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Abstract: Flow distribution channels in extrusion dies are typically designed to assure uniform
fluid velocity, pressure and temperature in the outlets. To ensure this uniformity, it is desirable to
have the fluid melt to reach a steady state temperature in the entrance channel before entering the
die body. This paper numerically investigates the temperature distribution of the fluid melt in the
entrance channel. Analytical solutions of the velocity and finite element solutions of temperature
distribution in Poiseuille flows of polypropylene melt with the Casson rheology model were derived
and presented. In the velocity solution, the critical point that separates the core and the remaining
parts in the flow was calculated by using the inlet flow rate and the yield stress in the Casson model.
The velocity distribution was then substituted into the convective heat equation for temperature
distribution simulations. A finite difference scheme was used to obtain the temperature distribution
profiles along the flow direction in a parallel-plate, while the finite element model was used to model
the flow temperature in circular tubes. The main outcome is the parametric analyses of the effect of
various parameters such as radius, wall temperature, inlet temperature, and pressure drop to the
optimal length of the channels required for the flow temperature to reach the steady state.

Keywords: extrusion die; Poiseuille flows; Casson model; parallel-plate; circular tube; finite
element method

1. Introduction

It is well known that polypropylene can be used to produce low-cost, lightweight, transparent, and
flexible thin sheets and films for a variety of applications in industries [1]. The key component in the
production of these sheets and films is the extrusion die designs [2,3]. Flow distribution channels in the
extrusion dies should be designed in such a way to assure uniform fluid velocity, pressure, temperature
in the outlets with uniform thickness [4,5]. If the fluid flow is rapid at the centerline or if the uneven
temperature distribution occurs then these scenarios result in extrusion product deformations and
surface cracks [6]. Therefore, understanding the Poiseuille flows of polypropylene melt is fundamental
for the design of extrusion dies for production of high quality PP sheets and PP films [7,8].

Poiseuille flows of non-Newtonian fluids are well studied in many rheology models [9,10].
For most of the rheology models, analytical and numerical velocity profiles have been available
in standard textbooks and literature [11]. The Casson model has often been used to model
Non-Newtonian fluids in food industries and it has been used for modeling blood flows [12,13].
Moreover, it can also be used for modeling the polymer flows, particularly, for polypropylene melts.
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Although the velocity profile is well-known in literature, the connection of the profile with the inlet
flow rate and the core size is not explicitly explained [14,15]. When the polymer melt enters an
entrance pipe of the die, the melt is at the melting temperature but the die body is kept at a higher
temperature anticipating that the melt temperature will rise due to Arrhenius law and the shear rate
of the melt at the wall [16,17]. Similar research work has been done by Wei and Luo, where they
numerically analyze a power law heat transfer problem of polymer melt flows in a tube with constant
ambient temperature [18]. However, in this paper, we apply the Casson fluid model to solve the
temperature distribution of the PP melt flow. In general, it is commonly used to describe the blood,
chocolate and ketchup flows [19–21]. However, some studies mention that the Casson model is applied
in polymer industries by considering it for the rheology analysis of the polymer melt flows [22,23].
Moreover, the studies of Lungu et al. [24] suggest that there is a good fit of the Casson model for the
polymer melt flows’ experimental data. In addition, Matveenko and Kirsanov [25] showed that the
generalized Casson rheological model describes the behavior of polymer melt flows better than the
well-known and commonly used power-law model.

In general, polymer extrusion die has different types of design used in the industry, for instance,
coat hanger or T-slot dies [26]. Since our focus is the extrusion die, the parts of the die we are analyzing
are the circular tube that often appears to be the inlet part and the parallel-plate structure that is
sometimes used in the manifold. In this paper, the finite difference was used to solve the convective
heat equation because of the simplicity of the model. However, for the flow temperature simulation in
the circular tube, the finite difference scheme was no longer applicable due to the singularity occurring
at r = 0 in the solution of the nonlinear partial differential equation. Therefore, a finite element model
was found to be appropriate since it additionally applies the derivative boundary condition.

Eventually, it is desirable to have the fluid melt to reach a steady state temperature before entering
into the die body for further flow distribution. It is the purpose of this work to estimate the distance
from the entrance along the pipe at which the steady state is reached. The entrance pipe is usually
circular, so the axisymmetric nonlinear finite element model was developed for the simulation of
the temperature when the fluid enters the die and gets distributed into die pre-land, which is in the
form of parallel-plates (Figure 1). For further steady state temperature distribution inside the slits,
the finite difference scheme was also developed for the simulation. The results can be used as the first
steps leading to calculations of the corresponding fluid velocity and temperature distributions of the
downstream extrusion die channel to the manifold and pre-land of a flat die for PP melt flows.

Figure 1. The Casson flow model.
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2. Mathematical Model of Temperature Distribution of the Casson Fluid Flow

Considering PP flows between two parallel plates shown Figure 1 below, we will derive the
velocity profile by determining the core velocity uc, the separation point yc between the core and the
non-core flows, and the velocity of the non-core portion u, and finally the temperature distribution T
along the two-dimensional domain in the following subsections.

2.1. Derivation of the Velocity Profile

For Poiseuille flows, the Casson model has the following form

du
dy

=

{
1
ηc
(
√

τ −√τ0)
2 if |τ| ≥ τ0

0 if |τ| ≤ τ0
(1)

where du
dy is the shear rate, τ is the shear stress, τ0 is the Casson yield stress; and ηc is a Casson viscosity.

The velocity for the case |τ| ≤ τ0 is constant. Now, we solve for the case |τ| ≥ τ0. From the Casson
model and balance of forces, the velocity u can be derived as follows

dτ

dy
= −dP

dz
(2)

where - dP
dz is a uniform pressure gradient, p2−p1

L . The integration of both sides from the core boundary
yc to the wall ymax, we have ∫ τw

τ0

dτ =
p2 − p1

L

∫ ymax

yc
dy

τw =
p2 − p1

L
(ymax − yc) + τ0

(3)

The integration of shear rate will give the velocity in the interval yc ≤ y ≤ ymax.

du
dy

=
(τ1/2 − τ1/2

0 )2

ηc∫ 0

u
du =

∫ ymax

y

((g(y− yc) + τ0)
1/2 − τ1/2

0 )2

ηc
dy

(4)

u(y) =
1

6gηc

(
8τ1/2

0 (g(y− yc) + τ0)
3/2 − 3g2y2 + 6g(gyc − 2τ0)y

− 8τ1/2
0 (g(ymax − yc) + τ0)

3/2 + 3g2y2
max − 6g(gyc − 2τ0)ymax

) (5)

At the critical point yc, the velocity core can be obtained (constant velocity about center line)

ucore =
1

6gηc

(
8τ2

0 − 3g2y2
c + 6g(gyc − 2τ0)yc − 8τ1/2

0 (g(ymax − yc)

+ τ0)
3/2 + 3g2y2

max − 6g(gyc − 2τ0)ymax

) (6)

In order to find the critical point where du
dy = 0 and τ = τ0

Q =
∫ ymax

yc
2udy + 2ucoreyc (7)
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We solve the previous equation, and the equation below is numerically solved to find the critical yc

Q = 2
(

g(y3
c − y3

max)

3ηc
+

gycymax(ymax − yc)− τ0y2
max + 2τ0ycymax − τ0y2

c
ηc

+
4τ1/2

0 (g(ymax − yc) + τ0)
3/2(3g(ymax − yc)− 2τ0) + 8τ3

0
15g2ηc

− yc
3g2y2

c + 8τ1/2
0 (τ0 − gyc)1/2(gyc − τ0)− 12gτ0yc + 8τ2

0
6gηc

) (8)

We numerically calculate the separation point yc from Equation (8), which is 0.18 mm by using
the constants from [27–29], i.e., ηc = 237.2 Pa.s, τ0 = 11786.1 Pa, ymax = 0.0018 m, g = 12 MPa. The plot
of the velocity profile in Figure 2 is obtained as an example.

Figure 2. Velocity profile of Casson flow.

2.2. Temperature Distribution of the Flow in Parallel-Plate Channel

Convective heat equation for the fluid is given by the balance of energy equation with the Dirichlet
boundary condition Tinlet = 403.5 K and Twall = 433.5 K

ρCpu
∂T
∂z

= k
∂2T
∂z2 + τ

du
dy

(9)

where ρ is a fluid density, Cp is a specific heat capacity, and k is a fluid thermal conductivity. For the
simulation, Equations (3)–(5) are used in solving the heat Equation (9) with constant values shown
in [30]. We will use the Crank–Nickolson method with the central difference formula with

yi = i(yi − yi−1) = id1 zl = l(zl − zl−1) = ld2

where i = 0 and i = m + 1 are for boundary points, and i = 1, 2, . . . , m are for interior points, and
l = 0, 1, 2, . . . , m represent the steps along z [31]. Next, we approximate the first and second order
derivatives with the centered formula

ui,l = u(yi, zl),
du
dy i+ 1

2 ,l
≈

ui+1,l − ui,l

d1
, τi,l = (τ1/2

0 + η1/2
c (

du
dy i,l

)1/2)2
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τi,l = (τ1/2
0 + η1/2

c (
du
dy i,l

)1/2)2,
∂T
∂z i,l+ 1

2

≈
Ti,l+1 − Ti,l

d2

∂2T
∂y2

i,l+ 1
2

≈ 1
2

(
Ti+1,l − 2Ti,l + Ti−1,l

d2
1

+
Ti+1,l+1 − 2Ti,l+1 + Ti−1,l+1

d2
1

)
Substituting the above approximations into the heat Equation (9) yields to

ρCpui,l

(
Ti,l+1 − Ti,l

d2

)
=

k
2

(
Ti+1,l − 2Ti,l + Ti−1,l

d2
1

+
Ti+1,l+1 − 2Ti,l+1 + Ti−1,l+1

d2
1

)
+ τi,l

du
dy i,l

(10)

− k
2d2

1
Ti−1,l+1 +

(
ρCpui,l

d2
+

k
d2

1

)
Ti,l+1 −

k
2d2

1
Ti+1,l+1 =

τi,l
du
dy i,l

+
k

2d2
1

Ti−1,l −
(

k
2d2

1
−

ρCpui,l

2d2
1

)
Ti,l +

k
2d2

1
Ti+1,l

(11)

Following the regular finite difference procedure, we represent the above expression as the system
of algebraic equations for interior points i = 1, 2, . . . , n and we obtain the equation in matrix form
A{T}={R} where A is n× n matrix and {T}, {R} are n× 1 vectors as defined by (12), (13), and T0, Tn+1

are temperature values at boundary points.

A =



ρCpu1
d2

+ k
d2

1
− k

2d2
1

0

− k
2d2

1

. . . . . .

. . . . . . − k
2d2

1

0 − k
2d2

1

ρCpun
d2

+ k
d2

1


{T} =



T1,l+1
T2,l+1
T3,l+1

...
Tn,l+1


(12)

{R} =



k
2d2

1
T0,l+1 + τ1,l

du
dy 1,l

+ k
2d2

1
T0,l +

(
ρCpu1,l

d2
− k

2d2
1

)
T1,l +

k
2d2

1
T2,l

τ2,l
du
dy 2,l

+ k
2d2

1
T1,l +

(
ρCpu2,l

d2
− k

2d2
1

)
T2,l +

k
2d2

1
T3,l

...

τn
du
dy n,l

+ k
2d2

1
Tn−1,l +

(
ρCpun,l

d2
− k

2d2
1

)
Tn,l +

k
2d2

1
Tn+1,l


(13)

With z as a direction of the flow and y as a vertical position of the fluid, the temperature
distribution of the flow in parallel-plate can be calculated by using the Thomas algorithm, which is a
highly efficient method for solving the matrix equations with tridiagonal form [31].

2.3. Temperature Distribution of the Flow in Circular Tube Channel

The convective heat equation in polar coordinates is given by the balance of the energy equation

ρCpu
∂T
∂z

= k(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2 ) + τ

du
dr

(14)

where the constants are the same as in Equation (9). The boundary conditions are
T(r, 0) = Tinlet, T(r0, z) = Twall,

∂T(0,z)
∂r = 0 and ∂T(r,z)

∂z = 0 as z −→ ∞. According to Wei and Luo [18],

T(r0, z) = Twall will be approximated by the mixed boundary condition −k ∂T(r,z)
∂r = h(T(r, z)− Twall).

The dimensionless parameters are as follows
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∂T
∂z

=
∂T
∂Z

1
z0

;
∂T
∂r

=
∂T
∂R

1
r0

;
∂2T
∂r2 =

∂2T
∂R2

1
r2

0
;

∂2T
∂z2 =

∂2T
∂Z2

1
z2

0

where z0 is a maximum distance along z direction and r0 is a maximum radius of the tube.
The non-dimensional form of the Equation (14) is

D(R)
∂T
∂Z

=
∂2T
∂R2 +

1
R

∂T
∂R

+ C
∂2T
∂Z2 + Q(R) (15)

where D =
ρCpr2

0
z0k u(R), Q(R) = τ(R) du

dR (R) r0
k and C =

r2
0

z2
0
. For the circular tube flow, the dimensional

velocity with dimensionless parameters is

u(R) =
1

6gηc
(8
√

τ0(g(Rr0 − rc) + τ0)
3/2 − 3g2R2r2

0 + 6g(grc − 2τ0)Rr0

−8
√

τ0(g(r0 − rc) + τ0)
3/2 + 3g2r2

0 − 6g(grc − 2τ0)r0)

(16)

and the corresponding equation of change in velocity is

du
dR

(R) =
r0

ηc

[
2
√

τ0(g(r0R− rc) + τ0)− gr0R− 2τ0 + grc

]
(17)

The equation of yield stress defined by the Casson model is

τ(R, Z) =

[
√

τ0 +

√
ηc

du
dR

(R, Z)
1
r0

]2

(18)

2.3.1. Finite Element Model

We approximate T by T̃ = WTT where T = [Ti Tj Tk]
T and W = [Wi Wj Wk]

T is the vector of three
linear shape functions of (R, Z) [32]. Following the Galerkin approach, we have the weak integral form

∫
De

(
∂W
∂R

∂WT

∂R
+ C

∂W
∂Z

∂WT

∂Z

)
dVT−

∫
De

[
1
R

∂

∂R

(
WR

∂T
∂R

)
+

C
∂

∂Z

(
W

∂T
∂Z

)]
dV +

∫
De

WD(R)
∂WT

∂Z
dVT =

∫
De

Q(R)W dV

(19)

whereDe is the element domain. The second volume integral in (19) can be reduced to a surface integral
by the Divergence Theorem and the derivative boundary is given by the normal flux, so we have

−
∫
De

[
1
R

∂

∂R

(
WR

∂T
∂R

)
+ C

∂

∂Z

(
W

∂T
∂Z

)]
dV =

−
∫

∂De
W
(

∂T
∂R

cos θ + C
∂T
∂Z

sin θ

)
dS = −2π

∫
Ge

Wh(T∞ − T)dG =

2π
∫
Ge

WhTdG − 2π
∫
Ge

WhT∞dG

(20)

where Ge is the boundary domain. Before we construct the local stiffness matrices and load vectors
for (19), let us define the shape functions for the linear axisymmetric triangular elements with
coordinates (Ri, Zi), (Rj, Zj), (Rk, Zk) and the area |Ae|. So the linear shape functions are

Wi =
1

2|Ae| (ai + biR + ciZ) (21)
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Wj =
1

2|Ae| (aj + bjR + cjZ) (22)

Wk =
1

2|Ae| (ak + bkR + ckZ) (23)

where

ai = RjZk − RkZj, aj = RkZi − RiZk, ak = RiZj − RjZi bi = Zj − Zk,

bj = Zk − Zi, bk = Zi − Zj ci = Rk − Rj, cj = Ri − Rk, ck = Rj − Ri
(24)

Using (21)–(23), the first local stiffness matrix is

K(e)
1 =

∫
De

(
∂W
∂R

∂WT

∂R
+ C

∂W
∂Z

∂WT

∂Z

)
dV =

2πRav

4|Ae|


 b2

i bibj bibk
bibj b2

j bjbk

bibk bjbk b2
k

+ C

 c2
i cicj cick

cicj c2
j cjck

cick cjck c2
k




(25)

where Rav =
Ri+Rj+Rk

3 and Ae is the area of the triangular element. The second stiffness component
comes from the first boundary integral in (20), so we have

K(e)
2 =

2πhLij

12

3Ri + Rj Ri + Rj 0
Ri + Rj Ri + 3Rj 0

0 0 0

 (26)

where Lij denotes the length of the side of the triangular element connecting vertices i and j. For
evaluation of the last component of the stiffness matrix we apply the Gauss–Legendre quadrature and
use seven Gaussian points (2n− 1 = 12 and n = 6.5), so we have

K(e)
3 = π

7

∑
p=1

wp

L1
∂L1
∂Z L1

∂L2
∂Z L1

∂L3
∂Z

L2
∂L1
∂Z L2

∂L2
∂Z L2

∂L3
∂Z

L3
∂L1
∂Z L3

∂L2
∂Z L3

∂L3
∂Z


p

DpRp|J| (27)

where the subscript p represents the evaluation of the corresponding function at the pth Gaussian
point, wp are Gaussian weights, Rp = (L1)pRi + (L2)pRj + (1− L1 − L2)pRk, and |J| is the Jacobian
defined by

|J| =
∣∣∣∣∣ ∂R

∂L1
∂Z
∂L1

∂R
∂L2

∂Z
∂L2

∣∣∣∣∣ =
∣∣∣∣∣Ri − Rk Zi − Zk
Rj − Rk Zj − Zk

∣∣∣∣∣ (28)

where R = L1Ri + L2Rj + (1− L1 − L2)Rk and Z = L1Zi + L2Zj + (1− L1 − L2)Zk. Now we evaluate
two load vectors which are the second integral in (20) and the integral on the RHS of (19). So, we have

F(e)
1 =

πhT∞Lij

3

2Ri + Rj
Ri + 2Rj

0

 (29)
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The other one is also evaluated by the Gauss–Legendre approach, hence

F(e)
2 = π|J|

7

∑
p=1

wp

Wi
Wj
Wk


p

Q(Rp) (30)

The global matrix Equation using (25)–(30) is K{T} = {F}.

3. Description of the Parametric Study

As an example, temperature results for the parallel-plate using the finite difference model were
obtained for a fixed distance from the center to the wall y of 1.9 mm and the width z of 200 cm.
Figure 3a presents the temperature distribution along (z) and the half of the distance (y) between
parallel-plates for a case with the wall temperature (Twall) of 433.15 K and the inlet temperature (Tinlet)
of 403.15 K. As can be noticed, the temperature of the flow gets more evenly distributed along the y
axis as z increases (See Figure 3b).

(a)
(b)

Figure 3. Finite difference solutions of temperature distribution of fluid flow in parallel-plate.
(a) 3D view of temperature distribution in parallel-plate; (b) temperature profile along y.

Also the analyses were conducted with the finite element model considering the 12,482 triangular
elements to determine the temperature distribution along the length of the tube. As an example,
Figure 4a shows the temperature distribution along the length (Z) and the radius (R) of the tube
for a case with the wall temperature (Twall) of 433.15 K and inlet temperature (Tinlet) of 403.15 K.
The locations along the R and Z were normalized by the radius (2.2 mm) and the length (800 mm)
of the tube respectively. As seen in Figure 4b, the temperature of the polypropylene melt flow gets
more uniform along the direction of the R as the Z increases, and then finally reaches a steady
state distribution.

The required length of parallel-plate or circular tube is defined as the length of the channel in
the direction of the flow from the entrance such that the temperature of the flow reaches the steady
state level. To quantify the required length of the tube (Lreq) to reach the steady state temperature
distribution, the following criteria were used:

max
(

Ti,l+1 − Ti,l

Ti,l

)
< 0.001 (31)

where i = 0, 1, . . . is associated with the location along R and l = 0, 1, . . . is associated with the location
along Z in finite element solution. When the criterion in (31) is satisfied, the steady state location
along Z will be l + 1 and the required length is identified. For the example shown in Figure 4, the l is
identified as 25 and the corresponding Lreq is determined as 260 mm.
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(a)
(b)

Figure 4. Finite element solutions of temperature distribution of fluid flow inside the circular tube.
(a) 3D view of temperature distribution in circular tube; (b) temperature profile along R.

4. Results and Discussion

Following the same procedure, a parametric study was conducted for wall temperatures,
inlet temperatures, radius of the tube, and pressure drop to determine the Lreq. Figures 5 and 6
show the parametric results for the flow temperature in the parallel-plate and circular tube channels.
In general, the Lreq increases as the radius of the tube increases since the larger radius can accommodate
more fluid volume. As seen in Figures 5a and 6a, when the inlet temperature increases and approaches
the wall temperature, the Lreq becomes smaller. The explanation of this is that for the higher inlet
temperature, it requires less distance for the flow temperature to reach the steady state. On the other
hand (see Figures 5b and 6b), as the wall temperature increases, the Lreq becomes larger since it needs
more distance for the flow temperature to reach the uniform distribution. Also note, the Lreq increases
when the pressure drop increases since larger pressure means higher flow speed (see Figures 5c and 6c).
The radius of the tube has the highest effect on the required length of the tube while other parameters
have minor effects, especially for the pressure drop and the wall temperature.

It is important to note the manifolds with decreasing depth or also constant depth, which is
the subject of our study. For instance, Karkri and Jarny [33] analyzed the temperature profile in the
parallel-plate with constant depth using the conjugate gradient method that shows the results similar
to our solutions. Another paper by Andreozzi et al. presented the temperature profile results of the
fluid flows in parallel-plate systems and the authors confirmed them by the Ansys–Fluent output [34].
Their results on temperature profiles of the fluid showed similar behavior as in our results (Figure 3).
As it was mentioned before, the finite element model was suitable to solve the temperature profile in a
circular tube. In comparison to the solutions obtained by Wei and Luo [18], our temperature results
were consistent (Figure 4).

The parametric analyses would be helpful in the designing of the extrusion die channels as
these parametric study results may contribute in proper selection (for instance, radius of the tube)
or controlling the parameters (i.e., wall or inlet temperature) and suggest the optimal length of the
channels. Eventually, the optimal length derived from the study would assure an efficient production
in which correspondingly the flow temperature is evenly distributed.
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(a) (b)

(c)
Figure 5. The required length of parallel-plate (Lreq) for the temperature to reach steady state vs.
the distance from the center to the wall (y). (a) Various inlet temperatures; (b) various wall temperatures;
(c) various pressure drop.

(a) (b)

(c)
Figure 6. The required length of tube (Lreq) for the temperature to reach steady state vs. the radius of
the tube. (a) Various inlet temperatures; (b) various wall temperatures; (c) various pressure drop.
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5. Conclusions

Casson rheology models were investigated for the velocity and temperature profiles,
particularly, of polypropylene melt flows in extrusion die channels. Finite difference and finite element
methods were used to solve for temperature distributions of the flow in the channels. The numerical
model provides estimates of locations in the channels where the steady state temperature distribution
is reached in Casson fluid melts. The results in the parametric study indicate that the required
parallel-plate and tube lengths are highly affected by the width of the channels while other parameters
(wall temperature, inlet temperature and pressure drop) have minor effects. These results can be
used as a base for constructing the design of the die and increase the production efficiency of PP
sheets and PP films. In addition, the numerical approach can be applied for other materials other than
polypropylene, for instance, the materials that follow the Casson rheology model. Further research
can be conducted by applying other rheology models such as Cross or Carreau–Yasuda for better
understanding the nature of the PP flows.
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Abbreviations

Constants and variables
− dP

dz ,g pressure drop in the channel
ηc Casson viscosity
du
dR shear rate in circular tube
du
dy shear rate in parallel-plate

De element domain
Ge boundary domain
ρ fluid density
τ shear stress
τ0 Casson yield stress
τw wall stress constant
Cp specific heat capacity of the fluid
d1 increment in y
d2 increment in z
k fluid thermal conductivity
L distance from the inlet to exit
Lreq optimal length of the channel to reach the steady state
pi i = 1 for inlet pressure, i = 2 for pressure at exit
Q flow rate
r, R dimensional, and non-dimensional radial coordinates of the circular tube
r0 maximum radius of the circular tube
rc critical radius of the circular tube
T temperature of the fluid
Ti,l temperature of the fluid at yi or ri for i = 0, 1, . . . , m, and at zl for l = 0, 1, . . . , n
Tinlet temperature of the fluid at the inlet
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Twall wall temperature
u velocity of the fluid flow
y axis coordinate perpendicular to z in parallel-plate
yc,ycrit critical length from the center to the critical point along y in parallel-plate
ymax distance from the center to the wall in parallel-plate
z, Z dimensional, and non-dimensional axial coordinates in the direction of the flow
F(e),{F} local and global load vectors
K(e),K local and global stiffness matrices
W vector of three linear shape functions
Superscripts and subscripts
(e), e evaluation of the entity referring to the particular element
p evaluation of the corresponding function at the particular point
T matrix transpose
J Jacobian matrix
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