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Abstract: Safety analysis is one of the important means to show compliance with airworthiness
requirements. The traditional safety analysis methods are significantly dependent on analysts’ skills
and experiences. A model-based safety analysis approach is proposed for typical fly-by-wire (FBW)
systems based on the system development model built via Simulink, by which the response of
system performances can be simulated. The safety requirements of the FBW system are defined by
presenting the thresholds of system performance metrics, and the effects of failure conditions on
aircraft safety are determined according to the system response simulation by injecting failures or
failure combinations into the Simulink model. The Monte Carlo simulation method is used to calculate
the probability of unsafe conditions, whose effects are determined by the system response simulation
with fault injections. Finally, a case study is used to illustrate the effectiveness and advantages of our
proposed approach.

Keywords: system safety assessment; fly-by-wire system; fault injection; Monte Carlo simulation;
dynamic behavior mode

1. Introduction

Safety is the most important characteristic of aviation products. The flight control system is a
typical safety-critical system of modern aircraft, whose failures or malfunctions will lead to an unsafe
flight path or structural failure preventing continued safe flight and landing. In the modern transport
category of airplanes, fly-by-wire (FBW) systems have been widely used to replace hydro-mechanical
ones. By utilizing the FBW system, pilots’ commands are converted to electronic signals transmitted
by wires to flight control computers, and control commands are calculated by flight control computers
based on control laws to determine the movements of the actuators at each control surface. Therefore,
the mechanical circuit consisting of rods, cables and pulleys is not required anymore, and the weight
of the airplane can be reduced.

In aircraft or system development, the safety assessment process is an integral process that is
used to show compliance with airworthiness requirements such as 14CFR/CS 23.1309, 14CFR/CS
23.1309, 14CFR 33.75, CS-E 510 and so on. At present, the safety assessment for civil airborne
systems and equipment is usually conducted according to the standard ARP4761 issued by the
Society of Automotive Engineer (SAE) [1,2]. In this document, it is recommended that traditional
safety analysis techniques including Dependence Diagram Analysis (DDA), Fault Tree Analysis (FTA),
Markov Analysis (MA), Failure Mode and Effect Analysis (FMEA) are applied in the safety assessment
process [2]. These techniques are based on information synthesized from several sources including
informal design models and requirements documents, and they are usually performed manually by
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safety engineers whose experiences and skills will affect the analysis significantly. Therefore, the results
of traditional safety analysis techniques are incomplete, inconsistent and highly subjective [3].

To overcome the deficiencies of the traditional techniques, model-based safety analysis (MBSA) has
been proposed. MBSA focuses on modeling the system in a formal specification (model), which can be
extended by injecting failure modes of the physical system or conducting safety analysis automatically.
In this way, the completeness, consistency and correctness of the safety analysis results can be ensured,
and the dependency on the engineers’ skills and experiences can be avoided [4].

Over the past decade, different kinds of modeling tools have been applied in the modeling
of the formal specification for MBSA. These tools can be classified into three categories [5],
which are graphical modeling tools, system modeling languages and failure logic modeling
techniques. Graphical modeling tools include Matlab-Simulink [6–8], Modelica [9,10], Petri Net [11–13]
and SCADE [3,14]; system modeling languages include SysML [15,16], AADL [17–19], AltaRica [20–22],
and NuSMV [23,24]; and failure logic modeling techniques include HiP-HOPS [25,26] and failure
propagation approaches [27].

Although all the above-mentioned tools can be applied in the modeling of a formal specification,
some of them are used to build models for system development, such as Matlab-Simulink, Modelica,
and AADL; others are used to build models for failure analysis specifically, such as AltaRica, HiP-HOPS
and FPTN. In the case that the models for system development are applied, the fault can be injected
to the model directly and the consistency between system development and safety analysis can be
maximized. The model of a flight control system used in development is usually expressed in system
dynamics (control laws), which are given in the form of differential equations, transfer functions or
state equations, and Matlab-Simulink is the most widely used tool in the development of control
systems to build system dynamics models. Meanwhile, other MBSA tools such as AADL, AltaRica
and HiP-HOPS are suitable for describing the failure propagations of avionics systems.

In this study, an MBSA method is proposed for typical FBW systems based on the system
development model built via Simulink, by which the response of system performances can be
simulated. The safety requirements of the FBW system are defined by presenting the thresholds of
system performance metrics, and the effects of failure conditions on aircraft safety are determined
according to the system response simulation by injecting failures or failure combinations in the
Simulink model. The Monte Carlo simulation method is used to calculate the probability of failure
conditions (unsafe conditions), whose effects are determined by the system response simulation with
fault injections.

The system safety process of an aircraft is usually composed of four parts, which are
Functional Hazard Assessment (FHA), Preliminarily Aircraft/System Safety Assessment (PASA/PSSA),
Aircraft/System Safety Assessment (ASA/SSA) and Common Cause Analysis (CCA). This study focuses
on the ASA/SSA process, the response of the Simulink model with fault injection is used to determine
the failure effects of failure modes and their combinations from FMEA, and the Monte Carlo simulation
method is applied to calculate the probability of top failure conditions instead of FTA, DDA and MA.
The rest of this paper is structured as follows. In Section 2, the nominal (failure-free) model of the
FBW system is presented by using Simulink, and the safety requirements are defined by giving the
thresholds of system responses for performance metrics. In Section 3, the typical failure modes of the
FBW system are modeled by Simulink, and the fault injecting approach is proposed to extend the
nominal model. In Section 4, the probability calculation of unsafe conditions based on the Monte Carlo
simulation is presented as a step-by-step procedure. In Section 5, a lateral-directional flight control
system is used as a case study to show the accuracy and advantages of our proposed Monte Carlo
simulation-based method. In Section 6, concluding remarks are presented.

2. Nominal Model of a Typical FBW System

The model of a typical FBW system under normal operating conditions, which is called the
nominal or failure-free model, is built with Simulink in this section. Then, the system performance
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responses under the failed configurations can be simulated by injecting the corresponding failure mode
into the nominal model.

2.1. System Modeling via Simulink

In aircraft design, the development model of the FBW system as well as the aircraft dynamics are
expressed by mathematical models such as state-space functions, transfer functions and differential
equations, which are usually modeled with Simulink. In this section, a lateral-directional flight control
system [6] is applied as an example to illustrate how to build the nominal model with Matlab-Simulink
(2017a, MathWorks, Natick, MA, USA, 2017).

The lateral-directional flight control system is composed of a flight control computer subsystem, an
actuation subsystem, a sensor subsystem and control surfaces. The flight control computer subsystem
has a dual redundant architecture that is composed of two identical primary flight computers (PFCs).
The actuation subsystem includes the left aileron actuation (LAA), the right aileron actuation (RAA)
and the rudder actuation (RA). Each of them is composed of two redundant actuators that are connected
with a combiner. The sensor subsystem includes the right aileron position sensors (RAPS), the left
aileron position sensors (LAPS), the rudder position sensors (RPS) and the inertial measurement units
(IMU). All of them have a triple modular redundant architecture. The control surfaces for lateral control
include the left aileron, the right aileron and the rudder. Pilots’ commands from pedals and control
sticks are converted to electronic signals transmitted by wires to the two PFCs, and control commands
are calculated in terms of control laws in the PFCs to determine the movements of the actuators for all
control surfaces. The architecture of the lateral-directional flight control system is shown in Figure 1.
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Figure 1. Architecture of the lateral-directional flight control system. 
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Figure 1. Architecture of the lateral-directional flight control system.

According to the dynamic models of the lateral-directional flight control system given in [6,28],
the corresponding Simulink model can be built. Taking the roll control law of the PFC as an example,
the mathematical model is expressed as

Rr(s) = Kr1φc(s) + Kr2Rb(s) + Kr3
s+zr
s+pr

Pb(s)

δ
l(r)
a∗r

(s) =
(
Pr +

Ir
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where φc(·) is the roll command, Rb(·) is the yaw rate, Pb(·) is the roll rate, δl(r)
a (·) is the angle of the left

(right) aileron, and δl(r)
a∗r

(·) is the output response of the roll control law. The values of the coefficients



Processes 2020, 8, 90 4 of 14

are given as Kr1 = 0.66, Kr2 = −0.145 s, Kr3 = 2.16 s, zr = 11.1 s−1, pr = 25 s−1, Pr = 0.45 A, Ir = 6 A/s,
Dr = 0.01 As, and Kr = −1.33 [6,28].

The corresponding nominal Simulink model is shown in Figure 2.
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By combining the Simulink models of all components, we can build the Simulink model of the
lateral-directional flight control system, which is shown in Figure 3. In both Figures 2 and 3, the symbol
“*” is used to note the output variables of the control laws.
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2.2. The Definition of the FBW System Safety Requirement

When the aircraft is in a safe condition, the output response of each performance metric should be
restricted to within an acceptable region, in which the requirements of the performance metrics can be
satisfied. For the lateral-directional flight control system, the performance metrics include the sideslip
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angle β(t), the roll rate pb(t), the yaw rate rb(t) and the roll angle φ(t), thus the safety requirement of
the system can be defined as 

∣∣∣β(t) − βr(t)
∣∣∣ ≤ rβ∣∣∣pb(t) − pbr(t)
∣∣∣ ≤ rpb∣∣∣rb(t) − rbr(t)
∣∣∣ ≤ rrb∣∣∣φ(t) −φr(t)
∣∣∣ ≤ rφ

(2)

where βr(t), pbr(t), rbr(t) and φr(t) are the reference values of the sideslip angle, the roll rate, the yaw
rate and the roll angle, respectively, which are the responses of these parameters in the failure-free
configuration; rβ, rpb , rrb and rφ are the thresholds of the sideslip angle, the roll rate, the yaw rate and the
roll angle, respectively. Here, we take rβ = 0.15 rad, rpb

= 0.45 rad/s, rrb
= 0.45 rad/s and rφ = 0.15 rad

from [28].

3. Extension of the Nominal Model

The objective of extending the nominal model is to inject different kinds of failure modes into
the failure-free model. In this way, the performance responses of the FBW system under failed
configurations can be obtained, and the unsafe conditions can be determined by comparing these
responses with the performance thresholds given in Equation (2). In this section, the failure modes
as well as their mathematical model are given, the Simulink tool is also used to build the models of
different kinds of failure modes, and the fault injecting method is proposed.

3.1. Failure Modes and Their Mathematical Model

The failure modes of the components of the FBW system, as well as their failure rates, are given
in Table 1.

Table 1. Component failure modes of the fly-by-wire (FBW) system [6].

Component Failure Mode Failure Mode Description Failure Rate (1/h)

PFCs

Omission Null output 2 × 10−7

Random Random output between −5 and 5 1 × 10−7

Stuck Output stuck at the last correct value 1 × 10−7

Delayed Output delayed by 0.2 s 1 × 10−7

Actuators
Omission Null output 1 × 10−6

Stuck Output stuck at the last correct value 1 × 10−6

Control Surfaces
Stuck Output stuck at the last correct value 1 × 10−8

Trailing Output decided by the
aero-dynamics 1 × 10−8

Inertial Measurement Units
(IMU)

Omission Null output 4 × 10−7

Gain change Output scaled by a factor of 1.5 3 × 10−7

Biased Output biased by a factor of 0.3 deg 3 × 10−7

Position Sensors
Omission Null output 4 × 10−7

Gain change Output scaled by a factor of 1.5 3 × 10−7

Biased Output biased by a factor of 0.3 deg 3 × 10−7

Reproduced with permission from (Dominguez-Garcia A. D., Kassakian J. G., Schindall J. E., et al.), (Reliability
Engineering & System Safety); published by (Elsevier), 2008.

The dynamic behavior of each component can be expressed as the state-space function:{ .
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(3)

where x(t) is the vector of state variables, u(t) is the vector of input variables, y(t) is the vector of
output variables, A is the system matrix, B is the control matrix, C is the output matrix and D is the
feedforward matrix.
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We make the assumption that the output of the failure-free configuration is y(t), and the output
of different failure modes can be expressed as

¯
y(t) =



0 ommision
rand random
y(τs) stuck

y(t− τd)1(t− τd) delayed
ϑ or ψ trailing
Gy(t) gain change

y(t) + b biased

(4)

where rand is a random value expressing the random output, τs is the time point when “stuck” occurs,
τd is the delayed time, ϑ is the pitching angle (for the ailerons), ψ is the heading angle (for the rudder),
G is the gain change factor and b is the biased factor.

3.2. Failure Mode Modeling via Simulink

The Simulink tool is also used to build the models of the seven failure modes expressed via
Equation (4), which are given in Figure 4.
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(d) “delayed”, (e) “trailing”, (f) “gain change”, and (g) “biased”.

In all the models, the time point of fault injection is set as the 4th second, and the input is the
failure-free response of the related component. Therefore, the output of each model before the 4th
second will be the failure-free response of the related component as well. Figure 4a shows the Simulink
model of “omission”; the “Output” block will connect to the “Zero” block 4 s later, thus the output
after the 4th second will be null. Figure 4b shows the Simulink model of “random”; the “Output” block
will connect to the “Random Number” block 4 s later, then the output after the 4th second will be a
random value. Figure 4c shows the Simulink model of “stuck”; the “Output” block will connect to the
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output value of “4 s” after the 4th second, then the output will be stuck at its value of “4 s”. Figure 4d
shows the Simulink model of “delay”; the “Output” block will connect to the “Delay” block 4 s later,
then the output after the 4th second will be delayed. Figure 4e shows the Simulink model of “trailing”;
the “Output” block will connect to the “Constant” block 4 s later, then the output after the 4th second
will be a constant value. The constant value C in the“Constant” block will be the heading angle ψ for
the rudder and the pitching angle ϑ for the ailerons. Figure 4f shows the Simulink model of “gain
change”; the “Output” block will connect to the “Gain” block 4 s later, then the output will be scaled by
the gain change factor, which is shown as K in the “Gain” block. Figure 4g shows the Simulink model
of “biased”; the “Output” block will connect to the “Sum” block 4 s later, then the output will be the
summation of the initial output and the biased factor, which is shown as C in the “Constant” block.

3.3. The Fault Injecting Method

The fault injection is conducted by a “fault injector”, which is a “Variant Subsystem” block placed
between each component block and its output. Figure 5 shows the fault injector and its inner structure.
The fault injector includes the blocks of the seven failure modes given in Figure 4a–g as well as an
additional “normal” block. The “normal” block denotes the failure-free configuration; its inner “Input”
connects “Output” directly.
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The block parameters of the “fault injector” are used as the control variables for fault injections.
By selecting different control variables, the responses of different kinds of configurations can be obtained.

Figure 6 shows the performance responses of the FBW system. Figure 6a shows the performance
responses of the FBW system in the failure-free configuration when the roll command is a 0.2 rad, 0.1 Hz
square wave. Figure 6b shows the system performance responses of the same input command when
the “random” failure mode of one PFC has been injected. We can see that the difference between the
roll angle response and its reference value has exceeded the threshold (0.15 rad). Thus, there is an
unsafe condition. The results shown in these figures are similar to those in [6]. Figures 6a and 6b here
correspond to Figures 2b and 6b in [6], respectively.
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4. Probability Calculation of Unsafe Conditions Based on Monte Carlo Simulation

Random numbers are used to denote the failure time for each component failure mode.
These numbers will be the fault occurrence time of each corresponding failure mode. We order
these numbers from smallest to largest, and inject the failure modes at their occurrence time one by
one according to the fault injecting method. When the responses do not satisfy the safety requirement
given in Equation (2), one simulation will terminate and a sample of time to the unsafe condition
can be obtained. In terms of several time samples, the probability distributions of the time to unsafe
conditions can be obtained. In this way, the probability of unsafe conditions can be calculated at
different time points.

We make the assumption that the system is composed of n components and the ith (i = 1, 2, . . . , n)
component has mi failure modes. N is used to denote the ordinal of the current simulation. TN is the
time to unsafe conditions obtained from the Nth simulation.

The step-by-step procedure of the Monte Carlo simulation-based method is as follows.
The flowchart of the step-by-step procedure is shown in Figure 7.

Step 1 Initialization

Before the simulation starts, the ordinal of the current simulation is zero, namely N = 0;
the corresponding time to unsafe conditions is also set as zero, namely T0 = 0.

Step 2 Start a new simulation

Let N = N + 1, and the (N + 1)th simulation will start.

Step 3 Generate random numbers

Generate random numbers as the failure time for all failure modes. A common situation is that
the failure time of each failure mode follows the exponential distribution, and the random number can
be expressed as

ti j= −
1
λi j

ln(1− r01) (i = 1, 2, · · · , n; j = 1, 2, · · · , mi) (5)

where λi j is the constant failure rate of the ith component’s jth failure mode, r01 is a random number
generated from the uniform distribution defined over the interval (0, 1), and ti j is the failure time of the
ith component’s jth failure mode. For other distributions, we can also obtain a random number by
their cumulative density function.

Step 4 Obtain the failure time for each component
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As each component has several failure modes and the component will fail when one of the failure
modes occurs, the failure time of each component will be the minimum value of all its failure modes’
occurrence time. We have

ti ji = min
j=1,2,··· ,mi

(
ti j

)
(6)

where ti ji is the failure time of the ith component, and ji is the ordinal of the ith component’s failure
mode that has the minimum failure time.Processes 2020, 8, x FOR PEER REVIEW 10 of 14 
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Step 5 Inject the fault of each component

The failure time for each component is ordered from smallest to largest, and the ith component’s
jith failure mode will be injected into the nominal model at ti ji one by one according to the fault
injection method proposed in Section 3. When the unsafe condition occurs, the corresponding ti ji will
be the Nth sample of the time to unsafe conditions obtained from the Nth simulations (TN).

Step 6 Decide whether the simulations will end or not
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The simulations will stop when the mean time to unsafe conditions converges, thus the simulation
ending criteria can be expressed as ∣∣∣∣∣∣∣ 1

N

N∑
k=1

Tk −
1

N − 1

N−1∑
k=1

Tk

∣∣∣∣∣∣∣ < ε (7)

where ε is an arbitrarily small positive real, and we usually let ε = 0.1.
If Equation (7) can be satisfied, the simulation procedure will go to Step 7; otherwise, it will go

back to Step 2.

Step 7 Calculate the probability of unsafe conditions

According to the N samples of time to unsafe conditions, we perform distribution selections,
parameter estimations and goodness-of-fit tests. Then, we can obtain the probability distribution of
time to unsafe conditions, and the probability of the time to unsafe conditions can be calculated.

5. Case Study and Discussion

The lateral-directional flight control system given in Figure 1 is applied as the case study here.
The failure rates of all components’ failure modes are already given in Table 1.

By conducting the Monte Carlo simulation procedure given in Section 4, we obtain nearly 2000
samples of time to unsafe conditions, whose histogram is shown in Figure 8. According to the shape of
the histogram, it can be estimated that these samples may follow Weibull distribution or Lognormal
distribution. For the kth sample Tk, the estimate of the related cumulative distribution function (CDF)
can be expressed as

F̂(Tk) =
k
N

(8)
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The CDF of Weibull distribution is expressed as

F(t) = 1− exp
[
−

( t
α

)β]
(9)

We let  xk = ln Tk

yk = ln
{
ln

[
1

1−F̂(Tk)

]} (10)
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Thus, if the samples follow a Weibull distribution, the plotting of xk versus yk expressed by (10)
should look like a straight line. This plotting is shown in Figure 9a.
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Likewise, the CDF of a lognormal distribution is expressed as

F(t) = Φ
(

ln t− µ
σ

)
(11)

where Φ(·) is the CDF of the standard normal distribution. Let xk = Φ−1
[
F̂(Tk)

]
yk = ln Tk

(12)

Thus, if the samples follow a lognormal distribution, the plotting of xk versus yk expressed by (12)
should look like a straight line. This plotting is shown in Figure 9b.

It is shown that the plotting of xk versus yk in Figure 9a is much more like a straight line compared
with Figure 9b. Therefore, the Weibull distribution is preferred for these samples.

By using the maximum likelihood estimation, we can obtain α = 2.6062× 105 h and β = 1.211.
In addition, the Kolmogorov–Smirnov test shows that we should not reject the hypothesis that the
samples of time to unsafe conditions are following the Weibull distribution with α = 2.6062 × 105

and β = 1.211 [29]. Hence, the probability of the unsafe condition at time t can be expressed as

P(t) = 1− exp
[
−

( t
2.6062× 105

)1.211]
(13)

For the FBW system, the scheduled inspection interval is set as 500 flight hours, which means the
function of the FBW system will be thoroughly checked every 500 flight hours and the FBW system
will be restored to the perfect condition if it is degraded. Thus, we can obtain the probability of the
unsafe condition in a scheduled inspection interval as 5.1234× 10−4. Therefore, the average probability
of the unsafe condition per flight hour is 1.0247× 10−6.

In [6], the Markov process is applied to calculate both the upper and lower bounds of the
probability of the unsafe condition in the scheduled inspection interval, which are 5.1178 × 10−4

and 5.8211× 10−4, respectively, for this case. We have also used the state enumerating method to obtain
the minimal cut sets that cause unsafe conditions. In the state enumerating method, we simulate the
model of the FBW system with all component failure modes and their combinations, and the minimal
cut sets can be obtained in terms of the system response. Moreover, the probability of the unsafe
condition or its interval can be calculated via the probability additive formula. The upper and lower
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bounds of the probability of the unsafe condition calculated by the minimal cut sets are 5.1088× 10−4

and 5.2084× 10−4, respectively. The results of the three methods are given in Table 2.

Table 2. Probability of the unsafe condition calculated by different methods.

Monte Carlo Simulation Markov Process State Enumerating

5.1234 × 10−4 (5.1178 × 10−4, 5.8211 × 10−4) (5.1088 × 10−4, 5.2084 × 10−4)

Table 2 shows that the result of the Monte Carlo simulation method is located just between the upper
and lower limits obtained from both the Markov process and the state enumerating, which illustrates
the accuracy of our Monte Carlo simulation method. The advantages and disadvantages of the
above-mentioned three methods are discussed in Table 3.

Table 3. Comparison of the three methods.

Methods Advantages Disadvantages

Monte Carlo simulation

• The cumbersome work of
building a Markov model can
be avoided.

• The simulation algorithm
does not have to be modified
when the system is modified.

• Time-consuming for
large systems.

• A stochastic method, and it
does not achieve
exact results.

Markov process

• The exact value or interval of
the probability can
be calculated.

• More efficient than Monte
Carlo simulation after the
Markov model has been built.

• Faced with the state
explosion problem.

• A new Markov model is
needed when the system
is modified.

State enumerating

• The probability additive
formula is used to calculate
the exact value or interval of
the probability for an
unsafe condition.

• Impossible to enumerate all
the states for large systems.

• A new formula is required
when the system is modified.

6. Conclusions

In this study, an MBSA approach is proposed based on the system development model built by
Simulink for the FBW system, and Monte Carlo simulation is used to obtain the probability of unsafe
conditions. Our proposed approach has the following advantages:

(1) The performance responses of the system with fault injection are used to determine the effect
of component failures or failure combinations on system safety. Compared with the traditional
safety analysis methods, the determination of failure effects is no longer dependent on analysts’
specific knowledge about the aircraft system.

(2) By using the Monte Carlo simulation method, the cumbersome work of building a Markov model
can be avoided, and the state explosion problem of the Markov process can be resolved to some
extent. Additionally, when the system is modified or changed, the Markov model should be
rebuilt; however, our Monte Carlo simulation algorithm should not be updated.

(3) By using the system development model built by Simulink, the safety assessment can be carried
out in the early stage of system development. Moreover, it is easy to update the safety assessment
results with the design improvement of the FBW system.



Processes 2020, 8, 90 13 of 14

Author Contributions: Conceptualization, Z.L.; methodology, Z.L. and L.Z.; software, Z.L. and X.L.; formal
analysis, Z.L., L.Z. and X.L.; data curation, L.Z. and L.D.; writing—original draft preparation, Z.L. and L.D.;
project administration, Z.L.; funding acquisition, Z.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported in part by the National Natural Science Foundation of China under Grant
U1733124, in part by the Aeronautical Science Foundation of China under Grant 20180252002, and in part by the
Fundamental Research Funds for the Central Universities of NUAA under Grant 3082018NT2018019.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. SAE International S-18 Committee. ARP4754A: Guidelines for Development of Civil Aircraft and Systems;
Society of Automotive Engineers: Warrendale, PA, USA, 2010; pp. 31–37.

2. SAE International S-18 Committee. ARP4761: Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne System and Equipment; Society of Automotive Engineers: Warrendale, WA, USA,
1996; pp. 22–28.

3. Joshi, A.; Heimdahl, M.P.E. Model-Based Safety Analysis of Simulink Models Using SCADE Design Verifier.
In Proceedings of the 24th International Conference on Computer Safety, Reliability and Security, Fredrikstad,
Norway, 28–30 September 2005.

4. Joshi, A.; Heimdahl, M.P.E. NASA/CR-2006-213953: Model-Based Safety Analysis; NASA: Washington, DC,
USA, 2006; pp. 1–22.

5. Chen, L.; Jiao, J.; Zhao, T. Review for model-based safety analysis of complex safety-critical system. J. Syst.
Eng. Electron. 2017, 39, 1287–1291.

6. Dominguez-Garcia, A.D.; Kassakian, J.G.; Schindall, J.E.; Zinchuk, J.J. An integrated methodology for the
dynamic performance and reliability evaluation of fault-tolerant systems. Reliab. Eng. Syst. Saf. 2008, 93,
1628–1649. [CrossRef]

7. Dominguez-Garcia, A.D.; Kassakian, J.G.; Schindall, J.E.; Zinchuk, J.J. On the use of behavioral models for
the integrated performance and reliability evaluation of fault-tolerant avionics systems. In Proceedings of
the IEEE/AIAA 25th Digital Avionics Systems Conference, Portland, OR, USA, 15–18 October 2006.

8. Chiacchio, F.; D’Urso, D.; Compagno, L.; Pennisi, M.; Pappalardo, F.; Manno, G. SHyFTA, a Stochastic Hybrid
Fault Tree Automaton for the modelling and simulation of dynamic reliability problems. Expert Syst. Appl.
2016, 47, 42–57. [CrossRef]

9. Ping, M.; Zhang, X.; Gao, Z.; Li, W. Simulation model development of three-stage synchronous generator for
aircraft power systems based on modelica. In Proceedings of the 19th International Conference on Electrical
Machines and Systems, Chiba, Japan, 13–16 November 2016.

10. Hu, W.; Wei, X.; Xie, X. Modeling and Simulation of Micro Hydraulic Transducer Based on Component
Library. Adv. Mater. Res. 2012, 505, 106–111. [CrossRef]

11. Goncalves, P.; Sobral, J.; Ferreira, L.A. Unmanned aerial vehicle safety assessment modelling through Petri
Nets. Reliab. Eng. Syst. Saf. 2017, 167, 383–393. [CrossRef]

12. Flammini, F.; Marrone, S.; Mazzocca, N.; Vittorini, V. A new modeling approach to the safety evaluation of
N-modular redundant computer systems in presence of imperfect maintenance. Reliab. Eng. Syst. Saf. 2009,
94, 1422–1432. [CrossRef]

13. Kleyner, A.; Volovoi, V. Application of Petri nets to reliability prediction of occupant safety systems with
partial detection and repair. Reliab. Eng. Syst. Saf. 2010, 95, 606–613. [CrossRef]

14. Wang, H.; Ning, B.; Chen, T. Route safety verification of train control system by FTA modeling in SCADE.
In Proceedings of the 2018 IEEE International Conference on Intelligent Transportation Systems, Maui, HI,
USA, 4–7 November 2018.

15. Wang, H.; Zhong, D.; Zhao, T. Integrating Model Checking with SysML in Complex System Safety Analysis.
IEEE Access 2019, 7, 16561–16571. [CrossRef]

16. Clegg, K.; Mole, L.; Stamp, D. A SysML Profile for Fault Trees-Linking Safety Models to System Design.
In Proceedings of the 38th International Conference on Computer Safety, Reliability, and Security, Turku,
Finland, 11–13 September 2019; pp. 85–93.

17. Bozzano, M.; Cimatti, A.; Katoen, J.P. Safety, Dependability and Performance Analysis of Extended AADL
Models. Comput. J. 2011, 54, 754–775. [CrossRef]

http://dx.doi.org/10.1016/j.ress.2008.01.007
http://dx.doi.org/10.1016/j.eswa.2015.10.046
http://dx.doi.org/10.4028/www.scientific.net/AMR.505.106
http://dx.doi.org/10.1016/j.ress.2017.06.021
http://dx.doi.org/10.1016/j.ress.2009.02.014
http://dx.doi.org/10.1016/j.ress.2010.01.008
http://dx.doi.org/10.1109/ACCESS.2019.2892745
http://dx.doi.org/10.1093/comjnl/bxq024


Processes 2020, 8, 90 14 of 14

18. Correa, T.; Becker, L.B.; Farines, J.M.; Bodeveix, J.P.; Filali, M.; Vernadat, F. Supporting the Design of Safety
Critical Systems Using AADL. In Proceedings of the 15th IEEE International Conference on Engineering of
Complex Computer Systems, Oxford, UK, 22–26 March 2010.

19. Gu, B.; Dong, Y.; Wei, X. A Qualitative Safety Analysis Method for AADL Model. In Proceedings of the 2014
IEEE 8th International Conference on Software Security and Reliability-Companion, San Francisco, CA, USA,
30 June–2 July 2014.

20. Batteux, M.; Prosvirnova, T.; Rauzy, A.; Kloul, L. The AltaRica 3.0 Project for Model-Based Safety Assessment.
In Proceedings of the 11th IEEE International Conference on Industrial Informatics, Bochum, Germany,
29–31 July 2013.

21. Bozzano, M.; Cimatti, A.; Lisagor, O.; Mattarei, C.; Mover, S.; Roveri, M.; Tonetta, S. Safety assessment of
AltaRica models via symbolic model checking. Sci. Comput. Program. 2015, 98, 464–483. [CrossRef]

22. Ding, Y.; Li, W.; Zhong, D.; Huang, H.; Zhao, Y.; Xu, Z. System States Transition Safety Analysis Method
Based on FSM and NuSMV. In Proceedings of the 2nd International Conference on Management Engineering,
Software Engineering and Service Sciences, Wuhan, China, 13–15 January 2018.

23. Bozzano, M.; Villafiorita, A. The FSAP/NuSMV-SA safety analysis platform. Int. J. Softw. Tools Technol. Transf.
2007, 9, 5–24. [CrossRef]

24. Lipaczewski, M.; Ortmeier, F.; Prosvirnova, T. Comparison of modeling formalisms for Safety Analyses:
SAML and AltaRica. Reliab. Eng. Syst. Saf. 2015, 140, 191–199. [CrossRef]

25. Septavera, S.; Yiannis, P. Intergrating model checking with Hip-HOPS in model-based safety analysis. Reliab.
Eng. Syst. Saf. 2015, 135, 64–80.

26. Kabir, S.; Walker, M.; Papadopoulos, Y. Dynamic system safety analysis in HiP-HOPS with Petri Nets
and Bayesian Networks. Saf. Sci. 2018, 105, 55–70. [CrossRef]

27. Fukano, Y. Development of safety assessment methodology on fuel element failure propagation in SFR
and its application to Monju. J. Nucl. Sci. Technol. 2015, 52, 178–192. [CrossRef]

28. McRuer, D.; Myers, T.; Thompson, P. Literal singular-value-based flight control system design techniques.
J. Guid. Control Dyn. 1989, 12, 913–919. [CrossRef]

29. Birolini, A. Reliability Engineering: Theory and Practice, 7th ed.; Springer: Berlin, Germany, 2014; pp. 533–558.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scico.2014.06.003
http://dx.doi.org/10.1007/s10009-006-0001-2
http://dx.doi.org/10.1016/j.ress.2015.03.038
http://dx.doi.org/10.1016/j.ssci.2018.02.001
http://dx.doi.org/10.1080/00223131.2014.939117
http://dx.doi.org/10.2514/3.20500
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Nominal Model of a Typical FBW System 
	System Modeling via Simulink 
	The Definition of the FBW System Safety Requirement 

	Extension of the Nominal Model 
	Failure Modes and Their Mathematical Model 
	Failure Mode Modeling via Simulink 
	The Fault Injecting Method 

	Probability Calculation of Unsafe Conditions Based on Monte Carlo Simulation 
	Case Study and Discussion 
	Conclusions 
	References

