

Article

Optimization Using Response Surface Methodology (RSM) for Biodiesel Synthesis Catalyzed by Radiation-Induced Kenaf Catalyst in Packed-Bed Reactor

Nur Haryani Zabaruddin ^{1,2}, Luqman Chuah Abdullah ^{3,*}, Nor Hasimah Mohamed ^{2,*} and Thomas Choong Shean Yaw ³

- ¹ Institute of Tropical Forestry and Forest Products, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; nurharyanizaba@gmail.com
- ² Radiation Processing Division, Malaysian Nuclear Agency, Kajang, Selangor 43000, Malaysia
- ³ Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; csthomas@upm.edu.my
- * Correspondence: chuah@upm.edu.my (L.C.A.); shima@nuclearmalaysia.gov.my (N.H.M); Tel.: +603-9769-6288 (L.C.A.)

Received: 17 August 2020; Accepted: 21 September 2020; Published: date

Materials	CHNS analysis (N element)	EDX analysis (Cl element)	Total capacity exchange (–OH)
Raw kenaf	0.0 mmol TMA/g-catalyst	0.70%	-
VBC-grafted kenaf catalyst	2.15 mmol TMA/g-catalyst	7.43%	1.3143 meq g ⁻¹
Amberlite® IRA910 resin	1.93 mmol TMA/g-resin	4.68%	0.8546 meq g ⁻¹

Table S1. Elemental analysis of delignified kenaf and TMA-VBC-g-kenaf using EDX and CHNS.

Figure S1. FE-SEM images of changes on the surface of kenaf fibers: (a) raw kenaf (b) after radiationinduced graft polymerization, and (c) After quaternary amination process.