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Abstract: This paper presents a multi-objective particle swarm optimization (MOPSO) method for
optimal sizing of the standalone photovoltaic (SAPV) systems. Loss of load probability (LLP) analysis
is considered to determine the technical evaluation of the system. Life cycle cost (LCC) and levelized
cost of energy (LCE) are treated as the economic criteria. The two variants of the proposed PSO
method, referred to as adaptive weights PSO (AWPSOc f ) and sigmoid function PSO (SFPSOc f ), are
implemented using MATLAB software to the optimize the number of PV modules in (series and
parallel) and number of the storage battery. The case study of the proposed SAPV system is executed
using the hourly meteorological data and typical load demand for one year in a rural area in Malaysia.
The performance outcomes of the proposed AW/SFPSOc f methods give various configurations
at desired levels of LLP values and the corresponding minimum cost. The performance results
showed the superiority of SFPSOc f in terms of accuracy is selecting an optimal configuration at fitness
function value 0.031268, LLP value 0.002431, LCC 53167 USD, and LCE 1.6413 USD. The accuracy of
AW/SFPSOc f methods is verified by using the iterative method.

Keywords: standalone PV system; multi-objective optimization; particle swarm optimization; life
cycle cost (LCC); loss of load probability (LLP); levelized cost of energy (LCE)

1. Introduction

Ever-raising energy load demands, the depletion of the fossil fuel resources, and the global
warming encourage energy system designers to optimize their designs. Photovoltaic (PV) systems
can be categorized into three types based on the approach of utilization, namely, SAPV system,
grid-connected PV system, and hybrid PV system, respectively [1–3]. The use of standalone PV (SAPV)
systems can lead to a transformation of technology in terms of “leaving the grid” or “living in off-grid”.
Furthermore, the risk of increasing electricity bills and tariffs will not affect the customers that have
gone off the utility grid [4,5]. However, the expensive cost and limited energy conversion efficiency of
the PV modules are the major obstacles of the SAPV system. Thus, an appropriate design of a SAPV
system is required to fulfill the load demand.

The performance of SAPV system strongly depends on availability of the meteorological data
such as solar irradiation and ambient temperature, load demand, and the associated components.
Techno-economic criteria must be considered at specific levels of reliability with a lower cost. Different
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methodologies have been employed in literature for designing SAPV systems such as intuitive,
analytical, numerical, and artificial intelligence, and hybrid methods [6–8]. In the intuitive method, the
nonlinearity between various sub-systems is ignored. Moreover, the intuitive method uses simple
meteorological data such as worst monthly average, monthly solar irradiation or average annual
which may result in an undesired design of the system. The safety factor is selected during the
designing period by the designers’ experience when the output energy of the PV system is met or
raised the load demand [9]. The optimal size in Ref. [9] is chosen based on economic parameter life
cycle cost (LCC) and energy payback time (EPBT) without considering the reliability of the system
which is recommended to give initial approximation of the PV system. As an example, Abdul et al. [10]
presented an optimal size of a SAPV system in Pakistan, where the annualized life cycle cost (ALCC)
was obtained as the economic criteria. The reliability criteria has not been mentioned in this study.
The monthly average daily solar irradiance has been used which can result over/under sizing of the PV
system. In meanwhile, an analytical method has been considered to correlate the cost and availability
of the system. The size of standalone PV system in this method is calculated by the driving equations.
However, the main obstacle is the complexity in computing the coefficients of the equations of PV
system which are strongly location dependent [11]. In another case, Marco et al. [12] presented a
techno-economic model to optimally optimize the size of a PV/battery combination with grid-connected
system. The hourly meteorological data and load demand distribution have considered in this study as
the input parameters. State of charge (SOC) was used as an objective function, whereas, LCE was used
as an economic criterion. In addition to that, the authors of [13] have investigated six outdoor solar air
conditioners with various sizes of PV panels. A small buffer battery has been used to reduce the cost
and to meet the demand energy. The Loss of power (LL) has been utilized for evaluating the reliability
without considering the cost of the system. The numerical method is considered to be an accurate
method and could overcome the drawbacks of intuitive and analytical methods. However, it takes a
comparatively long execution time. In fact, a design space of the numerical method contains various
configurations of the SAPV system. Each configuration is simulated using hourly meteorological data
and typical load demand at specific level of reliability. Then, the cost is calculated for the configurations
that meet desired reliability of the system. The lower configuration cost with favourable level of
reliability is chosen as an optimal design [14]. Numerous studies based on iterative method can be
reviewed in the literature. Stefano et al. [15] proposed a numerical sizing methodology for off-grid PV
system using daily average meteorological data in a remote area in Uganda. SOC for each step time
and LL during the discharge were used as technical criteria. The value of lost load (VOLL), levelized
cost of supplied and lost energy (LCoSLE) were considered as economic criteria. The authors of [16]
have proposed a sizing methodology of the standalone PV system in Malaysia. Loss of power supply
probability (LPSP) was chosen as the technical criteria and LCE as the economic criteria by considering
amp-hour analysis. However, a linear PV model has been used in this study. Ameen et al. [17],
presented an improved iterative method for finding an optimal configuration of SAPV system in
Yemen. LLP was used as technical criteria and the NPC has been considered as the economic criteria.
Hourly meteorological data and typical load demand were obtained in this study. However, a simple
PV model has been used in the prediction the output power energy. A dynamic model of storage
battery and accurate estimation of SOC are required in sizing of SAPV system to increase the life time
and reducing its replacing time which can decrease the capital cost of the system [18,19].

Recently, artificial intelligence (AI) methods have been extensively applied to find the sizing
of SAPV systems. This may be due to the improved accuracy and reduced execution time of AI
methods. Furthermore, the ability of AI systems such as genetic algorithm (GA) [20], artificial bee
colony (ABC) [21], generalized artificial neural network (GRNN) [22], fuzzy logic [23], firefly methods
(FL) [24], and particle swarm optimization (PSO), to cope up with missing meteorological data, is a
significant advantage. However, the complexity in designing of an SAPV system is the main drawback
of AI methods. The authors of [20] proposed GA to optimize the size of remote PV systems based
on synthetic hourly meteorological data, in Adrar city in South Algeria. In [20], the capital cost
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of the system was employed as an objective function without considering the availability of the
system. However, the proposed GA compared with LPSP method and worst month method based
on cost criteria. The results showed the superiority of the GA method. Chokri et al. [23] presented
FL method to supply energy for a SAPV system in Safax, in the coast of Tunisia. Monthly average
of the daily solar radiation was utilized as input of the proposed sizing algorithm. However, the
cost and level of reliability of the system have not been mentioned. Moreover, the authors of [22]
proposed GRNN method to predict optimal size of the a SAPV system in five Malaysian sites. Hourly
meteorological data and load demand were used in this study. However, the proposed GRNN has
been evaluated based on a single objective function which is the loss of load probability (LLP). Finally,
Nur et al. [24] proposed firefly algorithm sizing algorithm (FLSA) for sizing of a SAPV system. LPSP
was used as a technical parameter whereas the economic parameter was not mentioned. The FLSA
was found faster than PSO, evolutionary programming (EP) and GA. Some of software tools have been
utilized for sizing of a SAPV system based on economic evaluation, and planning and analysis tools
such as PV.sys, Transient System Simulation (TRNSYS), Hybrid Optimization Model for Electrical
Renewable (Homer), improved Hybrid Optimization by Genetic Algorithm (iHOGA), RetScreen, and
System Advisor Model (SAM) [25]. Several studies have employed hybrid methods by combining
two methods or more to find an optimal design of the SAPV system [26–29]. The hybrid methods
overcome the drawbacks of AI methods by high ability of convergence to optimal solutions and
reducing the execution time. In [30], a hybrid method was proposed to optimal size of a SAPV system
by using differential evolution multi-objective optimization (DEMO) and multi-criteria decision making
(MCDM). Set of configurations were conducted by using DEMO algorithm. Then, AHP and TOPSIS
were obtained to select optimal configuration. Techno-economic criteria for minimizing two objectives
was utilized to describe the performance of the proposed method. However, the complexity is one
of the drawbacks of the proposed method. Furthermore, the numbers of series PV and battery are
assumed to be constant during the optimization. Fabian et al. [31] proposed a computational method
for designing off-grid SAPV system by analysing the suppressed demand (SD) effect in south-west
highlands, Bolivia. Three types of electrical load profiles were used based on simulated geographical
data. The LPSP was employed as technical evaluation using two different capacity of the lithium-ion
battery. Whist, the cost of the components of the system was set at 2.5 USD/Wp. The major drawback of
the proposed method in Ref. [31] is by supplying the required load demand only by energy conducted
from storage battery. This will lead not only increasing the replacements of the storage battery but also
raising the cost of the system.

Based on the reviewed literature, multi-objective PSO (MOPSO) method has been not applied
based on three conflicts objectives for SAPV systems. The two variants of MOPSO methods are
proposed to overcome the obstacles of accurate results of intuitive and analytical methods as well as
the long execution time of the numerical methods. In addition, MOPSO method can deal with three
objectives synchronously based on techno-economic criteria. Finally, MOPSO method offers a set of
optimal configurations by considering the given priority weights to the individual objectives. Therefore,
this methodology intends to suggest optimal number of PV array which comprises of parallel and
series PV modules and optimal number of storage battery. The technical criteria is calculated according
to the method of the loss of load probability (LLP) and the economic criteria is computed according to
the method of life cycle cost (LCC) and levelized cost of energy (LCE). The three conflicting objectives:
LLP, LCC, and LCE are weighted, normalized, and then aggregated by a mono-objective function
which is required to be minimized to select an optimal solution as the best solution. The performance
of the proposed AW/SFPSOc f are analysed using hourly meteorological data and typical load demand.
The validation of the two variation of PSO algorithms are verified by using numerical method. The rest
of the paper is organized as follow. Section 2 presents the definitions, concepts, steps of modeling the
SAPV systems. The techno-economic evaluations criteria of the SAPV system are given in Section 3.
The particle swarm optimization and the details of the proposed multi-objective optimization approach
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are given in Section 4. Section 5 explains the energy flow modeling for SAPV system. Section 6 presents
the results and discussions. Finally, Section 7 concludes the work and suggests future directions.

2. The SAPV System Modelling

A common a SAPV system comprises of four main parts, namely, PV array which comprises
numbers of parallel and series PV modules, DC-DC converter, battery storage, and DC-AC inverter.
The PV arrays convert the sunlight into DC current, the storage battery stores the excess energy and the
power electronics invert DC into AC [10,32]. Figure 1 illustrates the block diagram of a SAPV system.
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2.1. Single Diode (SD) Model

The single-diode PV model offers high ability in reflecting the reality behavior when it is dealing
with non-linearity and stochastic nature among other mathematical models [33]. The electrical
equivalent circuit of a single-diode (SD) PV module model is shown in Figure 2. The circuit comprises
an ideal dependent current source, which is the photocurrent (IPh) of solar cell and has high sensitivity
to randomly nature of the meteorological data. Furthermore, the output voltage of the solar cell is
given by the connection of the parallel reverse mode diode with the current source. Parallel resistance
and Rs represent the losses of the PV solar cell. Therefore, the output current of the PV solar cell is
represented by the following equation:

I = IPh − Io

[
exp

(V + IRs

Vt

)
− 1

]
−

V + IRs

Rp
(1)

where IPh refers to the photocurrent, Io denotes the diode reverse saturation currents of the diode (in A),
Rs and Rp are the series and shunt resistances (in Ω), respectively, V is output voltage (in V) and I is
output current (in A) of the solar cell, respectively, and Vt represents the diode thermal voltage (in V)
which is given by,

Vt =
dKBTc

q
(2)

where d refers to the diode ideality factor that represents the diffusion current’s components, KB is the
Boltzmann’s constant (1.3806503×10−19 J/K), Tc represents the cell temperature (K) and q refers to the
electron charge (1.60217646×10−19 Coulombs) where IPh, Io, Rs, Rp and d of Equation (1) are the five
parameters that require great computations efforts to be extracted. These five parameters can also be
sensitive to the operational conditions.
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Figure 2. Solar cell of a single-diode electrical circuit.

The PV array comprises of series Np and parallel Ns modules, respectively. Therefore, the PV
array’s output current can be expressed as follows:

I = NpIPh −NpI0

[
exp

(
1

Vt

(
V
Ns

+
IRs

Np

))
− 1

]
−

Np

Rp

(
V
Rp

+
IRs

Np

)
, (3)

where; IPh, I0, Rs, Rp and d of Equation (1) are the five parameters that extracted by the proposed
Improved electromagnetism-like algorithm (IEM) algorithm the output I-V and P-V characteristics
curves are shown in Figure 3a,b, V, I are the output voltage (A) and current (V) of the PV
array, respectively.
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The PV array’s efficiency can be calculated as follows:

ηPV =
VI

AGT
(4)

where GT is the amount of the solar irradiation fall on the PV array surface W/m2 and A represents
the PV array’s area. Kyocera (KC120-1) multi-crystalline silicon PV module are utilized in this study.
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The PV module’s specification under standard test condition (STC) are given in Table 1. It’s important
to notice that the parameters of SD PV model using IEM algorithm were extracted at maximum
power point (MPP) which cannot translate the actual performance of the PV system. Thus, it needs to
shift to applicable irradiance and temperature levels such as: 840 (W/m2) and 32.170 ◦C, respectively.
Chenlo et al. [34] used five equations for translation curve from MPP to any new point. The root mean
square error (RMSE) difference value between the measurement and simulation data was found 1% by
Hadj Arab et al. [35]. However, the used equations in [34,35] distorted the shape of simulated new
point of the I-V curve and the simulation results demonstrated that solely two equations are required
to establish the I-V curve at under any weather conditions:

Isc(S, T) = I∗sc
G
G∗

+ α(T − T∗), (5)

Voc(S, T) = Voc − β(T − T∗)
G
G∗

+ ηVt ln
( G

G∗

)
, (6)

Table 1. Standalone photovoltaic (SAPV) system’s key specification [36].

Components Characteristics Value

Kyocera KC120-1 PV panels Maximum power at STC 120 (W)
Open circuit voltage 21.5 (V)
Short circuit current 7.45 (A)

Voltage at MPP 16.9 (V)
Current at MPP 7.1 (A)

No. of cells connected in series 36
Nominal operation cell temperature 43.6 (◦C)

Battery Lead acid
Efficiency 85%
Capacity 220 Amp-hours

Maximum DoD 80%
Bus voltage 24 (V)

Battery voltage 6 (V)
Charge controller PS-MPPT-40 Efficiency 95%

Inverter Efficiency 90%
AC voltage Electrical load AC 230 (V)

2.2. Mathematical Model of the Battery

The storage battery capacity (kW) is simulated considering the required load demand and the
days of the autonomy which can be given by [37],

Cbat =
ELoad ∗AD

DOD ∗ ηb ∗ ηinv
(7)

where ELoad is the load demand, AD is the autonomy days (typically 3–5 days) [38], DOD is the depth
of discharge (80%), ηb ∗ ηinv are the battery (85%) and inverter efficiencies (95%).

On the other hand, the state of chare of the storage battery (SOC) is modeled as the following [16]:

Ebat = SOC(t− 1) +
[
Ppv(t) − Pload(t)

]
(8)

SOC(t) =


SOCmin , Ebat < SOCmin

Ebat , SOCmin < Ebat < SOCmax

SOCmax , Ebat > SOCmax

(9)

where SOC(t) and SOC(t− 1) represent the SOC for the storage battery at final and initial points of
charging and discharging, respectively, and Ebat refers to hourly capacity of the battery.
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The minimum energy in the storage battery can be written as:

Ebat_min = SOCmax ∗ (1−DOD) (10)

The annual amount of energy considered to be stored in storage battery can be given by [38],

Ebat =

 365∑
i=1

energy excess−
365∑
i=1

energy de f icit

. ηch (11)

where ηch denotes to the storage battery’s charging efficiency.

3. Evaluations Criteria for the Sizing of Standalone PV System

In SAPV system, the chosen optimal configuration can significantly affect the performance of the
system to meet the required load demand. In this case study, the optimal configuration is based on
minimizing three objectives, namely, loss of load probability (LLP), life cycle cot (LCC), and levelized
cost of energy (LCE).

3.1. Loss of Load Probability (LLP)

The LLP indicates the availability of standalone PV/battery system. It can be defined as the ratio
of annual energy deficits to annual required load demands throughout specific time period [39], the
LLP is expressed as below:

LLP =

∑12∗365
1 Energy de f icitsi∑12∗365
1 Energy demandi

, (12)

3.2. Life Cycle Cost (LCC)

The life cycle cost (LCC) of the SAPV system is considered in this research work to be the best
criteria of economic profitability of the system cost analysis, following the outcomes of previous
research. The LCC can be defined as the total cost of the all components of the standalone PV system.
There are four main parts proposed in this system: PV array, storage battery, bidirectional converter,
and charge regulator. The LCC takes into calculation the initial capital cost

(
ICcap

)
, the present value of

replacement cost
(
Crep

)
, and the present value of operation and maintenance cost (CO&M). The lifetime

and unit cost of the system’s components are tabulated in Table 2. Therefore, the mathematical equation
can be written as [21]:

LCC = ICcap + Crep + C0&M, (13)

The initial capital cost of each part of the system components is taken into account which comprises
of the component price, installation, and the cost of civil works. The initial cost of the off-grid SAPV
system

(
ICcap

)
is given by [40]:

ICcap = CPV ×CUnit,PV + CBatt ×CUnit,Batt + CBidi ×CUnit,Bidi + CCH ×CUnit,CH + CO, (14)

where CPV,CUnit,PV represent the total capacity (W) and unit cost ($/W) of the PV array, respectively;
CBatt, CUnit,Batt represent the total capacity (W) and unit cost ($/W) of the battery, respectively;
CBidi, CUnit,Bidi represent the total capacity (W) and unit cost ($/W) of bidirectional inverter, respectively;
CCH, CUnit,CH represent the total capacity (W) and unit cost ($/W) of the charge regulator, respectively;
and (CO) represents the total constant cost including both civil work and installation cost.

The present value of the replacement cost of each part of the system component is defining as the
present value of all the replacement costs during the system lifetime. Since the lifetime of the storage
battery, charge controller, and the bidirectional inverter are shorter than PV arrays, the replacement
cost of the components of the SAPV system with the inflation rate (FR) and the real interest rate
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of components replacements (IR) are included in this calculation. Therefore, the present value of
replacement cost (Crep) can be described as [40];

Crep = CUnit ×Cnom


Nrep∑
i=1

[1 + FR
1 + IR

]
( LP∗i

Nrep+1 )

, (15)

where CUnit is unit component cost of storage battery in ($/W), charge regulator in ($/W) and bidirectional
inverter in ($/W); (Cnom) is the nominal capacity of the replacement system component such as storage
battery in (Wh), charge controller in (W) and the bidirectional inverter in (W), and (Nrep) is the number
of replacement of each component over the system life period (LP).

The calculation of the present value of operation and maintenance cost (CO&M) of the standalone
PV system can be expressed as [41]:

CO&M =

 CO&MO
(

1+FR
IR−FR

)(
1−

[
1+FR

IR+FR

]LP
)

f or IR , FR

CO&MO × LP f or IR = FR
(16)

where CO&M0 represents the operation and maintenance cost in the first year in ($). The financial data
of the proposed SAPV system are given in Table 2 [26,42].

Table 2. Shows the unit cost for standalone PV system’s components [26,43].

Components Cost/Unit Lifetime (in Year) O&M Nrep IR FR LP

PV array 1 $/Wp 20 1% 0
0.08 0.04 20Charge

controller 0.5 $/Wp 10 0% 1

Storage
battery 0.118 $/Wp 2 5% 10 Replacement cost 0.0042

Inverter 0.5 $/Wp 10 0% 1

3.3. Levelized Cost of Energy (LCE)

The third parameter to represent the economic aspects is levelized cost of energy (LCE) which
refers to the ratio of the total cost of the system’s component to the total energy conducted by a SAPV
system during specific period of time, and it is expressed as following [44,45],

LCE =
TAC
Etotal

(17)

where; TAC represents the total annual cost of the system components and can be expressed as:

TAC = (LCC/LP) (18)

Etotal represents the total energy conducted by a SAPV system during specific life period.

4. Multi-Objective Particle Swarm Optimization (MOPSO)

The particle swarm optimization (PSO) algorithm is a stochastic optimization technique
population-based search to choose the optimal solutions. It was developed in 1995 by Eberhart
and Kennedy [46] who have been inspired by the social behavior of the bird flocking and fish schooling.
PSO algorithm has several advantages such as; it can easily be programmed, shorter calculation time
with high ability of convergence to the optimal values, and robustness to control parameters [47,48].
PSO algorithm presents high convergence rate for single-objective function and can be powerful in
finding the Pareto front in multi-objective optimization [49].
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In PSO algorithm, the group of random parameters are initiated (search space) to search the
optimal parameter values by updating in each generation. At each iteration, a particle is developed
by two values which are individual best and global best. The individual best is the best solution
achieved by the particle. The global best is the best value obtained among the population in all previous
iterations. Each particle has a position which represents the value of the variables and a velocity that
moves the direction towards the individual and global bests. The fitness function ( f ) is used to select
the best solution from all feasible solutions. In this study, the fitness function is given by obtaining
the minimum values of LLP, LCC and LCE. The PSO algorithm comprises of the following steps (see
Figure 4).Processes 2019, 7, x FOR PEER REVIEW 9 of 24 
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Step 1: initialization

The variables of the PSO algorithm are valued and the m particles are initialized in the
predetermined range of the search space. After that, the fitness function for each particle is calculated.

Step 2: updating the individual and global best

The particle who has best fitness function is chosen as optimal value and stored in pbest and gbest
is chosen among the population and updating during iterations.

Step 3: updating the velocity and position

The particle’s velocity and position in the population is updated using the following equations:

xG
i = xG

i + vG
i+1 (19)

where x denotes to particle position and v represents the velocity of the particle in the iteration i. The
velocity v is given by the following:

vG
i+1 = w ∗

[
vG

i + c1r1
(
pG

i − xG
i

)
+ c2r2

(
pg

i − xG
i

)]
(20)

where pG represents the best individual particle position and pg is defined as the best global particle
position, c1 and c2 represent the learning factors which control the individual and global bests. r1 and
r2 are uniform numbers between 0 and 1. vG

i is called inertia and it moves the particle in the same

direction with its velocity, c1r1
(
pG

i − xG
i

)
is called cognitive part and this part returns the particle to

a previous position which has higher individual fitness, and c2r2
(
pg

i − xG
i

)
is called social part and

this part moves the particle to the best region in the population and follows the best direction of
the neighbor.

Step 4: checking the feasibility

If the particle exceeds the predetermined range, it will replace by the previous position. The PSO
algorithm will stop once the gbest is chosen as the best optimal solution. Otherwise, the steps 2–4
are repeated.

In this study, to avoid the premature convergence of the basic particle swarm optimization
algorithm, the PSOc f was proposed to provide a better convergence to the optimal solutions.
A contraction factor is used to ensure convergence to a stable point, avoiding velocity clamping.

The PSOc f can be expressed by following issue:

k =
2∣∣∣2−∅− √∅2 − 4∅

∣∣∣ , ∅ = c1 + c2 (21)

4.1. Adaptive Inertia Weight AWPSOc f

The value of w determines the overall convergence and exploitation performance of the proposed
PSO algorithm. A big search step can speed up the convergence which may skip optimal solutions.
In meanwhile, a small search step can ensure a better convergence accuracy. However, the tradeoff

between the exploration and exploitation are necessary in designing nonlinear equations. The w value
can be represented by follows:

w =
2

1 + exp
(

10i
Maxiter

) (22)

where i denotes to current number of iterations, Maxiter refers to maximum number of generations.
From the above equation, the value of w is large at early stage. Then, it decreases as the iteration go on.
By this way, the algorithm can hit more accurate solutions at end of iterations.



Processes 2020, 8, 41 11 of 23

4.2. A Logistic Sigmoid Function SFPSOc f

The second proposed inertia weight uses a logistic sigmoid function which is expressed by the
following:

w =
l

1 + exp(−R(s− s0))
, (23)

where; l represents the maximum value of the curve (l = 1), R defines the steepness of the curve,
and s0 describes the sigmoid midpoint on the x-axis (s0 = zero). The differences of the fitness function
between the current and previous generations is defined by s which is randomly weighted as expressed
by the following:

s = rand ∗
∣∣∣∣ f (XG

best

)
− f

(
XG−1

best

)∣∣∣∣, (24)

where rand is randomly selected between the range of [0,1], XG
best and XG−1

best are the best individual
vectors for the current and previous generations, respectively.

In this work, the LLP, LCC, and LCE objectives are converted by aggregation function to a
mono-objective which treats the multi-objective optimization problems as a mono-objective problem
as written by the following:

fi(x) =
k∑

i=1

wi × fi(x), (25)

where x represents the decision variables vector, which relates to the search space, k that belongs
to the individual objective function number and it is an aggregated function. The range of weights
coefficients are between 0 > wi < 1 which represents the relative importance of the k objective function
of the problem and it is assumed as:

k∑
i=1

wi = 1, (26)

However, the three objective functions are non-scalable. Thus, it’s important to normalize and
implement the objective function as giving as below [50,51].

fi(x) =
fi(x) − f min

i (x)

f max
i (x) − f min

i (x)
, (27)

where f max
i (x) and f min

i (x) are the upper and lower boundaries of the ith individual objective
function, respectively.

5. Energy Flow Modeling for SAPV System

In this research, the operation process of energy management of a SAPV is illustrated in Figure 5.
The first step of the algorithm can be performed by obtaining the specification of the system such as
the efficiency of PV module, efficiency of charging and discharging of the storage battery, the efficiency
of the inverter, converter and wires.
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The simulation starts to calculate the E_net by subtracting the predicted output energy of the PV
model from the energy of the load. Then, the net energy is classified in three cases which are:

• Case 1: The energy of PV array equals to the energy of the required load demand.
• Case 2: The energy of PV array is larger than the energy of the required load demand.
• Case 3: The energy of PV array is less than the energy of the required load demand.

In the first case, the battery energy is not used and there is no damped or deficit energy which
is equal to zero. In the second case, the energy produced by PV array is larger than the load energy.
There is an excess energy and depending on the state of charge of the battery (SOC). If the SOC of the
battery is full, the amount of excess energy will be damped. In contrast, the amount of excess energy
will be used to charge the battery and the new value of SOC will be calculated by Equation (9) and the
deficit energy is zero. In case 3, if the SOC of the storage battery is more than the minimum value
Ebat_min as in equation (10) then the storage battery is able to fulfill the load demand. The load will
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be supplied with/without the energy of PV array and storage battery. Else if SOC of the battery is
less than the minimum value, the system cannot meet the load demand and there is deficit energy.
The three-objective function LLP, LCC, and LCE are calculated in each iteration.

6. Results and Discussion

In this paper, AWPSOc f and SFPSOc f are proposed for finding optimal configuration of the
SAPV system. The hourly meteorological data for one year in Klang Valley recorded by Subang
Meteorological Station is utilized in the optimization process with latitude (3.12

◦

) north and longitude
(101.6

◦

) east. The meteorological data were obtained from a monitoring system that used solar radiation
transmitter of high-stability silicon PV detector model WE300 with an accuracy of (± 1%), while the
(± 0.25 ◦C) is the accuracy of the temperature sensor for the surface of the PV arrays of the same model,
air temperature sensor model WE700 with an accuracy of (± 0.1 ◦C) and range (−50 ◦C–+50 ◦C), and
current transducer model: CTH-050 with input and output range of (0–50 A (DC), and 4–20 mA) [52].
The proposed SAPV system is used to supply the load demand for house in a remote area. A typical
household is illustrated in Figure 6. Annual hourly meteorological data of Kuala Lumpur city, Malaysia
are obtained for this purpose. The monthly average of daily solar irradiation and ambient temperature
are illustrated in Figure 7.
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Figure 8 illustrates the correlation between the computed and experimental values of the current
using Improved electromagnetism (IEM), slap swarm optimization (SSA), EM, repaired adaptive
differential evolution (Rcr-IJADE) [53], adaptive differential evolution (IADE) [54], and penalty-based
differential evolution (PDE) [55] algorithms. The results demonstrate that the IEM algorithm is very
close the to the experimental values. Moreover, the RMSE value is small when the number of data
set points is reduced. Finally, the IEM algorithm can predict the system’s output energy accurately.
Table 3. demonstrates the RMSE values of IEM compared with other methods. The bold face clarifies
the minimum value of RMSE under seven weather conditions.
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Table 3. shows the root mean square error (RMSE) values of IEM, SSA, EM, Rcr-IJADE, IADE, and
PDE algorithms.

Weather Condition S1 S2 S3 S4 S5 S6 S7 Average
Length of Data Points (N) 22 24 50 91 92 101 102

RMSE_PDE 0.042 0.016 0.034 0.037 0.100 0.102 0.136 0.0672
RMSE_IADE 0.042 0.016 0.035 0.037 0.100 0.102 0.136 0.0675

RMSE_Rcr-IJADE 0.043 0.016 0.035 0.038 0.107 0.113 0.116 0.0740
RMSE_EM 0.042 0.018 0.036 0.038 0.114 0.106 0.145 0.0716
RMSE_SSA 0.045 0.027 0.034 0.029 0.108 0.112 0.156 0.0734
RMSE_IEM 0.033 0.013 0.026 0.028 0.091 0.087 0.129 0.0589

In this study, three decision variables are obtained which are the parallel (Np) and series Ns

numbers of PV modules and the number of storage battery (Bat). For fair comparison, the search space
of Ns and Np decision variables is (4,80) and (4,60) for Bat are considered same in both AWPSOc f and
SFPSOc f algorithms. The size of the population is set to be 50. On the other hand, the maximum
number of iterations is set to 50 in order to clarify stability of optimal solutions. The value of ∅ is
selected to be 2.

Figure 9 demonstrates the development of evaluation of aggregation function with maximum
iteration of the proposed methods to optimize the size of SAPV system. The SFPSOc f has minimum f
value which is 0.031249 at 12 generation. It can be observed that, the SFPSOc f and AWPSOc f algorithms
have trivial difference between the fitness function values, which means that the two algorithms are
very comparative.
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Figure 9. Evolution of aggregation function f for the SFPSOc f and AWPSOc f algorithms.

Table 4 indicates the initializing weights (W1, W2, W3), total number of PV module (N), number of
parallel module (Np), number of series module (Ns), and number of storage battery (Bat). The range of
weights sets are [1,9] with step size is 0.1. The acceptable level of LLP is less than 1%. The trade-off

between the defined level of reliability and minimum cost are required in choosing an optimal
configuration of a SAPV system. Thus, the optimal values of W1, W2, and W3 are 0.4, 0.5, and 0.1 for
AWPSOc f and SFPSOc f algorithms. The number of Np, Ns and Bat are (47 and 60), (5 and 4), and (45,44)
for the SFPSOc f and AWPSOc f algorithms, respectively. From Table 4, the SFPSOc f and AWPSOc f are
very close to each other in terms of variables with bold face. The number of N PV module is increased
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from 192 to 357 and 348 at end levels of optimization with various sets of weights, which means that
the value of f strongly depends on the weight’s value.

Table 4. Different weights sets and optimal configurations of the SAPV system.

Weights SFPSO AWPSO SFPSO AWPSO SFPSO AWPSO SFPSO AWPSO SFPSO AWPSO

W1 W2 W3 N Ns Np Bat Time

0.1 0.8 0.1 192 192 32 4 6 48 32 32 89.39063 87.98438
0.1 0.5 0.4 268 224 67 14 4 16 29 33 85.84375 86.25
0.2 0.6 0.2 224 312 4 78 56 4 33 28 95.875 83.40625
0.2 0.5 0.3 264 264 22 66 12 4 31 31 97.48438 89.84375
0.3 0.6 0.1 224 224 4 4 56 56 38 38 95.23438 86.85938
0.3 0.4 0.3 294 300 42 4 7 75 32 32 96.28125 87.8125
0.4 0.5 0.1 235 240 47 60 5 4 45 44 88.5156 87.3125
0.5 0.4 0.1 252 297 18 33 14 9 42 36 84.78125 88.25
0.6 0.3 0.1 296 272 74 68 4 4 36 42 88.03125 88.71875
0.6 0.2 0.2 320 330 80 11 4 30 34 34 85.23438 90.20313
0.7 0.2 0.1 308 308 77 11 4 28 36 36 101.8281 88.96875
0.8 0.1 0.1 357 348 21 12 17 29 35 35 91.9375 93.73438

The performance results of the standalone PV system for the three objectives and fitness values
are explained in Table 5. According to Table 5, the values of f , LLP, LCC, and LCE are [0.031249
and 0.031268], [0.002431 and 0.002361], [53167 and 53642] USD, and [1.6413 and 1.6214] USD for
the SFPSOc f and AWPSOc f algorithms, respectively. From results, the value of the f for SFPSOc f
algorithm is less than SFPSOc f algorithm by a trivial value. The maximum f value registered for
two algorithms are 0.0468 and 0.0475 at set of weights [0.1, 0.5, 0.4] and [0.2, 0.6, 0.2], respectively.
In contrast, the minimum f value registered are 0.011215 and 0.01122 at set of weights [0.8, 0.1, 0.1] for
SFPSOc f and AWPSOc f algorithms. It’s worth to note that increasing the value of weight is directly
proportional to the relative individual objective and inversely proportional to the decreasing value of
weight. The LLP value is dramatically decreased from 0.038 at W1 = 1 to zero and 0.00007 at W1 = 8
for the two algorithms corresponding with increasing LLC value as the number of N and Bat increased.
The LCE is directly affected by the given weight value which is chosen to be high because of the balance
between LLP and LCC objectives.

Table 5. Different weights sets and optimal performance of the SAPV system.

Weights SFPSO AWPSO SFPSO AWPSO SFPSO AWPSO SFPSO AWPSO

W1 W2 W3 f LLP LCC LCE

0.1 0.8 0.1 0.0389 0.0389 0.031883 0.0318 43,018.2152 43,018.2152 1.6254 1.6254
0.1 0.5 0.4 0.0468 0.0405 0.012971 0.0137 53,667.7754 48,137.1618 1.4527 1.5590
0.2 0.6 0.2 0.0405 0.0475 0.013756 0.0113 48,137.1618 60,040.0288 1.5590 1.3960
0.2 0.5 0.3 0.0423 0.0423 0.008764 0.0087 53,624.0686 53,624.0686 1.4735 1.4735
0.3 0.6 0.1 0.0350 0.0350 0.008638 0.0086 49,539.8948 49,539.8948 1.6044 1.6044
0.3 0.4 0.3 0.0381 0.0381 0.003987 0.0035 58,440.61522 59,347.8152 1.4420 1.4351
0.4 0.5 0.1 0.0312 0.0312 0.002431 0.0023 53,166.9210 53,642.3745 1.6413 1.6214
0.5 0.4 0.1 0.0268 0.0277 0.001992 0.0009 54,895.6812 60,016.4016 1.5803 1.4659
0.6 0.3 0.1 0.0220 0.0221 0.000984 0.0007 59,865.2016 57,919.6813 1.4672 1.5448
0.6 0.2 0.2 0.0223 0.0223 0.000876 0.0006 62,932.9084 64,444.9084 1.4267 1.4167
0.7 0.2 0.1 0.0168 0.0168 0.000589 0.0005 61,679.6016 61,679.6016 1.4528 1.4528
0.8 0.1 0.1 0.0112 0.0112 0 0 68,807.8550 67,447.0550 1.3982 1.4060

Figure 10 shows the development of N and Bat with generation for SFPSOc f and AWPSOc f
algorithms based on optimal configuration which is denoted by bold face in Tables 4 and 5. Figure 11
demonstrates the optimal configuration of the two algorithms at all sets of weights for N and Bat with
favourable level of LLP value.
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Figure 11. Evaluation of N and Bat at desired level of loss of load probability (LLP) value with different
weights sets.

Figure 12 is graphed of swarm’s motion in 50 particles generations which can be viewed that 50
particles fly from different sets weights. During the optimization process, the particle best and global
best will be adapted until achieving high reliability and minimum cost at N = 235 and 240 and Bat = 45
and 44, respectively. The chosen point is called global best that combine the three objectives domain
which is a complex task in designing such system. It can be noticed from Figure 12 that particles
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become close to each other and the convergence is reached to the optimal value for the two SFPSOc f
and AWPSOc f algorithms.
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From Figure 13, the optimal configurations based on SFPSOc f and AWPSOc f algorithms are close
to each other with small difference in the three objectives because of the variation in values of inertia
weights during the optimization. It is worth to mentioned that the results for the independent runs can
guarantee to convergence to the same optimal fitness value which shows the reliability of proposed
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Figure 13. Evaluation of life cycle cost (LCC), LLP, and levelized cost of energy (LCE) values with
different weights sets.
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However, the drawbacks of aggregation method are that identify only one solution based on given
weights for each individual objective. Furthermore, the weights initialization, which are aggregated
by the aggregation function, is the main obstacle of aggregation method. It is worth mentioning that
the results of the optimization problem that solved by aggregation method strongly depends on the
weights. Therefore, other method can be proposed to overcome the limitations of the proposed method,
and other nonlinear individual objective functions can be suggested and added for aggregation function
as future work.

The results of the proposed methods for sizing of a SAPV system are validated by results of
the numerical method to demonstrate the accuracy of the presented two methods. The range of the
search space are defined by using intuitive method for every possible Ns, Np, and Bat within range
(1,40), (1,40) and (1,50), respectively. The desired value for LLP is larger than 0.001. some of optimal
configurations based on numerical method that corresponding to the results of the SFPSOc f and
AWPSOc f algorithms are tabulated in Table 6. It’s clear that the numerical method is almost able
to meet the optimal configurations of the two mentioned methods except that it’s over the range of
search space of the numerical method as well as if the optimal configuration exceeds the LLP value.
The execution time by using numerical method is 10,295.7187 s and the number of configurations is
59,503. Therefore, a high consistency has been achieved for the two proposed methods when their
compared with iterative method.

Table 6. Sets of optimal configurations for sizing of the SAPV system using numerical method.

N Ns Np Bat LLP LLC LCE Def E Excess E Cost Year

192 16 12 32 0.0318 43,018.2152 1.6254 710.9272 5883.6877 2150.9107
224 8 28 33 0.0137 48,137.1618 1.5590 306.7182 10,340.8241 2406.8580
250 25 10 32 0.0092 51,787.8152 1.5028 206.7034 14,112.5849 2589.3907
264 22 12 31 0.0087 53,624.0686 1.4735 195.4137 16,250.9898 2681.2034
224 7 32 38 0.0086 49,539.8948 1.6044 192.6142 10,234.6940 2476.9947
306 9 34 29 0.0079 59,413.3754 1.4085 178.0643 22,429.1878 2970.6687
230 10 23 38 0.0072 50,447.0948 1.5912 162.5026 11,191.2996 2522.3547
294 14 21 32 0.0039 58,440.6152 1.4420 88.9030 20,576.5615 2922.0307
240 15 16 44 0.0023 53,642.3744 1.6214 52.6528 12,539.9811 2682.1187
252 18 14 42 0.0019 54,895.6812 1.5803 44.4125 14,227.6421 2744.7840

The operation performance of the standalone PV system is analysed based on Ns = 5, Np = 47 and
Bat = 45 of the SFPSOc f algorithm as it has lower f than the AWPSOc f algorithm. Two methods are
selected based on maximum and minimum solar radiation to show the performance of the system.
The first month is based on the maximum solar radiation which was accrued in March. The monthly
average daily solar radiation of about 5131.5 W/m2. The energy generated by the PV modules is about
3000.2154 KWh and the deficit energy is about 0 KWh. Therefore, the LLP value is 0, LCC is 53,167
USD and LCE is 16.5348 USD. The hourly performance of the proposed SAPV system of maximum
solar radiation is illustrated in Figure 14.



Processes 2020, 8, 41 20 of 23

Processes 2019, 7, x FOR PEER REVIEW 20 of 24 

 

The operation performance of the standalone PV system is analysed based on  = 5,  = 47 
and  = 45 of the  algorithm as it has lower  than the  algorithm. Two 
methods are selected based on maximum and minimum solar radiation to show the performance of 
the system. The first month is based on the maximum solar radiation which was accrued in March. 
The monthly average daily solar radiation of about 5131.5 W/m2. The energy generated by the PV 
modules is about 3000.2154 KWh and the deficit energy is about 0 KWh. Therefore, the LLP value is 
0, LCC is 53,167 USD and LCE is 16.5348 USD. The hourly performance of the proposed SAPV system 
of maximum solar radiation is illustrated in Figure 14. 

 

Figure 14. Performance of the SAPV system based on chosen optimal configuration in March. 

Whilst, the minimum solar radiation was registered in December. The monthly average daily 
solar radiation of about 3779.8 W/m2. The energy conducted by the PV modules is 4447.0 KWh and 
the deficit energy in this month is 20.18 KWh. Thus, the LLP value is 0.0191, LCC is 53,167 USD and 
LCE is 22.1186 USD. The hourly performance of the proposed SAPV system of minimum solar 
radiation is illustrated in Figure 15. 

 

Figure 15. Performance of the SAPV system based on chosen optimal configuration in December. 

According to Figures 14 and 15, we can observe that the energy conducted by the PV array are 
strongly dependent on the availability of the meteorological data. Thus, in March the SOC of the 
battery is almost at maximum values. Whilst, the SOC in December exceeded the minimum values 
of the storage battery in only three days. The monthly average daily performance of the proposed 
SAPV system throughout one year based on optimal configuration can be given in Table 7. The 

Figure 14. Performance of the SAPV system based on chosen optimal configuration in March.

Whilst, the minimum solar radiation was registered in December. The monthly average daily
solar radiation of about 3779.8 W/m2. The energy conducted by the PV modules is 4447.0 KWh and the
deficit energy in this month is 20.18 KWh. Thus, the LLP value is 0.0191, LCC is 53,167 USD and LCE
is 22.1186 USD. The hourly performance of the proposed SAPV system of minimum solar radiation is
illustrated in Figure 15.
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According to Figures 14 and 15, we can observe that the energy conducted by the PV array are
strongly dependent on the availability of the meteorological data. Thus, in March the SOC of the
battery is almost at maximum values. Whilst, the SOC in December exceeded the minimum values of
the storage battery in only three days. The monthly average daily performance of the proposed SAPV
system throughout one year based on optimal configuration can be given in Table 7. The proposed
algorithm AWPSOc f exhibits excellent performance results in term of reliability, cost-effective, and
CPU-execution time. From Table 7, the difference between the conducted energy by PV modules,
deficit energy, and dump energy are reasonable and promising for real investment of the SAPV system
especially in rural area.



Processes 2020, 8, 41 21 of 23

Table 7. shows monthly average daily performance of the SAPV system under optimal solutions.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

P_PV (KWh) 78.60 90.21 103.72 101.96 93.09 86.58 83.98 87.80 89.88 95.41 79.46 77.53
E deficit (KWh) 0.27 0.14 0 0 0 0 0.17 0 0 0 0 1.16
E dump (KWh) 22.91 33.57 47.78 45.06 37.52 30.20 26.30 32.08 34.36 37.89 23.42 21.29

7. Conclusions

In this research, SFPSOc f and AWPSOc f methods for optimally sizing SAPV system were proposed.
Three constraint objectives are utilized as techno-economic criteria which are normalized, weighted,
and then aggregated by mono-objective function. The optimum design was chosen by minimizing
objective function based on LLP, LCC, and LCE criteria. The results showed the superiority of
SFPSOc f in term of accuracy which has minimum objective function with value 0.031249. The optimal
configuration of SAPV system for SFPSOc f method was 5 connected in series and 47 in parallel,
respectively. The number of storage battery was 45. The performance was analysed for one year using
hourly meteorological data in Malaysia. The LLP value is 0.002431, LCC is 53,166.9 USD and LCE
is 1.6431 USD. March and December, the months of the maximum and the minimum solar radiation
periods, respectively, were selected to show the operational performance of SAPV system. The results
of operational performance show high reliability of the standalone PV system; hence, the acceptable
level of LLP value is less than 1%.
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