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Abstract: Early-stage fault detection and diagnosis of distillation has been considered an essential 

technique in the chemical industry. In this paper, fault diagnosis of a distillation column is 

formulated as an inverse problem. The nonlinear least squares algorithm is used to evaluate fault 

parameters embedded in a nonlinear dynamic model of distillation once abnormal symptoms are 

detected. A partial least squares regression model is built based on fault parameter history to 

explicitly predict the development of fault parameters. With the stripper of Tennessee Eastman 

process as example, this novel approach is tested for step- and random-type faults and several 

factors affecting its efficiency are discussed. The application result shows that the hybrid inverse 

problem approach gives the correct change of fault parameter at a speed far faster than the base 

approach with only a nonlinear model. 
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1. Introduction 

Distillation is a widely used energy consuming unit operation in modern petroleum and 

chemical industries. Its separation on raw materials, intermediate products, and crude products 

exerts a strong influence on the energy consumption and product quality of the industrial process 

involved. The fault diagnosis technique benefits from catching the deterioration symptom of critical 

parameters in time and predicting their deterioration trend effectively when a distillation column 

enters an abnormal state. To improve the reliability of control systems, the problem of fault detection 

and diagnosis has been paid more attention over the past two decades. A robust fault diagnostic 

method for multiple open-circuit faults and current sensor faults in three-phase permanent magnet 

synchronous motor drives has been proposed by Jlassi [1]. The proposed observer-based algorithm 

relies on an adaptive threshold for fault diagnosis. A composite fault tolerant control (CFTC) with 

disturbance observer scheme has been considered for a class of stochastic systems with faults and 

multiple disturbances [2]. The problem of fault diagnosis for a class of nonlinear systems has been 

investigated via the hybrid method of an observer-based approach and homogeneous polynomials 

technique [3]. As one of the quantitative model-based fault diagnosis methods for the distillation 

process, the parameter estimation method identifies the process parameters of physical meaning, 

such as the heat transfer coefficient, thermal resistance, etc., and hereby explains abnormal reasons 

based on the relationship between input and output signals. From the point of view of control theory, 

the parameter estimation method provides a closed loop structure with a good computational 

stability and convergence since parameters are input into the reasoning model again after estimation. 



Processes 2020, 8, 55 2 of 19 

 

Based on a nonlinear dynamic model, parameter estimation, however, becomes a nonlinear 

optimization problem, whose heavy computational load is a serious bottleneck limiting its 

application. Some improvements have therefore emerged in the last decade to simplify both the 

model and algorithm. For example, a hybrid fault detection and diagnosis scheme was implemented 

in a two-step pattern, that is, neural networks were activated to deduce the root reason for a fault 

state after the fault-related section of a plant was located by a Petri net [4]. A fault diagnosis technique 

was proposed based on multiple linear models, in which several linear perturbation models suitable 

for various operation regimes were identified by a Bayesian approach and then combined with a 

generalized likelihood ratio method to perform fault identification tasks [5]. A fault detection and 

diagnosis scheme, which uses one tier of a nonlinear rigorous model and another tier of a linear 

simplified model to monitor the distillation process and identify abnormal parameters, respectively, 

was developed to consider the accuracy and speed of nonlinear and linear models simultaneously 

[6]. A three-layer nonlinear Gaussian belief network was constructed and trained to extract useful 

features from noisy process data, where the absolute gradient was monitored for fault detection and 

a multivariate contribution plot was generated for fault diagnosis [7]. 

The determination of fault parameters on the basis of known input and output signals of 

distillation can be approached as the solution of an inverse problem [8–10]. The most widely used 

method to solve such a problem is its least squares (LSQ) formulation as the minimization of an error 

function between the real measurements and their calculated values, similar to the above improved 

parameter estimation methods. Meanwhile, meta-heuristics for LSQ optimization are popular due to 

their inherent advantages, like their global optimum and the few requirements for problem 

formulation [11,12]. However, the running speed of the LSQ-based method is slow owing to its time-

consuming iterative optimization of fault parameters. During iterations, the process of solving the 

forward problem and then adjusting its parameters is repeated until the difference between the 

measured values and the calculated ones reaches a minimum. For this reason, a direct derivation of 

fault parameters from input and output signals instead of trial and error in forward problems is a 

very current topic, such as the decomposition of solution space followed by polynomial 

approximation [13], usage of artificial neural networks (ANN) for the automated reconstruction of 

an inhomogeneous object as pattern recognition [14], and inverse regression between the disturbance 

and characteristic distances based on single variable perturbation [15].  

Based on the LSQ-based fault diagnosis work [16], a hybrid inverse problem approach that uses 

partial least squares (PLS) to fit and forecast trajectories of the fault parameters generated by LSQ is 

proposed in this paper to accelerate the model-based fault diagnosis process. PLS is a popular tool 

for key performance monitoring, quality control, and fault diagnosis in large-scale chemical industry 

[17,18]. It has been improved from relative contributions of process variables or blocks on faults 

[19,20], and the orthogonal decomposition of measurement space before deducing new specific 

statistics with non-overlapped domains [21]. 

This work aims to test the feasibility of an LSQ and PLS combined hybrid inverse problem 

approach for model-based fault diagnosis. In the following sections, the proposed hybrid inverse 

problem solving approach is explained and its positive action in terms of speeding up the diagnosis 

process is proved via a case study of a stripper simulator in the Tennessee-Eastman process (TEP) 

compared to the base approach with LSQ only. The effect of initial values, iteration times, calling 

period, etc. on the performance of the proposed method is also analyzed. 

2. Hybrid Fault Diagnosis Structure 

Figure 1 shows the structure of fault diagnosis formulated as a parameter-estimation inverse 

problem solved by the least squares optimization algorithm. The first step is fault detection, in which 

the system outputs estimated by dynamic simulation with a nonlinear model are compared with 

those measured online from a plant to check whether the present state adheres to its theoretical 

estimation. The difference is defined by statistic Q. When Q is greater than its threshold Qα, the 

process is considered as deviating from its predefined state and the second step, fault diagnosis, is 

conducted. Otherwise, the fault detection step continues. Before fault diagnosis, a dynamic 
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simulation based on the process model should be firstly performed to check its coincidence with real 

measurements from a plant under normal conditions. In this procedure, the model is manually 

calibrated to guarantee the later detected anomaly coming from a fault occurring in the plant other 

than an error of the model [16]. During fault diagnosis, fault parameters are obtained as a solution of 

an inverse problem with LSQ and PLS. PLS regression of fault parameters generated by LSQ is 

utilized to predict fault parameters. PLS also runs when the statistic Q lies within its threshold Qα to 

give continuous fault parameter estimation. Therefore, the aforementioned hybrid inverse problem 

approach to parameter estimation is composed of one complex optimization part with a nonlinear 

model and another simple regression part with a linear model. 

 

Figure 1. Hybrid inverse problem-solving process for fault diagnosis. 

In Figure 1, the nonlinear model is solved once for dynamic simulation at one sampling interval 

to detect any fault, but is solved many times for fault diagnosis. Therefore, fault diagnosis consumes 

more computation time than dynamic simulation based on the same nonlinear model. The hybrid 

inverse problem-solving strategy replaces LSQ with PLS as much as possible since PLS calculates 

fault parameters directly after fitting the relationship of system outputs and fault parameters. 

Therefore, such a hybrid inverse problem approach can be expected to reduce the calculation load of 

fault diagnosis greatly. 

2.1. Obtaining Fault Parameters by the LSQ Algorithm 

The nonlinear fault parameters can be obtained rigorously by minimizing the deviation of 

measurable variables from their unsteady-state simulation values. The deviation r is defined in 

Equation (1) with a normalized version, Equation (2), where ymeas and ysim represent data measured 

and simulated, respectively. It indicates an anomaly when its aggregated index Q exceeds the 

corresponding threshold Qα, as defined in Equations (3) and (4). In this phase, fault parameters θ are 

solved based on an optimization formulation (LSQ) of fault parameters about the mechanism model 

of distillation composed of measurable variables y, manipulated variables u, disturbance ω, and state 

variables x, as shown in Equation (5). 
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As LSQ is essentially nonlinear, it is time-consuming and should not be performed frequently in 

practice. In a small enough range of one time point, fault parameter θ can be considered as a linear 
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variables. Therefore, a revised multiple linear regression method (PLS) is used in this paper to obtain 

the explicit correlation between fault parameters and measurable variables. 
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2.2. Obtaining Fault Parameters by the PLS Algorithm 

Most PLS methods are applied to regression modeling, replacing the general multivariate 

regression and principal component regression to a large extent. Comparatively, PLS can not only 

exclude the correlation of original variables, but also filter the noise of both independent variables 

and dependent variables. Its prediction ability is stronger and more stable because it uses fewer 

characteristic variables to describe the regression model. 

Firstly, the data X = [y u]T∊Rl×n and Y = θ∊Rl×c are normalized and decomposed, respectively, 

where T, P, and E denote the score, load, and residual matrix of X, respectively; U, Q, and F denote 

the score, load, and residual matrix of Y, respectively; and a and n denote the number of PLS 

components and variables, respectively. The external relations are obtained as Equations (8) and (9). 
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Then, their internal relationship is determined as Equation (10). 
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where B is the internal regression matrix. 

The PLS model is finally obtained as Equation (11). 
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When the independent variable X is known, PLS can be used to predict the dependent variable 

Y. The calculation procedure is given in Equations (12) and (13). 
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where t and p represent the element vector in the score and load matrix, respectively; w represents 

the weight vector; h denotes the component index; and E0 = X. 

Therefore, dependent variables can be predicted using Equation (14). 
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2.3. Correcting PLS by LSQ 

Because PLS extracts linear features of fault parameters, it should be corrected continuously by 

LSQ. The correction framework is shown in Figure 2, where the red color loop represents the 

correction process. The rigorous iterative LSQ is performed once to supply one accurate value of fault 

parameters for the PLS training set when an anomaly is detected, not enough sampling points are 

collected, and correction is needed. The main contribution of this work lies in the frequent usage of 

fast PLS prediction of fault parameters instead of slow LSQ in the fault diagnosis algorithm. 

However, compared to LSQ, PLS’ accuracy is limited because of its linear regression essence, so it 

should be corrected periodically by rigorous LSQ results. Sufficient LSQ results are needed to form 
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the training set of the PLS model before PLS correction. Therefore, if not enough sampling points of 

fault parameters are given by LSQ for PLS training, LSQ should be activated correspondingly to 

supply one sampling point of fault parameters into the PLS training set to meet the periodical 

correction requirements of PLS. In this case, the boundary value θ0 in Equation (7) is kept stable and 

accurate, and the prediction accuracy of PLS is guaranteed as a consequence. 

 

Figure 2. Correction framework of partial least squares (PLS) by least squares (LSQ). 

3. Case Study 

The stripper of the TEP simulator [22] is used as an example to test the feasibility of the proposed 

hybrid inverse problem approach to fault diagnosis. The fault set related to this stripper includes two 

types, that is, a step and a random type. This work chooses fault 7 and 8 as typical examples for these 

two types. The advantages and disadvantages of this approach are illustrated in comparison with the 
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on the fault diagnosis process under fault 7. Fault 7 occurs at 8 h when the header pressure loss of the 
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activated to obtain the pressure loss coefficient in a timely manner based on the measurements of a 

plant. 

 

Figure 3. Fault parameter in the base case of fault 7. 

 

Figure 4. Function evaluation in the base case of fault 7. 

(1) Set the initial value with the previous time point 

The simplest value-setting method for the initial value is to directly use one from a previous 

time point. If there are only small changes in the fault parameter between two consecutive time 
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Figure 5 shows the diagnosis result with initial values given by the linear fitting method. It 
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equals 30. After that, a rising function evaluation number curve is seen because of the growing time 

lag of the fitted line. For this reason, 5 or 8 is chosen as the candidate for the optimal fitting point 

number. Because more fitting points will definitely lead to a heavier computational load for the fitting 

operation, 5 is finally chosen as the optimal fitting point number. Despite this, QFE is only cut down 

by 2%, contributing little to the computational efficiency of the diagnosis algorithm. 
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Figure 5. Fault diagnosis of fault 7 with linear fitted initial values. 

(3) Set the initial value with the parabolic fitting method 

Following the linear fitting method presented above, the parabolic fitting method, the simplest 

nonlinear fitting method, is utilized here to predict the initial values. Figure 6 shows the diagnosis 

result with this method, revealing a larger QFE than the base case. This reflects the essentially linear 

change of the fault parameter between neighboring time points. Therefore, the nonlinear fitting 

method does not achieve the satisfactory goal of reducing QFE. 

 

Figure 6. Fault diagnosis of fault 7 with parabola fitted initial values. 
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Figure 7. Fault diagnosis of fault 7 with grey model-predicted initial values. 

3.2. Solving the LSQ Inverse Problem with Different Numbers of Iterations 

As one popular optimization algorithm, LSQ requires a large number of iterations to obtain 

accurate fault parameters at each sampling time, so its high computational cost is its main 

disadvantage. In fact, the aim of fault diagnosis is to find the abnormal trend of fault parameters in a 

timely manner during a given time interval. In this process, completely converged calculation at each 

time point is not necessary. Based on the idea of tracking approximation, the proposal of the present 

paper distributes the inner iterative computation into an outer integration progress to decrease the 

maximum number of iterations at each sampling point. Figure 8 shows the diagnosis result with 

different maximum numbers of iterations. It presents a great decrease of QFE when reducing the 

maximum number of iterations. In particular, when the iteration number equals 1, QFE decreases by 

55% compared to the base case, being far greater than the value obtained by the grey model. 

 

Figure 8. Fault diagnosis of fault 7 with different numbers of iterations. 
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Figure 9. Fault diagnosis of fault 7 with one iteration only. 

3.3. Hybrid Inverse Problem-Solving Strategy 

In the above sections, two kinds of improvements—increasing the prediction accuracy of initial 

values and decreasing the number of iterations—were conducted for the least squares algorithm. The 

computational results show that the latter has a significant effect on the fault diagnosis speed. 

Generally, these algorithms use the passive trial and error method to solve the inverse problem of 

fault diagnosis. Fault parameters are defined as input variables for the system model used by LSQ, 

different from their output variable role defined in the inverse problem. In the following, an 

alternative inverse problem model using a direct mapping of fault parameters from measurements 

will be considered to avoid the time-consuming model solving process. 

In an information view of fault diagnosis, the inverse problem defined herein is a typical 

multiple input-multiple output (MIMO) system in which measurable/controllable variables and fault 

parameters constitute input and output parts, respectively. The linear MIMO model is given by the 

PLS method in this work owing to the small data change for both input and output variables in a 

short sampling interval. Furthermore, periodic correction for this linear model by LSQ is necessary 

to preserve its accuracy. 

Figure 10 shows the comparison of fault diagnosis for the base case and the case using a hybrid 

strategy. It proves the feasibility and accuracy of this strategy, but indicates larger fluctuations of the 

fault parameter with the hybrid algorithm. Therefore, PLS is suitable for replacing LSQ, but its 

application should be controlled properly. Factors affecting the efficiency of this strategy will be 

discussed hereafter. 

 

Figure 10. Fault diagnosis of fault 7 with the hybrid algorithm. 
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(1) Number of PLS components 

PLS is something of a cross between multiple linear regression and principal component 

analysis. It constructs components as linear combinations of the original variables, while allowing for 

correlation between independent and dependent variables. The number of components is therefore 

of primary importance to the accuracy of the PLS model. Figure 11 depicts the percent of variance 

explained in the dependent variable as a function of the component number. A maximum of 16 

components is assumed in Figure 11 because the independent variables consist of a total of 16 

variables for the stripper in TEP. It can be seen that more than 95 percent variance was explained by 

the first three components, which were, accordingly, chosen as the principle components in the 

following PLS modeling process. 

 

Figure 11. Number analysis of PLS components under fault 7. 

(2) Sampling data set for PLS modeling 

The training data sets for PLS modeling were composed of 12 measured variables, 4 manipulated 

variables, and 1 fault parameter. As shown in Figure 1, the fault parameter may be obtained from 

LSQ or PLS, so the PLS model can be built on LSQ-generated fault parameter sets (Vector I) or mixed 

sets (Vector II). 

Figure 12a,b show the fault diagnosis results with Vector II as training data sets for PLS, whereas 
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0 5 10 15 20
0

20

40

60

80

100

Number of PLS components

P
e
rc

e
n
t 

V
a
ri
a
n
c
e
 E

x
p
la

in
e
d



Processes 2020, 8, 55 11 of 19 

 

 
(a) 

 
(b) 

 
(c) 

0 10 20 30 40 50

0.7

0.8

0.9

1

Time (h)

P
re

s
s
u
re

 l
o
s
s
 c

o
e
ff

ic
ie

n
t

 

 

RMSE=0.046716

Base case

Case with LSQ and PLS

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

1.1

Time (h)

P
re

s
s
u
re

 l
o
s
s
 c

o
e
ff

ic
ie

n
t

 

 

RMSE=0.080153

Base case

Case with LSQ and PLS

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (h)

P
re

s
s
u
re

 l
o
s
s
 c

o
e
ff

ic
ie

n
t

 

 

RMSE=0.023085

Base case

Case with LSQ and PLS



Processes 2020, 8, 55 12 of 19 

 

 

(d) 

Figure 12. Fault diagnosis under fault 7 (a) based on Vector II data, but without second PLS; (b) based 

on Vector II data and with second PLS; (c) based on Vector I data, but without second PLS; (d) based 

on Vector I data and with second PLS. 
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Figure 13. Fault diagnosis with different correction intervals of PLS under fault 7 with respect to (a) 

quantity of function evaluations (QFE); (b) the running time; (c) the root mean square error (RMSE). 
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diagnosis process are 5103 seconds and 19,256, respectively. This case is referred to as the base case 

for fault 8 in the following discussions. 

 

Figure 14. Fault parameter in the base case of fault 8. 

 

Figure 15. Function evaluation in the base case of fault 8. 

Similar to Figure 11, Figure 16 shows the percent of variance explained by independent 

components. The first two components make more than 80% contributions and were thus selected as 

the components in PLS modeling under fault 8. 

 

Figure 16. Number analysis of PLS components under fault 8. 
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Figure 17 shows the effect of the correction interval on QFE (a), the running time (b), and RMSE 

(c) under fault 8. We can see that QFE and the running time decrease, but RMSE increases, when 

increasing the correction interval. 5 is chosen as the optimal correction interval since the former two 

indices do not decrease significantly, while RMSE remains small under this choice. Besides, larger 

values of the former two indices than fault 7 are observed in Figure 17, indicating that a random-type 

fault consumes more time than a step-type fault due to its stochastic computing load. 

 
(a) 

 
(b) 

 
(c) 

Figure 17. Fault diagnosis with different correction intervals of PLS under fault 8 with respect to (a) 

QFE; (b) the running time; (c) RMSE. 
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With 5 as the correction interval, the diagnosis result of three compositions in the bottom feed 

of the stripper is shown in Figure 18. It indicates nearly the same composition trajectories for the 

hybrid approach and base case, and proves the feasibility and accuracy of our proposed approach. 

Finally, QFE decreases by 92.31% and the running speed increases about 13 times compared to the 

base case in this situation. 

 
(a) 

 
(b) 

 
(c) 

Figure 18. Fault diagnosis with a hybrid scheme under fault 8 for the (a) composition of A; (b) 

composition of B; (c) composition of C.  
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4. Conclusions  

In this paper, an LSQ and PLS combined hybrid inverse problem approach has been 

proposed to realize model-based diagnosis for the distillation process. LSQ is used to identify 

parameters that best-represent an abnormal state of distillation on the basis of a nonlinear 

dynamic model. PLS regression is then used to fit these parameters with input/output signals 

and forecast their developing trajectories. The correction interval of PLS significantly affects the 

speed and accuracy of the fault diagnosis process. The approach has been carried out to 

successfully identify stripper-related faults in the TEP benchmark process. For fault 7, QFE 

decreases by 81.60% and the running speed increases about 1.7 times compared to the base case. 

For fault 8, QFE decreases by 92.31% and the running speed increases about 13 times compared 

to the base case. Therefore, it has been proven to be a computationally efficient scheme for model-

based diagnosis. In conclusion, compared with a single nonlinear LSQ-based approach, the 

presented hybrid inverse problem approach enables a trade-off between accurate LSQ and fast 

PLS and is more suitable for real-time fault diagnosis. 

In the future, it would be helpful to combine this approach with some process history-based 

approaches, like a bond graph [25], to enhance its vital ability to locate fault-specific sections prior to 

fault diagnosis. 
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Nomenclature 

a Number of PLS components 

B Internal regression matrix of PLS 

c Output variable size of PLS 

E, F Residual matrix after input and output decomposition of PLS, respectively 

h Component index of PLS 

l Sample size 

m Number of measurable variables 

n Variable size of PLS 

P, Q Load vector of PLS input and output matrix, respectively 

q Element in load matrix of PLS output 

Q Fault detection statistic 

r Fault detection deviation 

t, p Element in score and load matrix of PLS input, respectively 

T, U Score matrix of PLS input and output matrix, respectively 

u Manipulated variable vector 

v Regression coefficient of component 

w Weight vector 

x State variable vector 

X Input matrix for PLS 

y Vector of measurable variables 

Y Output matrix for PLS 

Greek Symbols 

θ Fault parameter vector 

α Confidence 

χ Chi square distribution 

ω Disturbance vector 
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Superscripts 

* Normalized 

T Transposition 

^ Prediction value 

Subscripts 

meas Measured value 

sim Simulated value 

Abbreviations 

ANN Artificial neural networks 

LSQ Least squares 

MIMO Multiple input-multiple output 

PLS Partial least squares 

QFE Quantity of function evaluations 

RMSE Root mean square error 
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