by comparing the outcome of PB

i with Ptest.
Step 10: obtain all of the performance evolution and calculation of accuracy.
It should be noted that 2SATRA is a method that utilizes the beneficial feature of RBFNN and

2-satisfiability logic, or RBFNN-2SATRA. Furthermore, 2SATRA is regarded as a feasible approach to
help extract the best logical rule, which governs the behavior of the data set [16].

The complete flowchart of Figure 2 shows the methodology of this work in steps to
train RBFNN-2SATRA.

Processes 2020, 8, x FOR PEER REVIEW 8 of 31

Figure 2. Flowchart of the methodology.

4.1. Genetic Algorithm in RBFNN-2SATRA

GA was developed in the 1970s as a popular metaheuristic algorithm. Since then, it has been
widely implemented to solve numerous optimization problems. The structure of GA can be separated
into local searches and global searches [64] using crossover, selection, and mutation for adaptive and
optimization, artificial systems, and other problem-solving strategies [65]. The implementation of GA
in RBFNN-2SATRA is defined as RBFNN-2SATRAGA. The steps involved in RBFNN-2SATRAGA
are shown in Figure 3 as follows:

Figure 2. Flowchart of the methodology.

Processes 2020, 8, 1295 8 of 28

4.1. Genetic Algorithm in RBFNN-2SATRA

GA was developed in the 1970s as a popular metaheuristic algorithm. Since then, it has been
widely implemented to solve numerous optimization problems. The structure of GA can be separated
into local searches and global searches [64] using crossover, selection, and mutation for adaptive and
optimization, artificial systems, and other problem-solving strategies [65]. The implementation of GA
in RBFNN-2SATRA is defined as RBFNN-2SATRAGA. The steps involved in RBFNN-2SATRAGA are
shown in Figure 3 as follows:

Processes 2020, 8, x FOR PEER REVIEW 9 of 31

Figure 3. The implementation of genetic algorithm (GA) in radial basis function neural network-

based 2-satisfiability reverse analysis (RBFNN-2SATRA). Figure 3. The implementation of genetic algorithm (GA) in radial basis function neural network-based
2-satisfiability reverse analysis (RBFNN-2SATRA).

Processes 2020, 8, 1295 9 of 28

4.2. Differential Evolution Algorithm in RBFNN-2SATRA

DE is a new evolutionary population-based algorithm that has been typically utilized in numerical
optimization [66]. In DE, each individual (solution) of the population competes with its parents, and the
fittest wins [67]. The implementation of DE in RBFNN-2SATRA is defined as RBFNN-2SATRADE.
The algorithm steps in RBFNN-2SATRADE are shown in Figure 4 as follows:

Processes 2020, 8, x FOR PEER REVIEW 10 of 31

4.2. Differential Evolution Algorithm in RBFNN-2SATRA

DE is a new evolutionary population-based algorithm that has been typically utilized in
numerical optimization [66]. In DE, each individual (solution) of the population competes with its
parents, and the fittest wins [67]. The implementation of DE in RBFNN-2SATRA is defined as
RBFNN-2SATRADE. The algorithm steps in RBFNN-2SATRADE are shown in Figure 4 as follows:

Figure 4. Flowchart of RBFNN-2SATRADE. Note: the implementation of differential evolution (DE)
in RBFNN-2SATRA is defined as RBFNN-2SATRADE.

Figure 4. Flowchart of RBFNN-2SATRADE. Note: the implementation of differential evolution (DE) in
RBFNN-2SATRA is defined as RBFNN-2SATRADE.

4.3. Particle Swarm Optimization Algorithm in RBFNN-2SATRA

The PSO algorithm is a popular swarm computation algorithm. It is utilized for solving global
optimization in continuous search space. It has been successfully applied to solve different types of
real-world optimization problems due to its simplicity in implementation, alongside its remarkable
features, such as the presence of flexible free parameters [68]. The main steps of the procedure in the
RBFNN-2SATPSO model are shown in Figure 5 as follows:

Processes 2020, 8, 1295 10 of 28

Processes 2020, 8, x FOR PEER REVIEW 11 of 31

4.3. Particle Swarm Optimization Algorithm in RBFNN-2SATRA.

The PSO algorithm is a popular swarm computation algorithm. It is utilized for solving global
optimization in continuous search space. It has been successfully applied to solve different types of
real-world optimization problems due to its simplicity in implementation, alongside its remarkable
features, such as the presence of flexible free parameters [68]. The main steps of the procedure in the
RBFNN-2SATPSO model are shown in Figure 5 as follows:

Figure 5. Flowchart of RBFNN-2SATRAPSO. PSO = particle swarm optimization.

4.4. Artificial Bee Colony Algorithm in RBFNN-2SATRA

The ABC algorithm is inspired by the social behavior of the natural bees. It is utilized to solve
numerous optimization problems [69]. ABC society consists of three swarms called employed bees,
scout bees, and onlooker bees that help improve the solution. The algorithm involved in RBFNN-
2SATRAABC is shown in Figure 6 as follows:

Figure 5. Flowchart of RBFNN-2SATRAPSO. PSO = particle swarm optimization.

4.4. Artificial Bee Colony Algorithm in RBFNN-2SATRA

The ABC algorithm is inspired by the social behavior of the natural bees. It is utilized to
solve numerous optimization problems [69]. ABC society consists of three swarms called employed
bees, scout bees, and onlooker bees that help improve the solution. The algorithm involved in
RBFNN-2SATRAABC is shown in Figure 6 as follows:

Processes 2020, 8, x FOR PEER REVIEW 12 of 31

Figure 6. The artificial bee colony (ABC) algorithm implemented in RBFNN-2SATRA.

4.5. Artificial Immune System Algorithm in RBFNN-2SATRA

In recent years, non-traditional, nature-inspired optimization techniques have been growing in
popularity in the combinatorial optimization field. The AIS algorithm is one of these techniques,
which is enthused by the human body’s immune system. The AIS algorithm is known as an adaptive
system stimulated by the theoretical immunology and observed immune functions, which are
applied to complex problem fields [70]. The AIS algorithm application exists in fields, such as
computer network security, biological modeling, virus detection, robotics, data mining, scheduling,

Figure 6. The artificial bee colony (ABC) algorithm implemented in RBFNN-2SATRA.

Processes 2020, 8, 1295 11 of 28

4.5. Artificial Immune System Algorithm in RBFNN-2SATRA

In recent years, non-traditional, nature-inspired optimization techniques have been growing in
popularity in the combinatorial optimization field. The AIS algorithm is one of these techniques,
which is enthused by the human body’s immune system. The AIS algorithm is known as an adaptive
system stimulated by the theoretical immunology and observed immune functions, which are applied
to complex problem fields [70]. The AIS algorithm application exists in fields, such as computer
network security, biological modeling, virus detection, robotics, data mining, scheduling, classification,
and clustering [53,70]. The AIS implementation is defined in RBFNN-2SATRA as RBFNN-2SATRAAIS.
The algorithm, which is involved in RBFNN-2SATRAAIS, is shown in Figure 7 as follows:

Processes 2020, 8, x FOR PEER REVIEW 13 of 31

classification, and clustering [53,70]. The AIS implementation is defined in RBFNN-2SATRA as
RBFNN-2SATRAAIS. The algorithm, which is involved in RBFNN-2SATRAAIS, is shown in Figure
7 as follows:

Figure 7. The implementation of the artificial immune system (AIS) algorithm in RBFNN-2SAT.

Figure 7. The implementation of the artificial immune system (AIS) algorithm in RBFNN-2SATRA.

Processes 2020, 8, 1295 12 of 28

5. Experimental Setup

The experimental simulation is developed to assess the capacity of the metaheuristic algorithms
to train RBFNN in doing 2SATRA. In every dataset, 60% of the data points in the datasets will be
utilized for training, and 40% will be used for testing. The k Mean clustering [18] will be used to
convert the dataset into binary representation. As for missing data in the dataset, the neuron state will
be defined randomly. All of the 2SATRA models were implemented in Microsoft Visual C++ software
with Microsoft Windows 7, in 64-bit, with 3.40 GHz processor, 4096 MB RAM, and 500 GB hard drive
specification. The use of C++ is to help the user have full control over the memory management.
Note that all simulations will be conducted in the same device to avoid any possible biases. The total
CPU time for both training and testing is 24 h [71]. If the model exceeds the recommended CPU time
threshold, it means the structure of the recommended algorithm does not have the capability to train
RBFNN based 2SATRA by using real-life datasets. In terms of choice of activation function, we utilized
the Gaussian activation function due to association properties for each radial unit as the center and
width. Other activation functions, such as Hyperbolic Activation Function [72], Bipolar Activation
Function [73], and McCulloch–Pitts Activation Function [73] are not compatible with the proposed
RBFNN due to the non-compatible classification interval. The use of the activation function will
result in overfitting nature of the RBFNN. The classification outcome will utilize the same tolerance
value, which is Tol = 0.001, proposed by Sathasivam [74]. The choice of the Tol value is to ensure the
reduction of the possible statistical error between the target output and the output. In the aspect of
the 2SAT logical rule, we only utilize the satisfiable logical rule, where the Min

∣∣∣ f (wi) − yi
∣∣∣ is always

zero. The use of other non-satisfiable logic, such as maximum satisfiability [75], is only compatible for
Plearn = 0. The lists of parameters used in each RBFNN-2SATRA model are summarized in Table 1.

Table 1. Optimal parameters in RBFNN-2SATRA models.

AIS ABC PSO

Parameter Value Parameter Value Parameter Value

Number of iteration 10,000 No_Employed_bees 50 Ω 0.6
β 200 No_Onlooker_bees 50 ε1 2

Population size 100 No_Scout_bees 1 ε2 2
r [0, 1] Limit 1000 rand1 = rand2 [0,1]

Trial 10,000 Number of iteration 10,000

DE GA

Parameter Value Parameter Value

Number of iteration 10,000 Number of iteration 10,000
Cr [0,1] Selection type Wheel selection
F [0,2] Number of individuals 50

Population 50 Mutation ratio 1
Number of iteration 10,000 Mutation type Uniform

Crossover ratio 1

6. Datasets Description

The evaluation of the proposed AIS algorithm has been performed by utilizing five well-known
diverse real datasets chosen from the UCI Repository [54,76,77]. It is widely used as the benchmark
dataset by neural network practitioners. Table 2 illustrates these datasets in terms of many features,
training samples, and test samples per data set.

Processes 2020, 8, 1295 13 of 28

Table 2. List of Benchmark Datasets Information from UCI Repository.

Benchmark
Datasets Field Attributes Instances Training

Samples
Testing

Samples

German Credit
Dataset (GCR) Finance

Duration of Credit (month)
Payment Status of Previous

Credit Amount
Value Savings/Stocks

Length of current employment
Installment percent

Creditability

1000 600 400

Hepatitis Dataset
(HR) Medical

Sex
Steroid

Antiviral
Fatigue
Malaise

Anorexia
Die or live

155 93 62

Congressional
Voting Records
Dataset (CVR)

Social Science

Handicapped infant
Water-project-cost-sharing

El-Salvador-aid
Religious-groups-in-schools
Aid-to-Nicaraguan-contras

Immigration
Rep/demo (P)

435 261 174

Car Evaluation
Dataset (CE) Business

Buying Price
Maintenance

Doors Number
Person Number

Size Boot
Safety
Values

1728 1037 691

Postoperative
Patient Dataset

(PP)
Medical

L-CORE (patient’s internal temperature in C)
L-SURF (patient’s surface temperature in C)

L-O2(oxygen saturation in %)
L-BP (last measurement of blood pressure)

CORE-STBL (stability of patient’s core
temperature)

BP-STBL (stability of patient’s blood pressure)
Decision ADM-DECS(discharge decision)

90 54 36

7. Results and Discussion

Based on the experiments, the performance of the training algorithms has been assessed based on
a different number of neurons 6 ≤ NN ≤ 120. Five various measurements have been used to assess the
RBFNN-2SATRA models with metaheuristic algorithms, including Accuracy and Schwarz Bayesian
Criterion (SBC) to assess the prediction accuracy, while Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and Central Process Unit time (CPU time)
showed the structure complexity of RBFNN-2SATRA network based on the rising neuron numbers as
shown in the following equation:

RMSE =
n∑

i=1

√
1
n
(f (wi) − yi)

2 (10)

RMSE [10] is a standard error estimator, which has been commonly used in predictions and
classifications. During the learning phase, RMSE measured the deviation of the error between the

current value f (wi) and yi vis-à-vis mean
−

f . Lower RMSE refers to the better accuracy of our model.

MAE =
n∑

i=1

1
n

∣∣∣ f (wi) − yi
∣∣∣ (11)

MAE is one of the loss function type of error, which evaluates the straightforward difference
between the expected value and the current value. During the learning phase, MAE measured the

Processes 2020, 8, 1295 14 of 28

absolute difference between the current value f (wi) and yi [70]. In addition, the smaller value of MAE
refers to the best fitness of the method.

MAPE =
100%

n

n∑
i=1

∣∣∣∣∣∣ f (wi) − yi

f (wi)

∣∣∣∣∣∣ (12)

MAPE [10] measured the size of the error in the form of percentage terms. During the
learning phase, MAPE measured the percentage difference between the current value f (wi) and
yi. Then, the lower MAPE leads to better accuracy in terms of percentage for the model.

SBC = n ln(

n∑
i=1

(f (wi) − yi)
2

n
) + pa ln(n) (13)

where pa is the number of centers, the widths, and the output weights. For SBC values, the lower
values are better. When the value of the errors is small, indicate the accuracy is better. The accuracy is
defined as follows:

Accuracy =
Number o f the correct induced logic

Total number o f testing data
× 100% (14)

The accuracy will determine the ability of the system for training the dataset. Meanwhile, when the
CPU time is lower, the efficiency of the algorithm will be increased.

The results of the RBFNN-2SATRA with GA, DE, PSO, ABC, and AIS are summarized in Table 3 and
Figures 8–27. Based on the experimental results, the following findings are concluded: (1) the proposed
model RBFNN with 2SATRA can receive more input data and can deal with the hidden neuron
with a fixed value of the parameters of the hidden layer as width and center. In this situation,
the RBFNN-2SATRA with AIS established the best model, which classified datasets based on the logic
rule 2SATRA with a minimal value of errors (Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Root Mean Square Error (RMSE), Schwarz Bayesian Criterion (SBC), and Central
Processing Unit (CPU) time. (2) The model RBFNN-2SATRAAIS showed the best performance in terms
of RMSE, SBC, and CPU time, although the number of neurons increased. The important features of AIS,
such as variation, recognition, memory, learning, and self-organizing influenced performance capability.
(3) RBFNN-2SATRAAIS showed the best performance in terms of SBC, although the number of neurons
increased. According to Hamadneh et al. [21], the lowest value of SBC indicates that the model can be
classified as the best model. (4) In terms of the CPU time, the model RBFNN-2SATRAAIS has been
reported as a faster performance than other RBFNN-2SATRA models. When the number of neurons
exceeded 40, the possibility for GA, DE, and PSO trapped in trial and error state increased. Trial and
error caused GA, DE, and PSO to reach pre-mature convergence. On the other hand, RBFNN-2SATRA
with ABC had a relative training error because, during the employed bee phase, the time of the
algorithm was wasted without achieving significant improvement. The scout bee phase allowed
the algorithm from being trapped at the local minima after a certain count “limit” of unsuccessful
improving attempts. Several iterations were required for ABC to produce solutions (output weight)
with high quality. These experiments have shown that the AIS algorithm can be successfully applied
to train RBFNN-2SATRA due to new generations being formed through cloning. In AIS, the number of
the search agents has not been constant and increased due to cloning operations. Even the clone itself
moved to the neighboring nodes, which led to fewer iterations required for RBFNN-2SATRAAIS to
produce a solution (output weight) with high quality.

Processes 2020, 8, 1295 15 of 28

Table 3. Testing Error for Real Datasets.

Data Set Metric
Algorithms

GA DE PSO ABC AIS

German Credit Dataset
MAE 0.2575 0.215 0.2125 0.1625 0.12

MAPE% 0.064375 0.05375 0.053125 0.040625 0.03

Hepatitis Dataset MAE 0.290323 0.193548 0.177419 0.145161 0.064516
MAPE% 0.468262 0.312175 0.28616 0.234131 0.104058

Congressional Voting
Records Dataset

MAE 0.298851 0.275862 0.224138 0.218391 0.183908
MAPE% 0.171753 0.158541 0.128815 0.125512 0.104694

Car Evaluation Dataset
MAE 0.204052 0.193922 0.188133 0.086831 0.081042

MAPE% 0.02953 0.028064 0.027226 0.012566 0.011728

Postoperative Patient Dataset MAE 0.388889 0.361111 0.25 0.138889 0.111111
MAPE% 1.080246 1.003086 0.694444 0.385802 0.308642

Processes 2020, 8, x FOR PEER REVIEW 17 of 31

trapped in trial and error state increased. Trial and error caused GA, DE, and PSO to reach pre-mature
convergence. On the other hand, RBFNN-2SATRA with ABC had a relative training error because,
during the employed bee phase, the time of the algorithm was wasted without achieving significant
improvement. The scout bee phase allowed the algorithm from being trapped at the local minima
after a certain count “limit” of unsuccessful improving attempts. Several iterations were required for
ABC to produce solutions (output weight) with high quality. These experiments have shown that the
AIS algorithm can be successfully applied to train RBFNN-2SAT due to new generations being
formed through cloning. In AIS, the number of the search agents has not been constant and increased
due to cloning operations. Even the clone itself moved to the neighboring nodes, which led to fewer
iterations required for RBFNN-2SATRAAIS to produce a solution (output weight) with high quality.

Table 3. Testing Error for Real Datasets.

Data Set Metric Algorithms
GA DE PSO ABC AIS

German Credit Dataset MAE 0.2575 0.215 0.2125 0.1625 0.12
MAPE% 0.064375 0.05375 0.053125 0.040625 0.03

Hepatitis Dataset MAE 0.290323 0.193548 0.177419 0.145161 0.064516
MAPE% 0.468262 0.312175 0.28616 0.234131 0.104058

Congressional Voting
Records Dataset

MAE 0.298851 0.275862 0.224138 0.218391 0.183908
MAPE% 0.171753 0.158541 0.128815 0.125512 0.104694

Car Evaluation Dataset MAE 0.204052 0.193922 0.188133 0.086831 0.081042
MAPE% 0.02953 0.028064 0.027226 0.012566 0.011728

Postoperative Patient
Dataset

MAE 0.388889 0.361111 0.25 0.138889 0.111111
MAPE% 1.080246 1.003086 0.694444 0.385802 0.308642

Figure 8. Accuracy Evaluation for German Credit. Figure 8. Accuracy Evaluation for German Credit.Processes 2020, 8, x FOR PEER REVIEW 18 of 31

Figure 9. Accuracy Evaluation for Hepatitis.

Figure 10. Accuracy Evaluation for Congressional Voting Records.

Figure 11. Accuracy Evaluation for Car Evaluation.

Figure 9. Accuracy Evaluation for Hepatitis.

Processes 2020, 8, 1295 16 of 28

Processes 2020, 8, x FOR PEER REVIEW 18 of 31

Figure 9. Accuracy Evaluation for Hepatitis.

Figure 10. Accuracy Evaluation for Congressional Voting Records.

Figure 11. Accuracy Evaluation for Car Evaluation.

Figure 10. Accuracy Evaluation for Congressional Voting Records.

Processes 2020, 8, x FOR PEER REVIEW 18 of 31

Figure 9. Accuracy Evaluation for Hepatitis.

Figure 10. Accuracy Evaluation for Congressional Voting Records.

Figure 11. Accuracy Evaluation for Car Evaluation. Figure 11. Accuracy Evaluation for Car Evaluation.Processes 2020, 8, x FOR PEER REVIEW 19 of 31

Figure 12. Accuracy Evaluation for Postoperative Patient.

Figure 13. Root Mean Square Error (RMSE) Evaluation for German Credit.

Figure 12. Accuracy Evaluation for Postoperative Patient.

Processes 2020, 8, 1295 17 of 28

Processes 2020, 8, x FOR PEER REVIEW 19 of 31

Figure 12. Accuracy Evaluation for Postoperative Patient.

Figure 13. Root Mean Square Error (RMSE) Evaluation for German Credit. Figure 13. Root Mean Square Error (RMSE) Evaluation for German Credit.

Processes 2020, 8, x FOR PEER REVIEW 20 of 31

Figure 14. RMSE Evaluation of Hepatitis.

Figure 15. RMSE Evaluation for Congressional Voting Records.

Figure 14. RMSE Evaluation of Hepatitis.

Processes 2020, 8, 1295 18 of 28

Processes 2020, 8, x FOR PEER REVIEW 20 of 31

Figure 14. RMSE Evaluation of Hepatitis.

Figure 15. RMSE Evaluation for Congressional Voting Records. Figure 15. RMSE Evaluation for Congressional Voting Records.

Processes 2020, 8, x FOR PEER REVIEW 21 of 31

Figure 16. RMSE Evaluation for Car Evaluation.

Figure 17. RMSE Evaluation for Postoperative Patient.

Figure 16. RMSE Evaluation for Car Evaluation.

Processes 2020, 8, 1295 19 of 28

Processes 2020, 8, x FOR PEER REVIEW 21 of 31

Figure 16. RMSE Evaluation for Car Evaluation.

Figure 17. RMSE Evaluation for Postoperative Patient. Figure 17. RMSE Evaluation for Postoperative Patient.

Processes 2020, 8, x FOR PEER REVIEW 22 of 31

Figure 18. Schwarz Bayesian Criterion (SBC) Evaluation for German Credit.

Figure 19. SBC Evaluation for Hepatitis.

Figure 18. Schwarz Bayesian Criterion (SBC) Evaluation for German Credit.

Processes 2020, 8, 1295 20 of 28

Processes 2020, 8, x FOR PEER REVIEW 22 of 31

Figure 18. Schwarz Bayesian Criterion (SBC) Evaluation for German Credit.

Figure 19. SBC Evaluation for Hepatitis. Figure 19. SBC Evaluation for Hepatitis.

Processes 2020, 8, x FOR PEER REVIEW 23 of 31

Figure 20. SBC Evaluation for Congressional Voting Records.

Figure 21. SBC Evaluation for Car Evaluation.

Figure 20. SBC Evaluation for Congressional Voting Records.

Processes 2020, 8, 1295 21 of 28

Processes 2020, 8, x FOR PEER REVIEW 23 of 31

Figure 20. SBC Evaluation for Congressional Voting Records.

Figure 21. SBC Evaluation for Car Evaluation. Figure 21. SBC Evaluation for Car Evaluation.

Processes 2020, 8, x FOR PEER REVIEW 24 of 31

Figure 22. SBC Evaluation for Postoperative Patient.

Figure 23. Central Process Unit (CPU) time Evaluation for German Credit.

Figure 22. SBC Evaluation for Postoperative Patient.

Processes 2020, 8, 1295 22 of 28

Processes 2020, 8, x FOR PEER REVIEW 24 of 31

Figure 22. SBC Evaluation for Postoperative Patient.

Figure 23. Central Process Unit (CPU) time Evaluation for German Credit. Figure 23. Central Process Unit (CPU) time Evaluation for German Credit.

Processes 2020, 8, x FOR PEER REVIEW 25 of 31

Figure 24. CPU time Evaluation for Hepatitis.

Figure 25. CPU time Evaluation for Congressional Voting Records.

Figure 24. CPU time Evaluation for Hepatitis.

Processes 2020, 8, 1295 23 of 28

Processes 2020, 8, x FOR PEER REVIEW 25 of 31

Figure 24. CPU time Evaluation for Hepatitis.

Figure 25. CPU time Evaluation for Congressional Voting Records. Figure 25. CPU time Evaluation for Congressional Voting Records.

Processes 2020, 8, x FOR PEER REVIEW 26 of 31

Figure 26. CPU time Evaluation for Car Evaluation.

Figure 27. CPU time Evaluation for Postoperative Patient.

Figure 26. CPU time Evaluation for Car Evaluation.

Processes 2020, 8, 1295 24 of 28

Processes 2020, 8, x FOR PEER REVIEW 26 of 31

Figure 26. CPU time Evaluation for Car Evaluation.

Figure 27. CPU time Evaluation for Postoperative Patient. Figure 27. CPU time Evaluation for Postoperative Patient.

The simulation results have authenticated that the AIS algorithm complied efficiently with RBFNN
based on 2SATRA in terms of the average value of training, where RMSE rose up to 97.5%, SBC rose
up to 99.9%, CPU time by 99.8%, and the average value of testing in MAE rose up to 78.5%, MAPE rose
up to 71.4%, and was capable of classifying a higher percentage of 81.6% of the test samples compared
to the results of the GA, DE, PSO, and ABC algorithms. These experiments also showed that the
AIS algorithm can be strongly applied for training the RBFNN-2SATRA model. Another observation
involves the efficacy of AIS, which can be clearly observed when increasing the number of neurons.
Furthermore, AIS with RBFNN-2SATRA achieved promising performance based on RSME, MAPE,
MAE, SBC, and CPU time. This confirmed that AIS in RBFNN-2SATRA can be utilized in the pursuit
of achieving better forecasting results for the 2SATRA logic rule.

8. Conclusions

The findings of the study confirmed the significant improvement of the paradigm RBFNN model
via utilizing the AIS algorithm in performing 2SATRA to assist the best logical rule, which governs
the behavior of the dataset. Upon introducing the new training method utilizing AIS, it has been
used to train five recognized datasets, compared with four training algorithms, including ABC, PSO,
DE, and GA. To affirm the performance of the proposed algorithm, all algorithms were compared
through analytical tests on RBFNN-2SATRA with different numbers of neurons. Based on the results,
the analysis, and discussion in this study, the following conclusions can be drawn. AIS showed a
faster convergence rate with superior accuracy results. AIS achieved a lower value of RMSE, MAE,
MAPE error, a lower value of SBC, and faster Central Process Unit time for training RBFNN-2SATRA.
Therefore, AIS proved to be an effective approach to train RBFNN-2SATRA to classify different datasets
with a diverse number of features and training samples. AIS also proved to be an effective approach to
train RBFNN-2SATRA for classifying various datasets with a varied number of features and training
samples. AIS can generally train RBFNN-2SATRA with a differing number of neurons. The simulation
results have proven that AIS complied efficiently with RBFNN-2SATRA in relation to terms of the
average value of training RMSE rose up to 97.5%, SBC rose up to 99.9%, and CPU time by 99.8%,

Processes 2020, 8, 1295 25 of 28

and the average value of testing in MAE rose up to 78.5%, MAPE rose up to 71.4%, alongside its
capability of classifying 81.6% of the test samples, which is a higher percentage, compared to the results
of the GA, DE, PSO, and ABC algorithms. The results confirmed that AIS significantly outperformed
other contemporary technologies by substantially overwhelmingly large datasets.

For future work, it is recommended that further studies pursue two key aspects. First, the proposed
RBFNN-2SATRA can be investigated for other data mining tasks, such as time series prediction and
regression. Second, further studies are recommended to examine the efficiency of RBFNN-2SATRAAIS
to be utilized in the future to solve traditional optimization methods, such as the N-Queen’s problem
and the Traveling Salesman problem.

Author Contributions: Methodology, software, resources, S.A.A.; conceptualization, validation, writing original
draft preparation, project administration, S.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Fundamental Research Grant Scheme (FRGS)(203/PMATHS/6711689)
by the Ministry of Higher Education Malaysia and Universiti Sains Malaysia.

Acknowledgments: We would like to thank Mohd Shareduwan Mohd Kasihmuddin and Mohd. Asyraf Mansor
for their extraordinary support for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, Z.; He, G.; Li, M.; Ma, L.; Chen, Q.; Huang, J.; Cao, J.; Feng, S.; Gao, H.; Wang, S. RBF neural network
based RFID indoor localization method using artificial immune system. In Proceedings of the 2018 Chinese
Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 2837–2842.

2. Yu, B.; He, X. Training radial basis function networks with differential evolution. In Proceedings of the
Institute of Electrical and Electronics Engineers (IEEE) International Conference on Granular Computing,
Atlanta, GA, USA, 10–12 May 2006; pp. 157–160.

3. Moody, J.; Darken, C.J. Fast Learning in Networks of Locally-Tuned Processing Units. Neural Comput.
1989, 1, 281–294. [CrossRef]

4. Yu, H.; Xie, T.; Paszczynski, S.; Wilamowski, B.M. Advantages of Radial Basis Function Networks for
Dynamic System Design. IEEE Trans. Ind. Electron. 2011, 58, 5438–5450. [CrossRef]

5. Qadir, A.; Gazder, U.; Choudhary, K.U.N. Artificial Neural Network Models for Performance Design
of Asphalt Pavements Reinforced with Geosynthetics. Transp. Res. Rec. J. Transp. Res. Board 2020,
0361198120924387. [CrossRef]

6. Gan, M.; Peng, H.; Dong, X.-P. A hybrid algorithm to optimize RBF network architecture and parameters for
nonlinear time series prediction. Appl. Math. Model. 2012, 36, 2911–2919. [CrossRef]

7. Yu, H.; Reiner, P.D.; Xie, T.; Bartczak, T.; Wilamowski, B.M. An Incremental Design of Radial Basis Function
Networks. IEEE Trans. Neural Networks Learn. Syst. 2014, 25, 1793–1803. [CrossRef] [PubMed]

8. Dash, C.S.K.; Saran, A.; Sahoo, P.; Dehuri, S.; Cho, S.-B. Design of self-adaptive and equilibrium
differential evolution optimized radial basis function neural network classifier for imputed database.
Pattern Recognit. Lett. 2016, 80, 76–83. [CrossRef]

9. Yang, J.; Ma, J. Feed-forward neural network training using sparse representation. Expert Syst. Appl. 2019,
116, 255–264. [CrossRef]

10. Mansor, M.A.; Jamaludin, S.Z.M.; Kasihmuddin, M.S.M.; Alzaeemi, S.A.; Basir, F.M.; Sathasivam, S. Systematic
Boolean Satisfiability Programming in Radial Basis Function Neural Network. Processes 2020, 8, 214. [CrossRef]

11. Alzaeemi, S.A.; Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S.; Mamat, M. Radial basis function neural
network for 2 satisfiability programming. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 459–469. [CrossRef]

12. Kasihmuddin, M.S.B.M.; Bin Mansor, M.A.; Alzaeemi, S.A.; Sathasivam, S. Satisfiability Logic Analysis Via
Radial Basis Function Neural Network with Artificial Bee Colony Algorithm. Int. J. Interact. Multimedia Artif.
Intell. 2020. [CrossRef]

13. Hamadneh, N.; Sathasivam, S.; Choon, O.H. Higher order logic programming in radial basis function neural
network. Appl. Math. Sci. 2012, 6, 115–127.

http://dx.doi.org/10.1162/neco.1989.1.2.281
http://dx.doi.org/10.1109/TIE.2011.2164773
http://dx.doi.org/10.1177/0361198120924387
http://dx.doi.org/10.1016/j.apm.2011.09.066
http://dx.doi.org/10.1109/TNNLS.2013.2295813
http://www.ncbi.nlm.nih.gov/pubmed/25203995
http://dx.doi.org/10.1016/j.patrec.2016.05.002
http://dx.doi.org/10.1016/j.eswa.2018.08.038
http://dx.doi.org/10.3390/pr8020214
http://dx.doi.org/10.11591/ijeecs.v18.i1.pp459-469
http://dx.doi.org/10.9781/ijimai.2020.06.002

Processes 2020, 8, 1295 26 of 28

14. Hamadneh, N.; Sathasivam, S.; Tilahun, S.L.; Choon, O.H. Satisfiability of logic programming based on radial
basis function neural networks. In Proceedings of the 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL
SCIENCES (SKSM21): Germination of Mathematical Sciences Education and Research towards Global
Sustainability, Penang, Malaysia, 6–8 November 2013; pp. 547–550. [CrossRef]

15. Sathasivam, S.; Abdullah, W.A.T.W. Logic mining in neural network: Reverse analysis method. Computing
2010, 91, 119–133. [CrossRef]

16. Kho, L.C.; Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Logic Mining in League of Legends.
Pertanika J. Sci. Technol. 2020, 28, 211–225.

17. Alway, A.; Zamri, N.E.; Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Palm Oil Trend Analysis via
Logic Mining with Discrete Hopfield Neural Network. Pertanika J. Sci. Technol. 2020, 28, 967–981.

18. Zamri, N.E.; Mansor, M.A.; Kasihmuddin, M.S.M.; Alway, A.; Jamaludin, S.Z.M.; Alzaeemi, S.A. Amazon
Employees Resources Access Data Extraction via Clonal Selection Algorithm and Logic Mining Approach.
Entropy 2020, 22, 596. [CrossRef]

19. Kasihmuddin, M.S.M.; Mansor, M.A.; Jamaludin, S.Z.M.; Sathasivam, S. Systematic Satisfiability
Programming in Hopfield Neural Network-A Hybrid Expert System for Medical Screening.
Comput. Appl. Math. 2020, 2, 1–6.

20. Mansor, M.A.; Sathasivam, S.; Kasihmuddin, M.S.M. Artificial immune system algorithm with neural network
approach for social media performance metrics. In Proceedings of the 25TH NATIONAL SYMPOSIUM
ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence,
Pahang, Malaysia, 27–29 August 2017. [CrossRef]

21. Hamadneh, N.; Sathasivam, S.; Tilahun, S.L.; Choon, O.H. Learning Logic Programming in Radial Basis
Function Network via Genetic Algorithm. J. Appl. Sci. 2012, 12, 840–847. [CrossRef]

22. Ayala, H.V.H.; Coelho, L.D.S. Cascaded evolutionary algorithm for nonlinear system identification based on
correlation functions and radial basis functions neural networks. Mech. Syst. Signal Process. 2016, 68, 378–393.
[CrossRef]

23. Karaboga, D.; Kaya, E. Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm
(aABC) for the Identification of Nonlinear Static Systems. Arab. J. Sci. Eng. 2018, 44, 3531–3547. [CrossRef]

24. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
25. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over

Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
26. Holland, J.H. Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 1973, 2, 88–105.

[CrossRef]
27. Dandagwhal, R.D.; Kalyankar, V.D. Design Optimization of Rolling Element Bearings Using Advanced

Optimization Technique. Arab. J. Sci. Eng. 2019, 44, 7407–7422. [CrossRef]
28. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99.

[CrossRef]
29. Pandey, M.; Zakwan, M.; Sharma, P.K.; Ahmad, Z. Multiple linear regression and genetic algorithm

approaches to predict temporal scour depth near circular pier in non-cohesive sediment. ISH J. Hydraul. Eng.
2018, 26, 1–8. [CrossRef]

30. Jing, Z.; Chen, J.; Li, X. RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for
structural reliability analysis. Reliab. Eng. Syst. Saf. 2019, 189, 42–57. [CrossRef]

31. Ilonen, J.; Kamarainen, J.-K.; Lampinen, J. Differential Evolution Training Algorithm for Feed-Forward
Neural Networks. Neural Process. Lett. 2003, 17, 93–105. [CrossRef]

32. Saha, A.; Konar, A.; Rakshit, P.; Ralescu, A.L.; Nagar, A. Olfaction recognition by EEG analysis using
differential evolution induced Hopfield neural net. In Proceedings of the 2013 International Joint Conference
on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–8. [CrossRef]

33. Chauhan, N.; Ravi, V.; Chandra, D.K. Differential evolution trained wavelet neural networks: Application to
bankruptcy prediction in banks. Expert Syst. Appl. 2009, 36, 7659–7665. [CrossRef]

34. Tao, W.; Chen, J.; Gui, Y.; Kong, P. Coking energy consumption radial basis function prediction model
improved by differential evolution algorithm. Meas. Control. 2019, 52, 1122–1130. [CrossRef]

35. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43.

http://dx.doi.org/10.1063/1.4887647
http://dx.doi.org/10.1007/s00607-010-0117-9
http://dx.doi.org/10.3390/e22060596
http://dx.doi.org/10.1063/1.5041603
http://dx.doi.org/10.3923/jas.2012.840.847
http://dx.doi.org/10.1016/j.ymssp.2015.05.022
http://dx.doi.org/10.1007/s13369-018-3562-y
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1137/0202009
http://dx.doi.org/10.1007/s13369-019-03767-0
http://dx.doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1080/09715010.2018.1457455
http://dx.doi.org/10.1016/j.ress.2019.03.005
http://dx.doi.org/10.1023/A:1022995128597
http://dx.doi.org/10.1109/ijcnn.2013.6706874
http://dx.doi.org/10.1016/j.eswa.2008.09.019
http://dx.doi.org/10.1177/0020294019858182

Processes 2020, 8, 1295 27 of 28

36. Qasem, S.N.; Shamsuddin, S.M.H. Improving performance of radial basis function network based with
particle swarm optimization. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation,
Trondheim, Norway, 18–21 May 2009; pp. 3149–3156. [CrossRef]

37. Alexandridis, A.; Chondrodima, E.; Sarimveis, H. Cooperative learning for radial basis function networks
using particle swarm optimization. Appl. Soft Comput. 2016, 49, 485–497. [CrossRef]

38. Tsekouras, G.E.; Trygonis, V.; Maniatopoulos, A.; Rigos, A.; Chatzipavlis, A.; Tsimikas, J.; Mitianoudis, N.;
Velegrakis, A. A Hermite neural network incorporating artificial bee colony optimization to model shoreline
realignment at a reef-fronted beach. Neurocomputing 2018, 280, 32–45. [CrossRef]

39. Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Robust Artificial Bee Colony in the Hopfield Network for
2-Satisfiability Problem. Pertanika J. Sci. Technol. 2017, 25, 453–468.

40. Kurban, T.; Besdok, E. A Comparison of RBF Neural Network Training Algorithms for Inertial Sensor Based
Terrain Classification. Sensors 2009, 9, 6312–6329. [CrossRef] [PubMed]

41. Yu, J.; Duan, H. Artificial Bee Colony approach to information granulation-based fuzzy radial basis function
neural networks for image fusion. Optik 2013, 124, 3103–3111. [CrossRef]

42. Jafrasteh, B.; Fathianpour, N. A hybrid simultaneous perturbation artificial bee colony and back-propagation
algorithm for training a local linear radial basis neural network on ore grade estimation. Neurocomputing
2017, 235, 217–227. [CrossRef]

43. Satapathy, S.K.; Dehuri, S.; Jagadev, A.K. ABC optimized RBF network for classification of EEG signal for
epileptic seizure identification. Egypt. Informatics J. 2017, 18, 55–66. [CrossRef]

44. Aljarah, I.; Faris, H.; Mirjalili, S.; Al-Madi, N. Training radial basis function networks using
biogeography-based optimizer. Neural Comput. Appl. 2016, 29, 529–553. [CrossRef]

45. Jiang, S.; Lu, C.; Zhang, S.; Lu, X.; Tsai, S.-B.; Wang, C.-K.; Gao, Y.; Shi, Y.; Lee, C.-H. Prediction of Ecological
Pressure on Resource-Based Cities Based on an RBF Neural Network Optimized by an Improved ABC
Algorithm. IEEE Access 2019, 7, 47423–47436. [CrossRef]

46. Menad, N.A.; Hemmati-Sarapardeh, A.; Varamesh, A.; Shamshirband, S. Predicting solubility of CO2 in
brine by advanced machine learning systems: Application to carbon capture and sequestration. J. CO2 Util.
2019, 33, 83–95. [CrossRef]

47. Dasgupta, D. (Ed.) Chapter Title. In Artificial Immune Systems and Their Applications; Springer Science and
Business Media LLC: Berlin, Germany, 1999.

48. De Castro, L.; Von Zuben, C.J.; De Castro, L.N. Learning and optimization using the clonal selection principle.
IEEE Trans. Evol. Comput. 2002, 6, 239–251. [CrossRef]

49. Hunt, J.E.; Cooke, D.E. Learning using an artificial immune system. J. Netw. Comput. Appl. 1996, 19, 189–212.
[CrossRef]

50. Layeb, A. A Clonal Selection Algorithm Based Tabu Search for Satisfiability Problems. J. Adv. Inf. Technol.
2012, 3, 138–146. [CrossRef]

51. Valarmathy, S.; Ramani, R. Evaluating the Efficiency of Radial Basis Function Classifier with Different Feature
Selection for Identifying Dementia. J. Comput. Theor. Nanosci. 2019, 16, 627–632. [CrossRef]

52. Hamadneh, N. Grey Optimization Problems Using Prey-Predator Algorithm. In Advances in Data Mining and
Database Management; IGI Global: Hershey, PA, USA, 2018; pp. 31–46.

53. Mansor, M.; Kasihmuddin, M.S.M.; Sathasivam, S. Artificial Immune System Paradigm in the Hopfield
Network for 3-Satisfiability Problem. Pertanika J. Sci. Technol. 2017, 25, 1173–1188.

54. Dua, D.; Graff, C. UCI Machine Learning Repository. 2017. Available online: http://archive.ics.uci.edu/ml
(accessed on 24 September 2018).

55. Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Artificial Bee Colony in the Hopfield Network for
Maximum k-Satisfiability Problem. J. Inform. Math. Sci. 2016, 8, 317–334.

56. Miyashiro, R.; Matsui, T. A polynomial-time algorithm to find an equitable home–away assignment.
Oper. Res. Lett. 2005, 33, 235–241. [CrossRef]

57. Even, S.; Itai, A.; Shamir, A. On the complexity of time table and multi-commodity flow problems.
In Proceedings of the 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), Berkeley,
CA, USA, 13–15 October 1975; pp. 184–193. [CrossRef]

58. Mukherjee, S.; Roy, S.; Shyamapada, M. Multi terminal net routing for island style FPGAs using nearly-2-SAT
computation. In Proceedings of the 2015 19th International Symposium on VLSI Design and Test, Ahmedabad,
India, 26–29 June 2015; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/cec.2009.4983342
http://dx.doi.org/10.1016/j.asoc.2016.08.032
http://dx.doi.org/10.1016/j.neucom.2017.07.070
http://dx.doi.org/10.3390/s90806312
http://www.ncbi.nlm.nih.gov/pubmed/22454587
http://dx.doi.org/10.1016/j.ijleo.2012.09.033
http://dx.doi.org/10.1016/j.neucom.2017.01.016
http://dx.doi.org/10.1016/j.eij.2016.05.001
http://dx.doi.org/10.1007/s00521-016-2559-2
http://dx.doi.org/10.1109/ACCESS.2019.2908662
http://dx.doi.org/10.1016/j.jcou.2019.05.009
http://dx.doi.org/10.1109/TEVC.2002.1011539
http://dx.doi.org/10.1006/jnca.1996.0014
http://dx.doi.org/10.4304/jait.3.2.138-146
http://dx.doi.org/10.1166/jctn.2019.7781
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.orl.2004.06.004
http://dx.doi.org/10.1109/sfcs.1975.21
http://dx.doi.org/10.1109/isvdat.2015.7208142

Processes 2020, 8, 1295 28 of 28

59. De Leon-Delgado, H.; Praga-Alejo, R.J.; González-González, D.S.; Cantú-Sifuentes, M. Multivariate statistical
inference in a radial basis function neural network. Expert Syst. Appl. 2018, 93, 313–321. [CrossRef]

60. Idri, A.; Zakrani, A.; Zahi, A. Design of radial basis function neural networks for software effort estimation.
In Proceedings of the 11th International Design Conference—DESIGN 2010, Zagreb, Croatia, 17–20 May 2010;
pp. 513–519.

61. Kopal, I.; Harničárová, M.; Valíček, J.; Krmela, J.; Lukáč, O. Radial Basis Function Neural Network-Based
Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer
Systems. Polymers 2019, 11, 1074. [CrossRef]

62. Hamadneh, N.; Sathasivam, S. Solving Satisfiability Logic Programming Using Radial Basis Function Neural
Networks. J. Eng. Appl. Sci. 2017, 4, 1–7. [CrossRef]

63. Friedrichs, F.; Schmitt, M. On the power of Boolean computations in generalized RBF neural networks.
Neurocomputing 2005, 63, 483–498. [CrossRef]

64. Awad, M. Optimization RBFNNs parameters using genetic algorithms: Applied on function approximation.
IJCSS 2010, 4, 295–307.

65. Eshelman, L.J.; Schaffer, J.D. Real-Coded Genetic Algorithms and Interval-Schemata. In Foundations of Genetic
Algorithms; Whitley, L.D., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 1993; Volume 2, pp. 187–202.

66. Wang, S.L.; Morsidi, F.; Ng, T.F.; Budiman, H.; Neoh, S.C. Insights into the effects of control parameters
and mutation strategy on self-adaptive ensemble-based differential evolution. Inf. Sci. 2020, 514, 203–233.
[CrossRef]

67. Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019,
44, 546–558. [CrossRef]

68. Fukuyama, Y.; Yoshida, H. A particle swarm optimization for reactive power and voltage control in electric
power systems. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat No 01TH8546),
Seoul, Korea, 27–30 May 2001; Volume 1, pp. 87–93. [CrossRef]

69. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Computer
Engineering Department, Engineering Faculty, Erciyes University: Kayseri, Turkey, 2005.

70. De Castro, L.; Jos, F.; Von Zuben, A.A. Artificial Immune Systems: Part II–A Survey of Applications; Technical
Report for University of Campinas School of Electrical and Computer Engineering: Campinas, Brazil,
February 2000.

71. Kasihmuddin, M.S.M.; Sathasivam, S.; Mansor, M.A. Hybrid genetic algorithm in the Hopfield network
for maximum 2-satisfiability problem. In Proceedings of the 24th National Symposium on Mathematical
Sciences (SKSM24), Terengganu, Malaysia, 27–29 September 2016; p. 050001. [CrossRef]

72. Mansor, M.A.; Sathasivam, S. Accelerating Activation Function for 3- Satisfiability Logic Programming.
Int. J. Intell. Syst. Appl. 2016, 8, 44–50. [CrossRef]

73. Mansor, M.A.; Sathasivam, S. Performance analysis of activation function in higher order logic programming.
ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS. Proceedings of 23rd Malaysian National
Symposium of Mathematical Sciences (SKSM23), Johor Bahru, Malaysia, 24–26 November 2015. [CrossRef]

74. Sathasivam, S. Upgrading logic programming in Hopfield network. Sains Malays 2010, 39, 115–118.
75. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Discrete Hopfield Neural Network in Restricted

Maximum k-Satisfiability Logic Programming. Sains Malays 2018, 47, 1327–1335. [CrossRef]
76. Lichman, M. UCI Machine Learning Repository. 2013. Available online: http://archive.ics.uci.edu/ml

(accessed on 4 April 2013).
77. Hamadneh, N. An improvement of radial basis function neural network architecture based on metaheuristic

algorithms. Appl. Math. Sci. 2020, 14, 489–497. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2017.10.024
http://dx.doi.org/10.3390/polym11061074
http://dx.doi.org/10.5455/jeas.2017050101
http://dx.doi.org/10.1016/j.neucom.2004.07.006
http://dx.doi.org/10.1016/j.ins.2019.11.046
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1109/cec.2001.934375
http://dx.doi.org/10.1063/1.4995911
http://dx.doi.org/10.5815/ijisa.2016.10.05
http://dx.doi.org/10.1063/1.4954543
http://dx.doi.org/10.17576/jsm-2018-4706-30
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.12988/ams.2020.9237
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	2 Satisfiability Logic Representation
	Radial Basis Function Neural Network (RBFNN)
	2-Satisfiability Based Reverse Analysis Method (2SATRA) in RBFNN
	Genetic Algorithm in RBFNN-2SATRA
	Differential Evolution Algorithm in RBFNN-2SATRA
	Particle Swarm Optimization Algorithm in RBFNN-2SATRA
	Artificial Bee Colony Algorithm in RBFNN-2SATRA
	Artificial Immune System Algorithm in RBFNN-2SATRA

	Experimental Setup
	Datasets Description
	Results and Discussion
	Conclusions
	References

