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Abstract: The toxic pollutants phenol and cyanide in the bio-treated effluent of coking wastewater
still need advanced treatment to meet environmental requirements. In this study, activated carbon
prepared from municipal sludge and bamboo waste (SBAC) was used for simultaneous adsorption
of phenol and cyanide from bio-treated effluent of coking wastewater. The results showed that the
optimum removal efficiencies of volatile phenol (69.7%) and total cyanide (80.1%) were observed at a
SBAC dosage of 8 g/L, a pH value of 8.0, and a contact time of 80 min. The physical and chemical
properties of SBAC were analyzed using Brunauer–Emmett–Teller (BET) surface area (SBET), scanning
electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. SBAC had high SBET

(289.58 m2/g) and rich mesoporous structure (average pore diameter of 3.688 nm), and carboxylic
groups on SBAC surfaces were enhanced due to the addition of bamboo waste. In addition,
a kinetic model of pseudo-first-order fitted well with the experimental data of volatile phenol, while
the adsorption of total cyanide onto the SBAC was better described by a pseudo-second-order
kinetic model.
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1. Introduction

In China, approximately 31.2 million tons of coking wastewater were produced from coal gas
purification, coal coking, and the by-products recovery process of coking in 2017 [1]. Coking wastewater
contains a large amount of organic pollutants, such as phenol and cyanide, which are highly toxic to
both human and aquatic life even at low concentrations [2]. Therefore, it is critical to treat coking
wastewater before it is discharged into the environment.

To date, numerous methods have been developed and applied to coking wastewater treatment [3–5],
however, biological technologies are still widely used in China because they are eco-friendly methods
for degrading organic pollutants into harmless substances [5,6]. It is reported that almost 95–98%
of the organics in coking wastewater can be removed by biological degradation, but the phenol and
cyanide contents in the bio-treated effluent still need further treatment to meet strict environmental
requirements [1]. Therefore, filtration, coagulation, adsorption, and ozonation are used in the advanced
treatment of coking wastewater after biological treatments [6–10]. Adsorption with activated carbon
(AC) has been considered one of the most attractive techniques due to its simplicity and high removal
performance [11,12]. However, the application of commercial AC in wastewater treatment is limited
by its high-cost and non-renewable nature, therefore, many efforts have recently been made to prepare
AC from renewable, abundant, and low-cost biomass [13–15]. For example, Singh et al. [15] used
copper-impregnated coconut shell AC (Cu-CSAC) in a binary aqueous solution of phenol and cyanide,

Processes 2020, 8, 82; doi:10.3390/pr8010082 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr8010082
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/1/82?type=check_update&version=2


Processes 2020, 8, 82 2 of 11

and the results showed that the optimal adsorption efficiencies for phenol (71.43%) and cyanide (86.8%)
were observed at the temperature of 30 ◦C, the pH of 8, and the adsorbent dose of 40 g/L.

Sludge is an inevitable by-product of municipal wastewater treatment plants (WWTPs). About
13 million tons (dry weight) of municipal sludge (MS) were produced in China in 2016 [16]. Preparation
of AC from MS by pyrolysis/activation is a promising method for the sustainable management of
MS, since MS is a carbon-rich, renewable, and readily accessible resource [12,17]. Nevertheless,
the adsorption capacities of sludge-based AC (SAC) to contaminants are usually low due to the
relatively high ash and inorganics in the MS [18]. Therefore, a wide variety of agricultural wastes, nuts,
and plant leaves have been added into MS to improve its surface area, internal pore structure, and the
chemical functional groups present on its surface [19,20]. Recent research has found that bamboo waste
(BW) is a promising type of additive in the pyrolysis of MS because of its high lignocellulose content
and specific morphological properties [21,22]. The hemicellulose and cellulose in BW are pyrolyzed
to produce tar at 220–315 ◦C and 315–400 ◦C, respectively [23], and some tars are continuously
decomposed above 400 ◦C into pyrolytic gas, promoting the formation of micropores [21]. Moreover,
the AC prepared from BW has expanded carbon nanotubes and rich aromatic structures [22]. Currently,
SAC has showed potential in removing metals, phenol, or cyanide from single or binary aqueous
solutions [24]. However, the utilization of SAC for the co-adsorption of phenol and cyanide from real
wastewater has not been reported yet.

Consequently, in this study, the AC produced from MS and BW (SBAC) was used for the
simultaneous adsorption of volatile phenol and total cyanide from bio-treated effluent of real
coking wastewater. The optimal values for operational parameters such as SBAC dosage, initial
pH, and contact time for efficient adsorption of phenol and cyanide in coking wastewater were
investigated. Simultaneously, the adsorption mechanism of phenol and cyanide was determined by
analyzing the physical and chemical properties of SBAC using scanning electron microscopy (SEM) and
Fourier transform infrared spectrometer (FTIR). Additionally, the adsorption of phenol and cyanide
onto SBAC was evaluated using adsorption kinetic models.

2. Materials and Methods

2.1. Precursor of SBAC

The MS used in this study was collected from a dewatering room of the Qiaobei WWTP in Nanjing,
China. The BW was obtained from a furniture factory in Nanjing, China. The characteristics of MS and
BW are shown in Table 1. The MS and BW were dried to constant weight at 105 ◦C using a drying oven
(DGG-9030A, Donglu, Shanghai, China) and then crushed and sieved to a size below 80-mesh. Finally,
these two powders were separately packed in sealed plastic bags and stored in a desiccator until use.

Table 1. Characteristics of municipal sludge (MS) and bamboo waste (BW).

Parameters
Volatile

Solids (VS)
(dw %)

Ash (dw %)
Water

Content
(ww %)

C (dw %) H (dw %) N (dw %)

MS 62.01 37.99 78.86 26.5 6.24 4.08
BW 98.64 1.36 9.94 48.5 3.35 0.75

dw: dry weight. ww: wet weight.

2.2. Preparation of SBAC

The dry MS and BW were mixed well in a stainless steel reactor with mass ratio of 2:1, and then
soaked in 5 mol/L of ZnCl2 solution (ZnCl2: raw material = 3:1, w/w) for 24 h. Next, the mixture was
centrifuged at 1176× g for 3 min. Afterwards, the sediment was dried at 105 ◦C for 12 h, carbonized
at 550 ◦C for 30 min in a resistance furnace (SX-12-10, Xinyi, Shanghai, China), and cooled to room
temperature overnight. Next, the carbonized product was immersed in 1.0 mol/L HCl for 5 min at
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room temperature, and the above step was repeated three times. Finally, the product was rinsed to
neutral pH with deionized water, dried, and pulverized to below 80-mesh to obtain SBAC.

The preparation steps of SAC were similar to that of SBAC, except that no BW was added to
the MS.

2.3. Characteristics of SBAC

The porosity and surface area of SAC and SBAC samples were measured by a surface area pore
analyzer (Micrometrics, ASAP2020, Norcross, GA, USA). The Brunauer–Emmett–Teller (BET) surface
area (SBET) was calculated by use of the BET equation. The total pore volume (VT) was determined at
relative pressure of 0.995, and the micropore volume (Vmic) was analyzed by the de Boer method [25].
The average pore diameter (DP) of the SBAC was calculated using the equation 4VT/SBET [26].

The surface morphology of SAC and SBAC was measured by a SEM microscope (QUANTA 200,
FEI, Hillsboro, OR, USA). The surface functional groups on the SAC and SBAC were evaluated with a
FTIR spectrometer (IR-360, Nicolet, Madison, WI, USA), and the spectra were obtained in a wavelength
rang of 400–4200 cm−1.

2.4. Adsorption Tests

Adsorption tests of SBAC were performed in three trials, using coking wastewater as adsorbate.
The coking wastewater was taken from the bio-treated effluent in Shougang Jingtang Iron and Steel Co.,
Ltd. (Tangshan, China). The characteristics of the wastewater are summarized in Table 2. The coking
wastewater was stored at 4 ◦C to avoid any changes in physical and chemical properties before use.

Table 2. Characteristics of coking wastewater.

Parameters Coking Wastewater

Chemical oxygen demand (COD) (mg/L) 2457.6 ± 125.4
Ammonia nitrogen (mg/L) 316.3 ± 24.2

Total cyanide (mg/L) 35.4 ± 1.5
Volatile phenol (mg/L) 227.5 ± 7.6

Suspended solids (SS) (mg/L) 76.9 ± 6.5
pH 8.1 ± 0.8

Operational parameters are important variables affecting the adsorption process. The pH influences
the surface charge and functional groups of absorbent, as well as the ionization capacity of the
adsorbate [27]. Contact time is another important parameter to determine the equilibrium time and
kinetics of adsorption process [12]. Larger surface area and more binding sites were found with
increase of adsorbent dosage, which directly affects the removal efficiency of absorbate [28]. Therefore,
the effects of different adsorption parameters such as initial pH (4–10), contact time (0–120 min),
and adsorbent dosage (1–12 g/L) on adsorption process were investigated. All adsorption experiments
were performed in 250.0-mL conical flasks, in each of which 100.0 mL of coking wastewater and different
amounts of SBAC were placed. The solutions were shaken at 100 rpm using a thermostatic shaker
incubator (SHZ-82, Changzhou Guohua Electric Appliance Co., Ltd., Changzhou, China). The initial
pH values were adjusted by adding 1.0 M of hydrochloric acid or 1.0 M of sodium hydroxide solution.
At the end of each experiment, samples were filtered through 0.45-µm Millipore HA membranes
(Millipore, Billerica, MA, USA), and the concentrations of volatile phenol and total cyanide in the
filtrates were determined.

All experiments were conducted in triplicate, and the average and standard deviation values
were recorded.
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2.5. Analytical Methods

The COD, ammonia nitrogen, water content, VS, and SS were measured according to standard
methods [29]. The pH was measured by a pH meter (PHS-3C, Leici, Shanghai, China). The elemental
composition of the MS and BW (C, H, and N) was determined by an automatic elemental analyzer
(Vario EL cube, Elementar, Hanau, Germany). The concentrations of volatile phenol and total cyanide
in the coking wastewater were determined by 4-aminoantipyrine (20, pp. 1014) and pyridine-barbituric
acid (20, pp. 607) spectrophotometry, respectively [29].

The removal efficiency (E, %) and the equilibrium adsorption capacity (qe, mg/g) of SBAC on
volatile phenol and total cyanide were calculated using Equations (1) and (2):

E =
C0 −Ce

C0
× 100% (1)

qe =
(C0 −Ce) ×V

W
(2)

where qe represents the amount of pollutants adsorbed in mg per g of SBAC at equilibrium conditions;
C0 and Ce are initial and equilibrium concentrations of volatile phenol or total cyanide (mg/L),
respectively; V is the volume of coking wastewater (L); and W is the weight of SBAC (g).

3. Results and Discussion

3.1. Characterizations of the SBAC

3.1.1. BET Surface Area and Pore Structure

Nitrogen (N2) adsorption–desorption isotherms of SAC and SBAC are shown in Figure 1.
According to the International Union of Pure and Applied Chemistry (IUPAC) classification, the shape
of isotherms and hysteresis loops were classified as Type II with H3 hysteresis, which indicated that
the SAC and SBAC samples had mesoporous structures [30]. Simultaneously, it can be seen that
the adsorbed volume of SBAC was almost twice that of the SAC, indicating that SBAC had a richer
mesoporous structure than SAC.
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The pore structure characteristics of SAC and SBAC are listed in Table 3. The Dp of SBAC was
3.688 nm, which was much lower than that of SAC (10.941 nm). The SBET of the SBAC was found to be
289.578 m2/g with a VT of 0.267 cm3/g, which were almost 4.08 and 1.38 times higher than that of the
SAC, respectively. It is argued that the addition of BW was effective in enhancing the surface area and
pore volume by converting macropores or mesopores to micropores. As previously reported, when
the temperature is above 400 ◦C, some tar produced from hemicellulose/cellulose in BW is broken
down and converted into pyrolytic gas, thereby promoting the formation of pores [21]. Therefore,
the addition of BW to improve carbon content in MS was the most likely reason for the significant
increase in the surface area and pore volume of SBAC.

Table 3. Characteristics of porous structure of SAC and SBAC.

Samples SBET (m2/g)
Micropore Surface

Area (m2/g) VT (cm3/g) Vmic (cm3/g) Dp (nm)

SAC 70.921 18.568 0.194 0.016 10.941
SBAC 289.578 70.523 0.267 0.049 3.688

3.1.2. SEM Analyses

SEM analysis results of the SAC and SBAC samples are shown in Figure 2. Unlike the flaky and
massive particles on the surface of the SAC, the SBAC exhibited a more irregular and looser surface
morphology. These surface features might provide sufficient diffusion spaces for contaminants in the
coking wastewater.
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Figure 2. SEM images of (a) SAC and (b) SBAC.

3.1.3. FTIR Analysis

It is well known that the adsorption performance of AC is strongly affected by functional groups
such as carboxyl, carbonyl, phenolic hydroxyl, and lactones on the surface [30,31]. FTIR spectra
of the SAC and SBAC samples are shown in Figure 3. The broad absorption band in the range of
3300–3600 cm−1 is ascribed to the O-H stretching vibrations, which correspond to associated peaks of
hydroxyl groups from phenols and alcohols [19]. The distinctive peak observed at 1624 cm−1 can be
attributed to the C=O and C=C vibration of carbonyl in carboxylic or ester groups [32]. The absorption
peak at 1383 cm−1 seems to be due to the lactone groups [33]. The relatively intense band at 1042 cm−1

can be attributable to alcohol groups (C-OH) [32]. In addition, the peaks at 465 cm−1 represented the
C-H stretching vibration [33]. In this study, the addition of BW led to an increase of oxygen-containing
functional groups (C-OH, O-H, and C=O), which might contribute to the adsorption of total cyanide.
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3.2. Adsorption Performances of SBAC

3.2.1. Effect of Initial pH

The effect of initial pH on the removal efficiencies of volatile phenol and total cyanide in coking
wastewater was assessed at a SBAC dosage of 8 g/L and a contact time of 80 min. As shown in Figure 4,
the removal efficiencies of volatile phenol increased at first and then decreased with the increase of pH,
and the maximal removal efficiency (71.3%) was observed at pH 7.0. On the other hand, as the pH
increased from 4.0 to 8.0, the removal efficiencies of total cyanide increased rapidly from 27.9% to 80.1%,
and then maintained relative stability. Based on the above results, the optimal pH was determined to
be 8.0 for simultaneous removal of volatile phenol and total cyanide in coking wastewater.

The adsorption of AC on phenol and cyanide may not only be related to the pore structure, but also
affected by the types of functional groups and the chemical nature of absorbate. Changes in the pH
might alter the electron-withdrawing effect of oxygen-containing functional groups on the surface of
SBAC, thereby changing the π–π interaction between the pollutant molecules [34]. In addition, under
strong alkaline conditions, the enhanced competition of ammonia nitrogen with phenols and cyanide
might be another cause of the decrease in removal efficiency.
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3.2.2. Effect of Contact Time

The effect of contact time on the removal efficiencies of volatile phenol and total cyanide in coking
wastewater was investigated at a SBAC dosage of 8 g/L, a pH of 8.0, and a temperature of 25 ◦C. It can
be seen from Figure 5 that in the first 60 min, the removal efficiencies of volatile phenol and total
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cyanide increased significantly, and remained relatively stable after 80 min. The maximal removal
efficiencies of volatile phenol and total cyanide reached 69.7% and 80.1%, respectively. This might be
owing to the fact that there were more available active sites on the surface of SBAC in the initial stage
of adsorption, and, simultaneously, a higher concentration gradient between wastewater and SBAC
was more conducive to the mass transfer of phenol and cyanide to SBAC [12]. However, with the
passage of time, the vacant sites and active functional groups on the SBAC reached saturation, leading
to the termination of phenol and cyanide adsorption [34].Processes 2020, 8, 82 7 of 11 
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3.2.3. Effect of SBAC Dosage

The effect of SBAC dosages (1–12 g/L) on the volatile phenol and total cyanide removal in coking
wastewater was evaluated at a contact time of 80 min, a pH of 8.0, and a temperature of 25 ◦C. The result
is shown in Figure 6. It can be seen that the removal efficiencies of volatile phenol and total cyanide
increased gradually to 69.7% and 80.1%, respectively, with SBAC dosage increasing from 1 to 8 g/L.
This phenomenon can be explained as follows: with the increase of SBAC dosage, the provided
adsorption surface area and active sites were enhanced [35]. However, no significant changes in
volatile phenol and total cyanide were observed when the SBAC dosage exceeded 8 g/L, probably due
to the fact that at high SBAC dosage the overlap of some active sites not only reduced the surface area
for adsorption, but also decreased the odds of point contacts between SBAC and contaminants [15].
It was also found that the SBAC dosage in this study was higher than other adsorption studies of only
phenol or cyanide, which might be attributed to the competitive adsorption of other pollutants in the
coking wastewater.
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3.3. Kinetics of Volatile Phenol and Total Cyanide

In this study, pseudo-first-order [36] and pseudo-second-order kinetic models [37] were used
for the experimental data to evaluate the adsorption mechanism of volatile phenol or total cyanide
onto the SBAC. The linear form of pseudo-first and pseudo-second order kinetic models are shown as
Equations (3) and (4), respectively.

ln(qe − qt) = ln qe − k1t (3)

t
qt

=
1

k2qe2 +
t
qe

(4)

where qt is the adsorption amount (mg/g) of volatile phenol or total cyanide at time t (min), and the k1

and k2 are the rate constants of the pseudo-first-order (1/min) and pseudo-second-order adsorption
(g/(mg·min)), respectively.

The average relative error (ARE) between the experimental data (qexp
e ) and calculated values (qcal

e )
was used to validate the goodness of fit of the kinetic models [15]. ARE is calculated according to
Equation (5):

ARE(%) = 100/N ×

√√√√ P∑
i=1

(
qexp

e,i − qcal
e,i

qexp
e,i

)

2

(5)

where N is the number of observations in the kinetic experiment, and P is the number of parameters in
the regression model. The smaller ARE values indicate more accurate estimation of qe [15].

The linear form of the pseudo-first-order and pseudo-second-order kinetic models for volatile
phenol and total cyanide on the SBAC is presented in Figure 7 and Table 4. For the volatile
phenol adsorption, both pseudo-first-order and pseudo-second-order kinetic models fitted well
with experimental data, and the corresponding correlation coefficients (R2) were 0.974 and 0.991,
respectively. However, the calculated qe values (qcal

e ) obtained from the pseudo-first-order model
(20.46 mg/g) were closer to the experimental value (20.02 mg/g) than the value determined by the
pseudo-second-order model (25.38 mg/g). This indicated that the pseudo-first-order equation might
be more suitable for describing the mechanism of phenol–SBAC interactions. For the total cyanide
adsorption, the R2 of pseudo-first-order was higher than that of pseudo-second-order, but the qe value
determined from the pseudo-second-order model was more consistent with the experimental value.
Therefore, it is proposed that the pseudo-second-order kinetic model should be used to describe the
adsorption of cyanides onto SBAC, which is in line with a previous study [34].
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Table 4. Parameters of kinetic modeling of the adsorption of volatile phenol and total cyanide
onto SBAC.

Kinetic Modeling
Parameters

Pseudo-First-Order Pseudo-Second-Order
qexp

e
k1 qcal

e R2 ARE k2 qcal
e R2 ARE

Volatile phenol 0.0351 20.46 0.9737 1.29 0.0013 25.38 0.9912 25.64 20.02
Total cyanide 0.0553 6.17 0.9804 89.26 0.0063 4.18 0.9605 28.22 3.26

3.4. Cost Analysis

In this section, the cost of production per kilogram SBAC is roughly calculated based on raw
material fees, reagent fees, water fees, and electricity fees. The one-time investment costs, depreciation
costs, freight costs, and labor costs were not included. The industrial water and electricity costs,
as well as sludge treatment compensation, were calculated according to the standard in Nanjing,
China. The calculation results are described in Table 5. It can be seen that the cost per kilogram of
SBAC production was about 0.840 USD, which is cheaper than commercial AC (2.0–2.2 USD/kg) [38].
According to gross cost estimate from previous literature, the cost of sludge-based adsorbents
(0.1–0.2 USD/kg) is only 5–10% of commercial AC [39]. In this study, the data used for cost analysis are
derived from laboratory studies, and the costs of SBAC production are expected to be reduced through
large-scale production.

Table 5. Cost analysis of SBAC.

Materials and Energy Consumption Unit Cost Cost (USD)

ZnCl2 (recovery rate of 70%) 0.315 kg 1.227 (USD/kg) 0.387
HCl 0.169 kg 45.984 (USD/t) 0.008

Water 51.240 L 0.859 (USD/kg) 0.044
Electricity 6.5 kWh 0.104 (USD/kWh) 0.676

BW 0.562 kg 0.359 (USD/kg) 0.202
By-product tar 0.52 kg 308.955 (USD/t) −0.306

Sludge treatment compensation 7.460 kg 22.992 (USD/t) −0.171
Total (USD/kg) 0.840

4. Conclusions

When SBAC was applied as absorbent for coking wastewater treatment, volatile phenol and total
cyanide were rapidly adsorbed. For the highest removal efficiencies of volatile phenol (69.7%) and
total cyanide (80.1%) in the coking wastewater, the optimized SBAC dosage was 8 g/L, the pH was 8.0,
and the contact time was 80 min. Due to the addition of BW, a high surface area (289.578 m2/g) with
the presence of a rich mesoporous structure might be the main reason for the adsorption of volatile
phenol and total cyanide over the SBAC. Simultaneously, the increase of oxygen-containing functional
groups (-OH, C=O) on the surface of SBAC might be more conducive to driving the chemisorption
process of cyanide. In addition, the kinetic model of pseudo-first-order fitted well to the experimental
data of volatile phenol, while the adsorption of total cyanide onto SBAC should be described by the
pseudo-second-order kinetic model. The cost analysis based on experimental data indicated that the
SBAC was more economical than commercial AC, and its production cost might be further reduced by
mass production.
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