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Supporting Information

S.1. Catalyst Bed

For solving the equations 1 and 2, heat of reaction (equation S1), specific heat capacities
(equations S2 to 54), rate of reaction (equation S5) and supporting equations of activity (equation S6),
fugacity coefficients (equations S7 to 59), mole fraction of components (equations 510 to 513), reaction
rate constant (equation S14) and equilibrium constant (equations S15 and 516) are given in table S1.
Furthermore, supportive constants and parameters are given in table S2 and S3.

Table S1. Supporting equations [1] for catalyst bed model

Heat of Reaction [2]

AH = 4.184 [ (0.54526 + 846.609 T~! +459.734 x 10° T~3)P

(S1)
—5.34685 T — 0.2525 x 1073 T2 4-1.69197 x 10~° T° — 9157.09]

Specific Heat Capacity

For real gases ¢ € {Ny, Hy, Ar}, Cp, (K] kmol™ K1) is calculated by equation S2 (valid for temperature range
500 to 900 K), for constants in table S2 [3]:

Cp, =4184 (Ac+ B, T+C. T*+ D, T°) (52)

Specific heat capacity of NHz, Cp\yy, (K] kmol! K1) is calculated by equation S3 [4] , valid between 500 to 900 K:

Conpy, = 4184 {6.5846 — 061251 x 10> T +0.23663 x 10~° T* — 1.5981 x 10" T° + [96.1678 )
—0.067571 P+ (—0.2225 4 1.6847 x 107 P) T + (1.289 x 10~ —1.0095 x 10~/ P) T2]}
The gas mixture for ¢ € {N, Hp, Ar, NH3} specific heat capacity, Cp . (k] kg1 K1) defined as follows:
n
Cpmix - (Z yccpf ) / Mimix (54)
c=1
Rate of Reaction
The reaction rate is calculated by modified Tempkin equation [5]:
3\ & 2\ 1—u
3! ANH,
Rnp, = ko [ K2 2 - == S5
N 2( aNz(aNH32) ( ag,’ ) ) 59
Activity
Activity of component a., where ¢ € {Ny, Hy, NH3} is expressed as follows:
_ S _ o
ac = ]/cfc = Ycpc P (S6)

f&
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The fugacity coefficients ¢, for ¢ € {Nj [6,7], H; [6,8], NHj3 [6,7]} are given as follows:

on, = 0.93431737 + 0.3101804 x 1073 T +0.295895 x 1073 P )
—0.270729 x 107° T2 + 0.4775207 x 10° P?

—3.8402 T*1%540.541 —0.1263 T%®—15.980) p2
¢H, = exp{e! 054 p _ ol )p (8)

+ 300 [e(—04011901 T—54941)] (e—P/300 _ l)}

PN, = 0.1438996 + 0.2028538 x 1072 T — 0.4487672 x 107> P

(89)
—0.1142945 x 107° x T? 4 0.2761216 x 10~°P?

Where, mole fractions of component y., where ¢ € {Np, Hy, NHj3, Ar} is expressed in terms of reactants conversion
Xy, forr € {Np, H»} as follows:

YN.
. YNy — 1/,2 Xr]/rin

AN (510)
-y,
VH,
YHy w — 5, Xrr
sz = ’ VNH: - (Sll)
1= S X,
YNH; in + VI\S{S X”yfin
YNH; = A (S12)
1- vy X’yrin
Uae = 513
r 1%
1- I\E—IB Xryrin ( )
Reaction Rate Constant
Reaction rate constants are expressed by Arrhenius equation with the values given in table S3:
k = ko e Ea/RT (S14)
Equilibrium Constant
The equilibrium constant is given by the Gillespie and Beattie [9] equation:
-5 —72 20016
logK = —2.691122 logT — 5.519265 x 107 °T 4 1.848863 x 10~/ T“ + — +2.67899 (S15)

At equilibrium, rate of reaction in forward and reverse direction will be equal, i.e. Ryy, = 0, and at equilibrium for
« = 0.5, equation S5 reduces to:

K2 = N (S16)
a aN2a3H2

where, for equilibrium (EQ) line, equation S15 and 516 are solved simultaneously for equilibrium temperature Tgq
and conversion Xgq.

The Coefficients of specific heat capacity (equation S2) for ¢ € {N,, H, Ar} are given as follows:

Table S2. Coefficients of Cp. polynomial for equation S2 [3]

Component A Bx1072 Cx10° Dx107°

N 6.903  —0.03753 0.1930 —0.6861
Hy 6952  —0.04576  0.09563 —0.2079
Ar 4.9675
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The catalyst (Fe304) properties are given as follows:

Table S3. Catalyst properties [5]

a  ky/ kmol m3

Ea /K] kmol!

0.5 8.8490 x 1014

1.7056 x 10°

S.2. Heat Exchanger

S3 of 510

The supporting equations [1,10] in table S4 evaluate heat capacity ratios C*, number of transfer
units NTU and heat exchanger surface area Apg. With respect to 50 W m?2 K1 overall heat transfer
coefficient U [11] and designed effectiveness ¢, C*, NTU and Agg of shell and tube heat exchangers
for reactor systems (2Q, HQ, QH, 2H (2H-2 and 2H-3)) are given in table S5. The effectiveness of
heat exchangers is calculated for the optimum design performance of all reactor systems by either
equation 5a or 5b. Therein, equation 5a is applied to all three heat exchangers of reactor system 2H and
heat exchanger 2 of reactor system HQ), and equation 5b is applied to both heat exchangers of reactor
system QH and heat exchanger 1 of reactor systems 2Q and HQ.

Table S4. Supporting equations [1,10] for shell and tube heat exchanger

C*r =

& =

_ (mCp)miN
(mCp)max

—NTUV1 + C?]

140+ vigoriterl

1— exp[-NTUV1 + C*2]

(S17)

(S18)

(519)

Table S5. Data of heat exchangers used in reactor systems

3 c* NTU AHE
RS HE

/= /= /= / m?
2Q[1] HE1 0.6329 05734 1.5984 7.0627
HO HE1 0.5675 0.8758 1.6800 11.2663
HE2 03680 09154 0.5991 4.1103
QH HE1 04054 0.8182 0.6832 4.1813
HE3 04821 0.7810 0.9432 5.9077
HE1 03398 0.8366 0.5121  4.5437
2H-2 HE2 03393 09198 0.5244 4.8124
HE3 0.5391 0.8888 1.4032 12.5880
HE1 03398 0.8366 0.5121  4.5437
2H-3 HE2 05007 0.9413 1.1780 10.5640
HE3 03708 0.8692 0.5967 5.4741
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S.3. Design & Off-Design Performance
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Figure S1. Reactants conversion and temperature profiles for normal (NOR), minimum (MIN) and

maximum (MAX) NHj3 production by varying argon gas composition in (a) reactor system HQ and

(b) reactor system QH.
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Figure S2. Reactants conversion and temperature profiles for normal (NOR), minimum (MIN) and

maximum (MAX) NH3 production by varying argon gas composition in (a) reactor system 2H-2 and

(b) reactor system 2H-3.
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Figure S3. Direct cooling by quenching reactor system (2Q) for normal (NOR), minimum (MIN) and
maximum (MAX) NHj3 production by varying process feed flow rate: (a) steady-state characteristics
and (b) reactants conversion and temperature profiles.
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Figure S4. Combination of indirect and direct cooling reactor system (HQ) for normal (NOR), minimum
(MIN) and maximum (MAX) NHj; production by varying process feed flow rate: (a) steady-state
characteristics and (b) reactants conversion and temperature profiles.
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Figure S5. Combination of direct and indirect cooling reactor system (QH) for normal (NOR), minimum
(MIN) and maximum (MAX) NHj production by varying process feed flow rate: (a) steady-state
characteristics and (b) reactants conversion and temperature profiles.
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Figure S6. Indirect cooling by inter-stage heat exchangers (with process feed exchanging heat first in
HE 2) reactor system (2H-2) for normal (NOR), minimum (MIN) and maximum (MAX) NH; production
by varying process feed flow rate: (a) steady-state characteristics and (b) reactants conversion and

temperature profiles.
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Figure S7. Indirect cooling by inter-stage heat exchangers (with process feed exchanging heat first in
HE 3) reactor system (2H-3) for normal (NOR), minimum (MIN) and maximum (MAX) NH; production
by varying process feed flow rate: (a) steady-state characteristics and (b) reactants conversion and

temperature profiles.
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Figure S8. Direct cooling by quenching reactor system (2Q) for normal(NOR), minimum (MIN) and
maximum (MAX) NH; production by varying reactants’ ratio: (a) steady-state characteristics and
(b) reactants conversion and temperature profiles.
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Figure S9. Combination of indirect and direct cooling reactor system (HQ) for normal (NOR), minimum
(MIN) and maximum (MAX) NHj3 production by varying reactants’ ratio (a) steady-state characteristics
and (b) reactants conversion and temperature profiles.
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Figure S10. Combination of direct and indirect cooling reactor system (QH) for normal (NOR),
minimum (MIN) and maximum (MAX) NHj production by varying reactants’ ratio: (a) steady-state
characteristics and (b) reactants conversion and temperature profiles.
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Figure S11. Indirect cooling by inter-stage heat exchangers (with process feed exchanging heat first in
HE 2) reactor system (2H-2) for normal (NOR), minimum (MIN) and maximum (MAX) NH; production
by varying reactants’ ratio: (a) steady-state characteristics and (b) reactants conversion and temperature

profiles.
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Figure S12. Indirect cooling by inter-stage heat exchangers (with process feed exchanging heat first in
HE 3) reactor system (2H-3) for normal (NOR), minimum (MIN) and maximum (MAX) NH; production
by varying reactants’ ratio: (a) steady-state characteristics and (b) reactants conversion and temperature

profiles.
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Nomenclature

List of Symbols

A

a Activity / -

Aprp  Surface area for heat transfer / m?

B Constant for heat capacity / -

C Constant for heat capacity / -

C* Heat capacity rate ratio / -

Cp Specific heat capacity / kJ kg™ K!

D Constant for heat capacity / -

E, Activation energy / k] kmol

f Fugacity / -

AH Heat of reaction / kJ kmol!

K Equilibrium constant / bar

k Reaction rate constant / kmol m? h'!

ko Frequency factor / kmol m™ h!

M Molecular weight / kg kmol

1 Mass flow rate / kg hl

NTU Number of transfer units / -

P Pressure / bar

Rnihs  Rate of reaction / kmol m3 h!

u Overall heat transfer coefficient / W m2 K}

y Mole fraction / -

T Temperature / K

X Conversion of reactant / -

R Universal gas constant / 8.314 k] kmol™ K'!

Greek Symbols

i Constant / 0.5

¢ Fugacity coefficient / -

€ Heat exchanger effectiveness / -

v Stoichiometric coefficient / -

Superscripts

* At a particular arbitrarily chosen standard state

0 At temperature and pressure of system

Subscripts

2 Reverse reaction

c Component

r Reactant

in Inlet

MAX Maximum

MIN Minimum

mix  Gas mixture

NOR Normal
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