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Abstract: Wind speed forecasting helps to increase the efficacy of wind farms and prompts the
comparative superiority of wind energy in the global electricity system. Many wind speed forecasting
theories have been widely applied to forecast wind speed, which is nonlinear, and unstable.
Current forecasting strategies can be applied to various wind speed time series. However, some models
neglect the prerequisite of data preprocessing and the objective of simultaneously optimizing accuracy
and stability, which results in poor forecast. In this research, we developed a combined wind speed
forecasting strategy that includes several components: data pretreatment, optimization, forecasting,
and assessment. The developed system remedies some deficiencies in traditional single models
and markedly enhances wind speed forecasting performance. To evaluate the performance of this
combined strategy, 10-min wind speed sequences gathered from large wind farms in Shandong
province in China were adopted as a case study. The simulation results show that the forecasting
ability of our proposed combined strategy surpasses the other selected comparable models to some
extent. Thus, the model can provide reliable support for wind power generation scheduling.

Keywords: combined model; data preprocessing technology; multi-objective optimization algorithm;
forecasting accuracy; wind energy forecasting

1. Introduction

Wind energy, which is characterized by both government and researchers as having adequate
supply, cleanliness, and a wide distribution, is an environmentally friendly and economical energy
source that could help solve the energy shortage problem [1]. Enhancive attention in all over the
world has been paid recently to the utilization of wind energy, which occupies about 10% in Europe’s
energy consumption structure and over 15% in the United States and Spain’s energy consumption [2].
Moreover, the global cumulatively installed wind capacity achieved nearly 591.55 GW at the end
of 2018, among which China took up 209.53 GW with the proportion of 35.4% [3].

Wind power system operation is vulnerable to stochastic and unstable wind speeds [4], which may
negatively affect energy transportation and power grid operation [5]. Thus, it is imperative to improve
the accuracy and steadiness of wind speed forecasting. With refined forecasting results, the dispatching
department could easily and effectively adjust the program, minimizing the negative impact of wind
farms on the power grid and the use of wind power could be maximized in the global electricity
market [6].

Researches have been devoted to developing and applying valid and precise wind speed forecasting
technology to improve forecasting accuracy. These technologies could be categorized into four strategies
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based on computational mechanisms: physical, statistical, intelligent, and combined strategies [7].
Physical strategies are always used to conduct large-scale wind speed forecasting that relies on
numerical weather prediction (NWP) and atmosphere data. Some issues still occur when using these
strategies, for example, with the forecasting accuracy, computing complexity, and simulation time [8].
Alessandrini et al. [9] used realistic data in Southern Italy to compare two ensemble methods for wind
power forecasting. On the basis of frequently used assessment criteria, the higher horizontal resolution
model produced a slightly better effect, especially for 27 to 48 h advanced forecasting. Sile et al. [10]
supported the advantages of NWP strategies for meteorological forecasting, which were considered
credible when we conducted our wind resource assessment. In this work, the forecasting results were
verified based on data from May and November 2013. Statistical strategies usually adopt mathematical
statistics to explore the relationship between every variable to identify the potential relationships
between original data and forecasting data [11]. Classical statistical models, such as the autoregressive
integrated moving average (ARIMA) model and autoregressive fractional integrated moving average
(ARFIMA) model, are broadly used in wind speed forecasting. For example, Shukur and Lee [12]
reported that ARIMA model cannot capture the nonlinearity of wind speed, thus Kalman filtering (KF)
technology and an artificial neural network (ANN) were applied to improve forecasting capability.
The simulation results revealed that the hybrid KF-ANN model can grasp the nonlinearity of wind
speed. Yuan et al. [13] combined the ARFIMA method with the least square support vector machine
method (LSSVM) to improve wind speed forecasting performance. By incorporating the two strategies,
satisfactory forecasting results were obtained and measured using three performance indicators,
which support the forecasting precision of the developed hybrid method. Understanding linear
components is the primary objective of statistical strategies, which results in overlooking nonlinear
components. Thus, artificial intelligence strategies, including ANNs, back propagation neural network
(BPNN), and fuzzy logic (FL) methodologies, have been rapidly developed to decrease forecasting
errors and improve forecasting performance [14–16].

Artificial intelligence strategies are different from physical and statistical strategies in terms of fault
tolerance and robustness, that is, ANNs can accurately fit nonlinear sequences and provide adaptive
control as well as solution forecasting with uncertainty and have been applied in various fields [17–19].
Hybrid models incorporating ANNs and intelligent algorithms are becoming increasingly popular
because hybrid models more improve forecasting accuracy and are more reliable relative to single
intelligence strategies [20]. For example, Pourmousavi et al. [21] combined ANN and Markov chain
(MC) to create a new hybrid system for wind speed forecasting, in which ANN was used to grasp
short-term patterns and MC was applied for the long-term patterns. Yang et al. [22] proposed a
hybrid forecasting system integrating forecasting with both a certainty portion and an analysis with
an uncertainty portion, which also contained data pretreatment technology and an optimization
method to increase forecasting accuracy. The experimental results showed that the hybrid system
was more accurate compared with other models and could be applied in other fields. Xiao et al. [23]
synthesized the singular spectrum analysis (SSA), a novel modified cuckoo search (CS) algorithm,
and the modified wavelet neural network (WNN) to a novel hybrid system. The developed system
could conduct short-term forecasting for load, electricity price, and wind speed. The simulation
results indicated that this system was superior to single forecasting models due to providing more
accurate forecasting. Although intelligent strategies are powerful tools for depicting the nonlinearity
of original wind speed data, some challenges remain when considering the volatility and instability of
untreated time series [24]. Thus, data preprocessing strategies are broadly used to eliminate strong
noise and extract the primary wind speed characteristics [25]. For instance, Wu et al. [26] combined the
complete ensemble empirical mode decomposition (CEEMD), multi-objective grey wolf optimization
(MOGWO) algorithm, and extreme learning machine (ELM) to establish a CEEMD-MOGWO-ANN
system, which could grasp the fluctuation in original sequences with high levels of noise. Liu et al. [27]
developed a new hybrid method called EMD-ANN relying on empirical model decomposition (EMD)
to reduce prediction error and enhance forecasting performance. Based on multiple simulations,
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the proposed system was found to be satisfactory and robust in managing jumping samples with
erratic wind speed data.

We summarize the following several characteristics of previous wind speed forecasting strategies:

(1) Forecasting short-term wind speed presents a challenge for physical models. Resources and time
would be wasted to collect large amounts of physical information.

(2) The statistical strategies assume that the wind speed series are linear; in reality, the wind speed
time series are nonlinear along with certain trends, which may result in inferior forecasting
compared with expectations.

(3) The intelligent strategy does not assume linear raw wind speed sequences and can effectively
capture nonlinear elements; however, some deficiencies remain in this strategy, like easily falling
into the local optimum and over-fitting.

(4) Various data pretreatment strategies have been used to improve forecasting ability by eliminating
the noise in raw time series. However, previous de-noising methods have defects like mode
mixing in empirical mode decomposition (EMD) and residue noise in ensemble empirical mode
decomposition (EEMD).

Given previous research, combined wind speed forecasting strategies, driven by the combination
of forecasting knowledge introduced by Bates and Granger in 1969 [28], have received attention and
achieved satisfactory forecasting performance [29,30]. This strategy operates by determining the
optimal weight in the situation where the minimum sum of squared errors of forecasting training
sets are available [31,32]. In their review, Niu et al. [33] found that existing forecasting models do
not provide sufficiently accurate forecasting; thus, they proposed a new method that combines data
pretreatment technology and a multi-objective optimization algorithm with several well-performing
ANNs and a linear model. The simulation results revealed that the developed model considerably
improved forecasting capacity compared with previous forecasting models. Li et al. [34] introduced the
idea of establishing a variable weighting combination model that includes three various hybrid models
to improve wind speed forecasting ability. The experimental results showed that this innovatory
strategy is better than benchmark strategies in wind speed forecasting.

In this paper, we propose a new combined strategy that incorporates three portions:
data pretreatment, optimization, and forecasting portion. Singular spectrum analysis (SSA) was
adopted to eliminate fluctuating noise from raw data sets. Then, a statistical model and three typical
ANNs were applied to forecast wind speed, from which the combined strategy is structured with
weight coefficients optimized by an efficient multi-objective dragonfly algorithm.

Our contributions with this research are as follows:

(1) Data pretreatment technology is included in our method to reduce the volatility and randomness of
historical wind speed sequences and improve forecasting accuracy. Original wind speed sequences
are decomposed into some intrinsic mode functions (IMFs), from which the high-frequency
IMFs are filtered, and the residuals are recombined to forecast wind speed. With this method,
the characteristics of wind speed can be better extracted, so forecasting performance can be
significantly improved.

(2) Statistical models help grasp the linear characteristics of raw time series whereas ANNs can be
used for nonlinear characteristics. To comprehensively control the linear and nonlinear features
of original data, one widely used statistical model and three efficient ANNs were added to our
combined model to improve forecasting accuracy.

(3) The multi-objective dragonfly algorithm (MODA), as an effective weighting technology, was
developed to determining the optimal weight coefficients of individual forecasting models. In the
majority of situations, the multi-objective optimization algorithm, with an archive to reserve and
search the optimal approximate value of the Pareto optimal solutions, can improve forecasting
precision and forecasting steadiness; this algorithm can satisfactorily address complicated
optimization problems.
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(4) A systematic assessment system was established to evaluate the forecasting ability of our
developed combined model. Three experiments, four evaluation criteria, and six discussions
are introduced in our study to compare and analyze the forecasting capacity of our developed
combined strategy in every experiment.

(5) The developed combined system provides a reference for the scheduling and management of
smart grids. Referring to real wind speed data and comparative forecasting results, the combined
forecasting model is confirmed to be effective and applicable to other forecasting fields.

The remainder of our study is organized as follows: The methodologies of our combined model
are introduced in Section 2. Sections 3 and 4 describe the experiment and three experimental results,
respectively. Further discussions, including the superiority and the stability of the forecasting method,
are provided in Section 5. Section 6 concludes our study and provides an analysis of improvements to
our research and recommendations for future study.

2. Methods

Our methods are introduced in this section, including the data pre-processing technology (singular
spectrum analysis) and the multi-objective dragonfly algorithm; then, the workflow of our combined
strategy is presented.

2.1. Singular Spectrum Analysis (SSA)

SSA, as a time series analysis tool used to decompose an original time sequence into
interpretable components, has been applied in many fields, including biology, physics, climatology,
and economics [35–38]. The decomposition process can be divided into four steps:

2.1.1. Embedding

Convert original time series X = (x1, x2, · · · , xN) into a series Z = (z1, z2, · · · , zK), which can be
expressed as:

X = (x1, x2, · · · , xN)→ Z = (z1, z2, · · · , zK) (1)

where zi = (xi, xi+1, · · · , xi+L−1)
T
∈ RL, K = N − L+1, L ∈ [2, N]. The result of this mapping is provided

as a trajectory matrix with the following mathematical expression:

Z = [Z1, Z2, · · ·, ZK] = (zi j)
L,K
i, j=1 =


x1 x2 · · · xK

x2 x3 · · · xK+1

· · · · · · · · · · · ·

xL xL+1 · · · xN

 (2)

2.1.2. Singular Values Decomposition (SVD)

Given a covariance matrix S = XXT, singular values decomposition is used to generate L
eigenvalues and eigenvectors, which are denoted by λ1,λ2, · · ·,λL and U1, U2, · · ·, UL. Suppose
t = max(i, such that λi > 0) and Vi = XTUi

√
λi (i = 1, 2, . . . , t), then the SVD of the trajectory matrix is:

Z = E1 + E2 + · · ·+ Et (3)

where Ei =
√
λiUiVi, the rank of Zi, is 1. Therefore, V1, V2, · · ·, Vt are the principle components and

(
√
λi, Ui, Vi) is the characteristic loop of the SVD of Z.

2.1.3. Grouping

In this step, the interval (i = 1, 2, . . . , t) is decomposed into several subsets S1, S2, · · ·, Sm without
any connection between them. Suppose S = (s1, s2, · · ·, sp), then the consequence matrix ZS is defined as
ZS = ZS1 + ZS2 + · · ·+ ZSp and the trajectory matrix can be decomposed as Z = ZS1 + ZS2 + · · ·+ ZSm .
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2.1.4. Diagonal Averaging

In the diagonal averaging stage, the grouping results are switched into a time series of length
N. Denote Z as a L × K matrix, where L∗ = min(L, K) and K∗ = max(L, K). Once L < K, then z∗i j = zi j,
or else, z∗i j = z ji. Subsequently, the Z matrix can be transformed into a sequence (r1, r2, · · ·, rN) with the
following formula:

rk =


1

k+1
∑k+1

q=1 z∗q,k−q+1, 1 ≤ k ≤ L∗

1
L∗

∑L∗
q=1 z∗q,k−q+1 L∗ ≤ k ≤ K∗

1
N−K+1

∑N−K∗+1
q=1 z∗q,k−q+1 K∗ ≤ k ≤ N

. (4)

2.2. Multi-Objective Dragonfly Algorithm (MODA)

The MODA, proposed by Mirjalili in 2015, was developed by imitating the static and dynamic
behavior of dragonflies when hunting and migrating [39]. During these two behaviors, five principles
must be obeyed, including the separation of dragonflies Si, the alignment Ai, the cohesion Ci,
the behaviors of attraction to food source Fi, and the distraction from enemy source Ei. To update the
dragonflies’ position, the mathematical form is:

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt (5)

Xt+1 = Xt + ∆Xt+1 (6)

where s, a, c, f, and e are weight coefficients that are obtained randomly; w is the inertia weight; Xt and
Xt+1 denote the current and the next population individual positions, respectively; and the ∆Xt+1 is
the next population position update velocity.

To conduct MODA optimization based on DA, an archive was used to save the non-inferior
solutions produced during optimization; the adaptive grid method and a roulette-wheel mechanism
were used to choose food source and enemy locations from the archive set with the probability for each
segment of Pi = d/Ni, where d denotes a constant within (0,+∞), and Ni is the quantity of Pareto
optimal solutions in the ith segment. However, the storage space of the archive is restrictive; thus,
the unsatisfactory results were eliminated from the archive with the probability of Pi = Ni/d.

Based on these mechanisms, the improved algorithm addresses multi-objective problems with and
without constraints concurrently, and is adaptable, economical, and has good optimization ability [40].
For optimization objectives, accuracy ob f1(y) and stability ob f2(y) are considered simultaneously in
our study, as indicated by:

min

 ob f1(y) = MAPE = 1
N

N∑
i=1

(∣∣∣∣∣ ^
ei−ei

ei

∣∣∣∣∣)× 100%

ob f2(y)= std(êi − ei), i = 1, 2, . . . , N
, (7)

where ei and êi denote the real value and the forecasting value, respectively. Algorithm 1 provides the
MODA pseudocode.
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Algorithm 1: Multi-Objective Dragonfly Algorithm (MODA)

Objective functions:

min

 ob f1(y) = MAPE = 1
N

N∑
i=1

(∣∣∣∣∣ ^
ei−ei

ei

∣∣∣∣∣)× 100%

ob f2(y)= std(êi − ei), i = 1, 2, . . . , N
Parameters:

IterMax, the maximum number of iterations
xi, the position of the ith dragonfly
∆xi, the step vectors of the ith dragonfly
t, the current iteration number

1: /* Initialize the population of dragonflies xi(i = 1, 2, . . . , n). */
2: /* Initialize step vectors ∆xi(i = 1, 2, . . . , n).*/
3: /* Confirm the maximum value of segments. */
4: /* Confirm the archive size. */
5: WHILE (t < IterMax) DO
6: /* Compute the objective values of every dragonflies. */
7: /* Seek out solutions that are not in dominant position. */
8: /* Update the archive in accordance with the achieved non-dominant results. */
9: IF the archive reaches the maximum number
10: /* Run the archive maintenance system to remove one member from the existing archive. */
11: /* Save the novel solution to the archive. */
12: END IF
13: IF any of the novel augmented solutions is situated outside the segments
14: /* Update and relocation the segments to incorporate the novel solution(s) */
15: END IF
16: /* Discover the best solution as a food source. Discover the worst solution as an enemy. */
17: /* Update step vectors using Equation (5). */
18: ∆xt+1 = (sSi + aAi + cCi + f Fi + eEi) + w∆xt

19: /* Update position vectors through Equation (6). */
20: xt+1 = xt + ∆xt+1
21: /* Check and adjust the new positions according to the boundaries of the variables. */
22: t = t + 1
23: END WHILE
24: RETURN archive
25: Obtain X* = Select Leader (archive), and input X*

2.3. The Workflow of Developed Combined Model

According to the combination theories proposed by Bates and Granger in the late 1960s, two or
more models exceed the forecasting capacity of one model [28]. Thus, in our study, we developed a
combined strategy to offset the limitations of single forecasting models and incorporate both the linear
and nonlinear features of wind speed. The workflow of our study is provided in Figure 1 and the
further explanations are provided below.
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Figure 1. Flow chart of the developed model.

2.3.1. Data Preprocessing

As noisy data result in poor accuracy, the SSA technique was used to remove fluctuating
components and retain the valid information in original wind speed sequences. The original data were
decomposed into some IMFs, from which the volatile components were removed and the remainder
were reconstructed for effective wind speed forecasting.

2.3.2. Hybrid Models Forecasting

To consider the linear and nonlinear components of short-term wind speed sequences, a classical
statistical method (ARIMA) and three effective neural networks, BPNN, ELM, and Elman neural
network (ENN), were used to form the basic forecasting model of our system. After integrating these
models with the data preprocessing method, hybrid models SSA-ARIMA, SSA-BPNN, SSA-ELM,
and SSA-ENN were established to forecast short-term wind speed.

2.3.3. Proposed Combined Forecasting Strategy

In this stage, a weight selection method relying on the MODA was used to find the optimal
weight of hybrid strategies, which is crucial for improving forecasting precision and steadiness
simultaneously. The data for the last three days in the training set were used to determine the weight
coefficient to integrate the hybrid strategies. During the operation of the algorithm, the process
is terminated when the iterations number reaches the maximum or the fitness function reaches
the minimum. The forecasting results were obtained by combining these hybrid models using the
optimized weight coefficients.

2.3.4. Rolling Forecasting

Rolling forecasting mechanism is adopted in our paper, that is, according to the results of trial
and error, the input datasets are {x(t − 5), x(t − 4), x(t − 3), x(t − 2), x(t − 1)} and the output datasets is
{x(t)}, x represents wind speed time series, and the input and output sets change with the change of t.



Processes 2020, 8, 35 8 of 26

To assess the forecasting ability of the developed strategy, both one-step and multi-step forecasting
are used in our paper. Similarly, three-step ahead forecasting can be determined as follows: the input
datasets are {x(t − 5), x(t − 4), x(t − 3), x(t − 2), x(t − 1)} and the output datasets are {x(t + 2)} [41].
A more detailed introduction of rolling forecasting mechanism is also presented in Figure 2.
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3. Experimentation Setup

In this section, the setup of our three experiments are introduced, including data selection,
performance evaluation criterion, and operating environment.

3.1. Datasets Selection

Raw wind speed data were chosen from four observation points on the Shandong Peninsula in
China. Due to its long coastline, Shandong has adequate wind energy resources. All observation sites
were located in mountainous and hilly regions with the altitude ranging from 100 m to 240 m above
sea level. Generally, the rated power of the wind power generators is 1500 KW, and the height of
measurement is 70 m. The time interval in our datasets is 10 min, for a total of 144 records per day.
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We chose three datasets as the study cases, with each dataset containing 2880 records with a
time span of 1–20 January 2011. The ratio of training set to testing set was 4:1, which included 2304
training samples and 576 testing samples in each group. A rolling forecasting mechanism was applied
to one-step and multi-step forecasting to ultimately obtain the forecast of the sixth period based on the
first five real time series. The data structure of our proposed model, the research sites, and several
statistical indicators of raw wind speed series are provided in Figure 2.

3.2. Performance Evaluation Criteria

Many error indicators have been used in past research; however, no specific standard exists for
model evaluation [42]. Thus, multiple evaluation criteria are usually used to compare the developed
model and other models with regard to forecasting capacity [43]. In our study, four widely-used
error criteria—mean absolute error (MAE), root mean square error (RMSE), mean absolute percent
error (MAPE), and sum of squared errors (SSE)—were used as assessment indicators of forecasting
performance, whose definitions and equations are listed in Table 1. It must be noted that the measure
unit of MAPE in our paper is %.

Table 1. Performance of assessment criteria.

Metrics Definition Equation

MAE The average absolute error obtained from n times
forecasting consequences

MAE = 1
n

n∑
i=1
|êi − ei|

MAPE The mean absolute percentage error obtained from n times
forecasting consequences

MAPE = 1
n

n∑
i=1

∣∣∣ êi−ei
ei

∣∣∣× 100%

RMSE The root mean square error obtained from n times
forecasting consequences RMSE =

√
1
n ×

n∑
i=1

(êi − ei)
2

SSE The sum square error obtained from n times forecasting
consequences SSE =

n∑
i=1

(ei −
^
ei)

2

Note: ei and êi denote the real value and the forecasting value, respectively. The measure unit of MAPE in our
paper is %.

3.3. Operating Environment

Our experiments were conducted using the Windows 7 professional operating system (Microsoft,
Redmond, WA, USA). We used Matlab2016a (MathWorks, Natick, MA, USA) to operate the developed
model. The detailed hardware information is: Intel (R) Core i5-4590 3.30 GHz CPU, and 8 GB RAM
(Intel Corporation, Santa Clara, CA, USA).

4. Three Experiments and Relative Analysis

In this section, numerical experiments and the corresponding forecasting results are compared
and analyzed in detail to provide evidence for the superior forecasting capacity of our developed
combined strategy. The experiment setup and results are presented below.

4.1. Experimental Setup

Using actual wind speed time series, we performed three experiments to compare the forecasting
ability of the proposed model and other comparable models. Experiment 1 compared the accuracy of
our combined model with that of four hybrid models. Experiment 2 compared the differences in the
forecasting accuracy of our proposed combined model with other combined models using various
data preprocessing technologies. Experiment 3 compared our combined model with four benchmark
models to investigate the differences in forecasting capacities. The one-step, two-step, and three-step
ahead forecasting capability of the different models were analyzed using the four calculated error
criteria. The smaller the value of the error criteria, the better the forecasting performance.
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Appropriate parameters are crucial for enhancing wind speed forecasting accuracy and may affect
the quality of forecasting results to a certain extent. In our study, the parameters contained in the
different models and the different experiments were selected by referring the literature and the actual
status of this article to provide useful reference for practical research in the future.

To compare the forecasts of the developed strategy with those of four hybrid strategies without
MODA optimization, we conducted Experiment 1. The SSA parameter setting in hybrid strategies
is identical to that of the proposed combined strategy, with the specific parameters listed in Table 2.
In the rolling forecasting mechanism, the rolling number was 5 and the training-to-testing ratio in all
forecasting strategies was set to 3:1.

Table 2. Parameters in experiment 1.

Algorithm Parameters Value

Multi-Objective Dragonfly
Algorithm (MODA)

Maximum Iterations 200
Maximum Archive 500

Solution Numbers nearby the Solution 40

Singular Spectrum Analysis (SSA) Window Length 48
Principal Component Decomposition Number 20

Experiment 2 was performed to confirm that the forecasting performance of the combined strategy
with SSA is superior to those of the other methods using other data preprocessing tools, such as EMD,
CEEMD, and wavelet domain de-noising (WDD). In CEEMD, the ratio of the standard deviation of the
added noise to the sequences was 0.05 and the realization values and maximum sifting iterations were
set to 50 and 500, respectively. The decomposition layer number in WDD was set to 9. For the SSA
used in our combined model, the window length and the principal component decomposition number
were set to 48 and 20, respectively.

Experiment 3 compared the developed model and four widely-used benchmark models—ARIMA,
BPNN, ELM, and ENN—in terms of forecasting performance. Without loss of generality, statistical
models and artificial intelligence were considered to show that the forecasting capability far surpasses
that of all individual models.

4.2. Experiment 1: Comparison with SSA-Based Hybrid Strategies

The parameters involved in our combined model are provided in Table 2. Based on four error
indicators from one- to multi-step forecasting, the proposed combined strategy was confirmed to be
the most accurate among the examined models. The comparison results are shown in Table 3, where
bold elements indicate the best forecasting performance.

For Site 1, the developed strategy produced the best forecasting results in one- and multi-step
forecasting with MAPE values of 2.209%, 2.935%, and 3.221% from one-step to three-step, respectively.
The other three evaluation criteria obtained for the developed model are also the lowest among all
compared models. The differences in the models at Site 1 are provided in Figure 3.

For Site 2, we forecasted the trend in wind speed using the developed combined model as the
MAE, MAPE, RMSE, and SSE results for our combined strategy are superior to those of the other
strategies. For instance, the MAPE value of our proposed model is 2.352% and the corresponding
MAE, RMSE, and SSE values are 0.145, 0.193, and 5.371, respectively, for one-step forecasting.

For Site 3, the SSA-MODA-based combined model performed the best with a 2.804% MAPE in
one-step, 3.193% MAPE in two-step, and 3.588% MAPE in three-step forecasting. Compared with
the other hybrid models that improve prediction accuracy to a certain extent, the SSA-MODA-based
model is superior.
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Table 3. Evaluation metrics comparison of proposed model with relative hybrid models.

Dataset Model
One-Step Two-Step Three-Step

MAE MAPE RMSE SSE MAE MAPE RMSE SSE MAE MAPE RMSE SSE

Site 1

SSA-ARIMA 0.200 3.296 0.276 10.911 0.249 4.313 0.295 14.746 0.371 6.848 0.493 35.385
SSA-BP 0.163 2.836 0.213 6.343 0.204 3.506 0.270 10.530 0.369 6.615 0.479 33.014

SSA-ELM 0.160 2.857 0.213 6.713 0.250 4.627 0.342 16.851 0.361 6.310 0.468 31.579
SSA-ENN 0.173 3.018 0.222 7.119 0.293 5.083 0.372 19.916 0.448 7.972 0.572 47.124

Proposed Model 0.138 2.209 0.189 5.165 0.174 2.935 0.229 7.563 0.199 3.221 0.256 9.403

Site 2

SSA-ARIMA 0.221 3.535 0.291 13.090 0.250 4.339 0.309 15.328 0.393 7.019 0.540 45.811
SSA-BP 0.168 2.884 0.226 8.527 0.229 3.790 0.302 13.123 0.374 6.354 0.502 36.340

SSA-ELM 0.178 2.987 0.230 8.543 0.235 3.925 0.308 13.688 0.378 6.455 0.504 36.595
SSA-ENN 0.177 2.955 0.229 7.539 0.314 5.429 0.406 23.768 0.451 7.791 0.590 50.201

Proposed Model 0.145 2.352 0.193 5.371 0.183 2.966 0.251 9.057 0.197 3.243 0.270 10.476

Site 3

SSA-ARIMA 0.223 3.612 0.319 16.439 0.249 4.464 0.336 14.977 0.447 8.127 0.598 45.523
SSA-BP 0.220 3.491 0.289 14.597 0.238 3.969 0.309 13.717 0.383 6.531 0.497 35.503

SSA-ELM 0.220 3.471 0.288 13.613 0.248 4.227 0.320 14.758 0.390 6.785 0.511 37.638
SSA-ENN 0.224 3.648 0.321 21.389 0.309 5.357 0.387 21.509 0.474 8.455 0.609 53.330

Proposed Model 0.175 2.804 0.228 7.500 0.197 3.193 0.261 9.830 0.216 3.588 0.285 11.674

Note: The best results are indicated in bold. The measure unit of MAPE in our paper is %.

Remark 1. We have two main findings here: the prediction of our proposed model is the most accurate, and as
the number of forecasting steps increases, the variation in the evaluation criteria in the proposed model from
one-step to three-step is minimal, which means the developed strategy provides the best forecasting precision
and stability.

4.3. Experiment 2: Comparison of Different Combined Strategies Based on Four Data
Preprocessing Technologies

The purpose of experiment 2 was to compare the developed combined model using SSA technology
with other combined models employing different data preprocessing technologies. The parameters
involved in every method are listed in Tables 4 and 5, and provide the comparative results for the
three sites. The combined models based on EMD, CEEMD, and WDD technology are labeled as
EMD-C-Model, CEEMD-C-Model, and WDD-C-Model, respectively.

Table 4. Parameters in experiment 2.

Algorithm Parameters Value

MODA
Maximum Iterations 200
Maximum Archive 500

Solution Numbers nearby the Solution 40

EMD There are no parameters that need to be set subjectively

CEEMD
Ratio of the standard deviation of the added noise and that of sequences 0.05

Realization Numbers 50
Maximum Sifting Iterations 500

WDD Decomposition Layer Number 9

SSA
Window Length 48

Principal Component Decomposition Number 20

Note: MODA is Multi-Objective Dragonfly Algorithm, EMD is empirical mode decomposition, CEEMD is combined
the complete ensemble empirical mode decomposition, WDD is wavelet domain de-noising, and SSA is singular
spectrum analysis.

For Site 1, the proposed combined strategy produced the best forecasting results for all assessment
metrics, whereas the others also produced good forecasting results with MAPE values lower than 6%.

For Site 2, the proposed combined strategy also performed better than methods based on other
data pretreatment techniques, indicated by MAPE values of 2.352%, 2.966%, and 3.243% for one- to
three-step forecasting, respectively. Correspondingly, EMD-C-Model has the worst forecasting accuracy
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which increases 1.562%, 2.223%, and 2.864%, respectively, relative to SSA based combined model.
The comparison results of our SSA-based forecasting strategy and EMD-C-Model, CEEMD-C-Model,
and WDD-C-Model are shown in Figure 4.

Table 5. Comparison of the evaluation metrics for the proposed strategy with models using different
data pretreatment technologies.

Dataset Model
One-Step Two-Step Three-Step

MAE MAPE RMSE SSE MAE MAPE RMSE SSE MAE MAPE RMSE SSE

Site 1

EMD-C- Model 0.211 3.545 0.265 10.072 0.283 4.868 0.354 18.067 0.355 5.938 0.445 28.484
CEEMD-C-Model 0.181 3.056 0.227 7.428 0.239 4.062 0.305 13.398 0.266 5.061 0.337 16.329

WDD-C-Model 0.196 3.309 0.252 9.125 0.252 4.363 0.339 16.592 0.323 5.646 0.379 20.680
Proposed Model 0.138 2.209 0.189 5.165 0.174 2.935 0.229 7.563 0.199 3.221 0.256 9.403

Site 2

EMD-C- Model 0.234 3.914 0.295 12.551 0.290 5.189 0.365 19.182 0.369 6.107 0.450 29.116
CEEMD-C-Model 0.194 3.305 0.245 8.655 0.257 4.332 0.339 16.537 0.321 5.375 0.381 20.891

WDD-C-Model 0.223 3.668 0.285 11.663 0.276 4.882 0.347 17.377 0.336 5.660 0.406 23.724
Proposed Model 0.145 2.352 0.193 5.371 0.183 2.966 0.251 9.057 0.197 3.243 0.270 10.476

Site 3

EMD-C-Model 0.251 4.011 0.314 14.229 0.272 4.709 0.344 16.991 0.333 5.781 0.395 22.467
CEEMD-C-Model 0.199 3.290 0.254 9.320 0.251 4.079 0.321 14.820 0.293 5.040 0.357 18.310

WDD-C-Model 0.223 3.736 0.284 11.644 0.267 4.398 0.338 16.452 0.316 5.461 0.388 21.661
Proposed Model 0.175 2.804 0.228 7.500 0.197 3.193 0.261 9.830 0.216 3.588 0.285 11.674

Note: The best results are indicated in bold. The measure unit of MAPE in our paper is %. The EMD-C-Model,
CEEMD-C-Model, and WDD-C-Model represent combined models based on EMD, CEEMD, and WDD
technology, respectively.
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Figure 4. Comparison results of experiment 2 at site 2.

For Site 3, the SSA-based combined model produced more accurate and effective forecasting
compared with the other combined strategies with MAPE value of 2.804% for one-step forecasting.
In contrast, the CEEMD-C-Model, WDD-C-Model, and EMD-C-Model had MAPE values of 3.290%,
3.736%, and 4.011%, respectively, which are inferior to our developed combined model.
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Remark 2. We concluded that using the SSA-based forecasting system would be preferable over forecasting
systems using other data pretreatment techniques because the MAPE values of the developed strategy, with average
MAPE values of 2.789%, 2.854%, and 3.195% for Sites 1 to 3, respectively, are the lowest compared to the other
selected models.

4.4. Experiment 3: Comparison with Several Benchmark Strategies

Tables 6 and 7 present the parameters of the algorithms and compare the results of the developed
combined model and several individual models, to demonstrate the forecasting improvement of the
developed SSA-MODA combined model.

Table 6. Parameters in experiment 3.

Algorithm Parameters Value

Multi-Objective Dragonfly
Algorithm (MODA)

Maximum Iterations 200
Maximum Archive 500

Solution Numbers nearby the Solution 40

Singular Spectrum Analysis (SSA) Window Length 48
Principal Component Decomposition Number 20

Table 7. Comparison of the evaluation metrics of the proposed model with benchmark models.

Dataset Model
One-Step Two-Step Three-Step

MAE MAPE RMSE SSE MAE MAPE RMSE SSE MAE MAPE RMSE SSE

Site 1

ARIMA 0.415 7.179 0.474 44.272 0.492 8.398 0.616 55.279 0.630 10.982 0.776 85.342
BP 0.362 6.314 0.449 29.062 0.461 8.154 0.599 51.726 0.577 10.545 0.734 77.518

ELM 0.340 5.687 0.431 26.704 0.449 7.846 0.591 50.212 0.575 10.492 0.731 76.942
ENN 0.345 5.838 0.429 26.554 0.460 8.137 0.598 51.524 0.551 9.948 0.715 73.698

Proposed Model 0.138 2.209 0.189 5.165 0.174 2.935 0.229 7.563 0.199 3.221 0.256 9.403

Site 2

ARIMA 0.373 6.246 0.471 41.912 0.504 8.558 0.655 64.033 0.669 11.548 0.816 91.082
BP 0.349 5.821 0.454 29.619 0.485 8.265 0.639 58.774 0.585 10.219 0.753 81.687

ELM 0.347 5.747 0.448 28.888 0.480 8.152 0.633 57.679 0.591 10.314 0.755 81.991
ENN 0.347 5.741 0.449 29.079 0.490 8.446 0.646 60.161 0.593 10.319 0.754 81.923

Proposed Model 0.145 2.352 0.193 5.371 0.183 2.966 0.251 9.057 0.197 3.243 0.270 10.476

Site 3

ARIMA 0.404 7.100 0.470 40.420 0.560 9.869 0.723 73.088 0.692 11.871 0.850 101.396
BP 0.379 6.330 0.490 34.510 0.531 9.415 0.656 61.957 0.620 11.016 0.790 89.905

ELM 0.369 6.176 0.478 32.838 0.518 9.031 0.652 61.193 0.611 10.861 0.773 85.930
ENN 0.383 6.510 0.488 34.299 0.513 9.049 0.647 60.346 0.635 11.426 0.792 90.411

Proposed Model 0.175 2.804 0.228 7.500 0.197 3.193 0.261 9.830 0.216 3.588 0.285 11.674

Note: The best results are indicated in bold. The measure unit of MAPE in our paper is %.

For Site 1, the proposed combined strategy exceeds the four benchmark strategies in one- and
multi-step forecasting. With the increase in prediction steps, the MAPE values of individual models
increase significantly, while the values in the proposed model remain stable and fluctuate around
two and three. This was also observed for Sites 2 and 3, where the proposed model demonstrated an
advantage over the other models.

Taking Site 3 as an example, the MAPE values of our proposed technique are 2.804%, 3.193%,
and 3.588% for one- to three-step prediction, followed by the ELM model with MAPE values of 6.176%,
9.031%, and 10.861%, respectively. The ARIMA model produced the largest MAPE values of 7.100%,
9.869%, and 11.871%, respectively. Thus, our developed strategy enhances 3.372%, 5.838%, and 7.273%
compared with ELM, and 4.296%, 6.676%, and 8.283% compared with ARIMA from one- to three-step
forecasting, respectively. The results of the comparison between the proposed model and the four
benchmark models at Site 3 are provided in Figure 5.
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Remark 3. The developed combined model significantly improves forecasting accuracy compared with the
benchmark models, as proven by the lower-value evaluation criteria for our proposed model. The MAE,
MAPE, RMSE, and SSE values of individual methods are approximate and increase markedly with increasing
forecasting steps.

5. Discussion

In this section, seven aspects are discussed to support the forecasting capacity of our proposed
combined strategy: forecasting significance, forecasting effectiveness, the degree of improvement,
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sensitivity analysis, the performance for MODA optimization algorithm, the application of our model
in day-ahead forecasts, and the practical application in power system.

5.1. Forecasting Significance: Diebold–Mariano Test

To investigate the differences in forecasting capability between the proposed strategy and the
other methods, a typical statistical test, the Diebold–Mariano (DM) test [44] was conducted. The theory
of this test is outlined below.

Firstly, formulate original hypothesis H0 and alternative hypothesis H1. H0 signifies that the
forecasting capability of the developed strategy is analogous to that of the compared model, whereas
H1 is the opposite. The specific hypothetical formulas are written as follows:

H0:E
[
L
(
e1

i )] = E
[
L
(
e2

i )]

H1:E
[
L
(
e1

i )] , E
[
L
(
e2

i )]
(8)

where L is the loss function of forecasting errors; e j
i , j = 1, 2 represents the forecasting errors of the

other methods.
Subsequently, set the DM statistic, which is expressed as

DM =

∑n
i=1

(
L
(
e1

i

)
− L

(
e2

i ))/n√
S2/n

s2 (9)

where S2 is the estimated variance of di = L
(
e1

i

)
− L

(
e2

i

)
.

Given a certain level of significance α, the calculated statistics were compared with critical value
Zα/2. If the DM statistic was not included in the interval [−Zα/2, Zα/2], H0 was rejected, which means
that significant differences exist between our developed combined strategy and the compared model;
otherwise, H0 is accepted.

Table 8 lists the mean DM values from one- to multi-step forecasting. The proposed model
is markedly different from individual models including ARIMA, BPNN, ELM, and ENN at the 1%
significance level. Although the DM values obtained from the comparison between the developed
strategy and SSA-based hybrid methods are not significant as that obtained from the comparison
with individual models, the SSA-based combined model has a better forecasting ability compared
with four hybrid models at the 10% significance level. Finally, when comparing the developed model
with models applying different data pretreatment technologies, the degree of the difference was huge
because the DM statistics from one- to three-step all surpass the critical values at the 1% significance
level, which signifies a 99% possibility that H1 will be accepted.

Table 8. Diebold–Mariano (DM) test results for the developed model and comparison models.

Model One-Step Two-Step Three-Step

ARIMA 8.204 * 7.943 * 5.894 *
BPNN 9.448 * 6.820 * 5.130 *
ELM 9.462 * 6.417 * 6.245 *
ENN 8.780 * 7.294 * 6.285 *

SSA-ARIMA 1.971 ** 1.916 *** 2.047 **
SSA-BPNN 1.759 *** 2.598 * 4.315 *
SSA-ELM 1.735 *** 2.507 ** 4.276 *
SSA-ENN 1.728 *** 2.615 * 4.300 *

EMD-C-Model 8.993 * 6.877 * 4.421 *
CEEMD-C-Model 8.677 * 7.109 * 6.625 *
WDD-C-Model 7.856 * 7.135 * 4.918 *

Note: *, **, and *** denote significance at 1%, 5%, and 10% levels, respectively. The EMD-C-Model, CEEMD-C-Model,
and WDD-C-Model represent combined models based on EMD, CEEMD, and WDD technology, respectively.
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The DM statistics show that the developed combined strategy is distinguished from the benchmark
models, SSA-based hybrid methods, as well as combined forecasting models using different data
preprocessing methods. Thus, the developed combined model should be employed in practical wind
speed forecasting.

5.2. Forecasting Effectiveness of the Developed Strategy

In this subsection, the forecasting effectiveness is examined to determine whether the developed
strategy is superior to other compared models [45]. As for forecasting effectiveness, both first- and
second-order are available, where first-order forecasting effectiveness is relative to the expected values
of forecasting precision sequences and second-order is relative to the distinction between standard
deviation and expected value of the forecasting precision sequences. The forecasting ability increased
with increasing forecasting effectiveness. Table 9 lists the computed forecasting effectiveness values
of all forecasting models examined in our study, which shows that our proposed model forecasts
better than all the other models at the selected three sites. The forecasting effectiveness values
obtained from the proposed model were the highest among all models, with first-order values of 0.974,
0.973, and 0.969 and second-order values of 0.952, 0.951, and 0.946 for Sites 1, 2, and 3, respectively.
The forecasting effectiveness values obtained for SSA-based hybrid models were similar to those
calculated for models based on different data preprocessing techniques. The forecasting effectiveness
values for the benchmark models were the lowest.

Table 9. Forecasting effectiveness of our proposed combined strategy.

Model
Site 1 Site 2 Site 3

1-Order 2-Order 1-Order 2-Order 1-Order 2-Order

Proposed Model 0.974 0.952 0.973 0.950 0.969 0.946
ARIMA 0.910 0.853 0.919 0.858 0.914 0.845
BPNN 0.922 0.855 0.925 0.859 0.918 0.853
ELM 0.925 0.861 0.925 0.862 0.919 0.856
ENN 0.925 0.861 0.924 0.859 0.916 0.847

SSA-ARIMA 0.947 0.902 0.949 0.903 0.945 0.901
SSA-BPNN 0.962 0.927 0.962 0.929 0.959 0.927
SSA-ELM 0.962 0.927 0.961 0.927 0.957 0.921
SSA-ENN 0.950 0.908 0.951 0.909 0.947 0.903

EMD-C-Model 0.964 0.939 0.963 0.935 0.955 0.925
CEEMD-C-Model 0.968 0.941 0.967 0.942 0.965 0.941

WDD-C-Model 0.966 0.935 0.962 0.932 0.961 0.935

Note: The best results are indicated in bold. The EMD-C-Model, CEEMD-C-Model, and WDD-C-Model represent
combined models based on EMD, CEEMD, and WDD technology, respectively.

Thus, we conclude that the SSA-MODA combined model has potential to improve wind speed
forecasting accuracy compared with the other selected models. Both the first- and second-order
forecasting effectiveness values of the developed strategy are satisfactory, indicating that the proposed
model can simultaneously improve forecasting accuracy and stability.

5.3. Improvements Percentage Relative to Other Involved Models

Based on the previous analysis, the proposed combined strategy exceeds the other strategies in
terms of forecasting accuracy improvement. To further discuss and evaluate the degree improvement in
forecasting when comparing a selected model with the proposed model, we examined four additional
metrics: PMAE, PMAPE, PRMSE, and PSSE [46]. The four metrics are briefly described in Table 10; Table 11
provides the improvement percentages of the developed strategy over the selected methods. According
to the definition the larger the improvement percentage values, the better the forecasting accuracy of
our developed model relative to the selected models. From our analysis of the results in Table 11:
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(1) The developed combined model markedly increases wind speed forecasting accuracy relative to
the selected models, with improvement percentages from more than 20% up to 80%.

(2) When the proposed model was compared with four individual models, the PMAE, PMAPE, PRMSE,
and PSSE values obtained for the ARIMA model are the highest. Similar to previous research,
the improvement percentages for the majority of metrics for the SSA-based hybrid model and the
combined models using other data preprocessing methods are similar, which vary from 30% to
50%.

(3) These results reveal that the combination of a data pretreatment technique and an optimization
algorithm significantly improves forecasting accuracy in our combined model; only adding a
data pretreatment technique or only using hybrid model are insufficient to improving forecast
precision and stability simultaneously for short-term wind speed forecasting.

Table 10. Brief definition of four metrics.

Metric Definition Equation

PMAE Improvement percentages of MAE PMAE =
∣∣∣∣MAE1−MAE2

MAE1

∣∣∣∣× 100%

PMAPE Improvement percentages of MAPE PMAPE =
∣∣∣∣MAPE1−MAPE2

MAPE1

∣∣∣∣× 100%

PRMSE Improvement percentages of RMSE PRMSE =
∣∣∣∣RMSE1−RMSE2

RMSE1

∣∣∣∣× 100%

PSSE Improvement percentages of SSE PSSE =
∣∣∣∣ SSE1−SSE2

SSE1

∣∣∣∣× 100%

Table 11. Improvement percentages of the proposed model relative to selected models.

Model
Site 1 Site 2 Site 3

PMAE PMAPE PRMSE PSSE PMAE PMAPE PRMSE PSSE PMAE PMAPE PRMSE PSSE

ARIMA 66.775 68.501 63.875 88.031 66.011 67.511 63.241 87.360 64.522 66.766 62.087 86.504
BPNN 63.493 66.556 62.178 86.020 62.947 64.773 61.332 85.358 61.616 64.183 60.002 84.438
ELM 62.545 65.179 61.527 85.616 62.930 64.641 61.117 85.225 60.792 63.230 59.293 83.883
ENN 62.339 65.030 61.326 85.419 63.238 65.065 61.425 85.450 61.623 64.481 59.839 84.327

SSA-ARIMA 37.691 42.135 36.607 63.746 39.184 42.515 37.365 66.450 36.066 40.843 38.234 62.303
SSA-BPNN 30.559 35.435 29.917 55.639 31.894 34.289 30.725 57.055 30.161 31.493 29.255 54.552
SSA-ELM 33.823 39.356 34.148 59.867 33.469 35.950 31.554 57.666 31.575 33.821 30.856 56.061
SSA-ENN 44.115 47.952 42.203 70.158 44.248 47.069 41.769 69.446 41.693 45.104 41.150 69.859

EMD-C-Model 39.871 41.706 36.611 60.916 41.140 43.711 35.701 59.073 31.346 33.903 26.464 45.976
CEEMD-C-Model 25.637 31.310 22.419 40.437 31.896 34.207 26.042 45.958 20.856 22.754 16.911 31.676
WDD-C-Model 33.641 37.183 30.516 52.302 37.035 39.749 31.240 52.801 27.064 29.497 23.361 41.709

Note: The units of all values revealed in the table are (%). The EMD-C-Model, CEEMD-C-Model, and WDD-C-Model
represent combined models based on EMD, CEEMD, and WDD technology, respectively.

5.4. Sensitivity Analysis

To further study how varying the data pretreatment technique parameters and multi-objective
optimization algorithm affects the performance of the proposed model, sensitivity analysis was
conducted. In the calculation, we used the standard deviation of each error criterion as the novel
assessment metric for sensitivity (SMAE, SMAPE, SRMSE, and SSSE) [47]. The robustness decreases with
increasing novel assessment metrics. Table 12 provides the calculated results obtained by altering one
parameter of SSA or MODA with the remaining parameters unchanged. The relevant parameters in
SSA are window length and principal component decomposition number, whereas the parameters in
MODA are dragonfly number, iteration number, and archive size.
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Table 12. Results of sensitivity indicators obtained from SSA and MODA.

Step Algorithm Parameter
Site 1 Site 2 Site 3

SMAE SMAPE SRMSE SSSE SMAE MAPE SRMSE SSSE SMAE MAPE SRMSE SSSE

One

SSA
Window Length 0.004 0.085 0.003 0.177 0.007 0.119 0.007 0.410 0.004 0.074 0.004 0.236

PCDN 0.009 0.154 0.008 0.457 0.003 0.037 0.004 0.240 0.006 0.126 0.006 0.398

MODA
Dragonfly Number 0.007 0.171 0.005 0.290 0.008 0.186 0.006 0.349 0.004 0.049 0.002 0.144
Iteration Number 0.009 0.219 0.007 0.417 0.011 0.213 0.012 0.731 0.004 0.072 0.006 0.382

Archive Size 0.008 0.200 0.006 0.329 0.012 0.210 0.013 0.761 0.005 0.094 0.004 0.279

Two

SSA
Window Length 0.025 0.603 0.048 4.105 0.007 0.182 0.009 0.666 0.008 0.231 0.008 0.623

PCDN 0.015 0.363 0.034 3.032 0.007 0.179 0.009 0.635 0.013 0.270 0.014 1.173

MODA
Dragonfly Number 0.025 0.604 0.052 4.488 0.004 0.100 0.004 0.277 0.019 0.309 0.019 1.587
Iteration Number 0.062 1.259 0.101 10.730 0.012 0.262 0.015 1.141 0.010 0.229 0.009 0.704

Archive Size 0.044 1.055 0.096 9.660 0.007 0.166 0.007 0.527 0.013 0.299 0.012 0.975

Three

SSA
Window Length 0.021 0.527 0.027 2.241 0.010 0.195 0.009 0.720 0.009 0.218 0.012 1.025

PCDN 0.007 0.152 0.008 0.625 0.007 0.122 0.005 0.360 0.017 0.505 0.021 1.807

MODA
Dragonfly Number 0.015 0.391 0.019 1.521 0.018 0.307 0.017 1.432 0.012 0.286 0.016 1.383
Iteration Number 0.021 0.525 0.024 1.948 0.008 0.155 0.007 0.566 0.012 0.316 0.015 1.316

Archive Size 0.019 0.441 0.022 1.824 0.026 0.475 0.025 2.195 0.014 0.384 0.018 1.532

Note: The parameter principal component decomposition number of SSA is too long for display, thus, we use PCDN
to replace this parameter in this table.

Without loss of generality, the analysis was divided into two parts: the parameters variation
in SSA and in MODA. The window lengths considered in SSA were 32, 40, 48, 56, and 64, and the
principal component decomposition numbers used were 10, 15, 20, 25, and 30. In the analysis of
MODA parameter variation, the assigned dragonfly numbers were 20, 40, 60, 80, and 100; the iteration
numbers were 50, 100, 150, 200, and 250; and the archive size was set to 200, 300, 400, 500, and 600.
Our analysis of Table 12 provided the following:

(1) When the parameters in SSA were changed, the SMAE, SMAPE, SRMSE, and SSSE values changed
within acceptable limits. For instance, in one-step forecasting at Site 1, the SMAE, SMAPE, and SRMSE,
SSSE values for window length were 0.004, 0.085, 0.003, and 0.177, respectively, and the principal
component decomposition number values were 0.009, 0.154, 0.008, and 0.457, respectively,
which are small and similar to the values obtained for Sites 2 and 3. In other words, the forecasting
results of the proposed strategy are not considerably affected by parameter variation in SSA.

(2) With altering the MODA parameter, the assessment criteria for sensitivity changes within
acceptable limits. The results reveal that changing the optimization parameters has a minimal
influence on the forecasting results of our developed model, which further verifies the stability of
the proposed model.

(3) The SMAE, SMAPE, SRMSE, and SSSE values in two- and three-step forecasting are larger than in
one-step forecasting, revealing that the forecasting robustness declines with parameters variation
when increasing the forecasting steps. We found that in two-step forecasting at Site 1, the SSSE
values of the five parameters were abnormal and far larger than the other assessment metrics,
which can be attributed to the randomness and volatility of the selected dataset. Therefore,
choosing suitable parameters in multi-step forecasting is crucial as parameters variation impacts
the stability of wind speed forecasting to some extent.

5.5. Comparison in Terms of Optimization Algorithm Performance

To further verify the superiority of the MODA over other optimization algorithms in
terms of short-term wind speed forecasting, three combined models based on three good
performing optimization algorithms, including Elitist Nondominated Sorting Genetic Algorithm
(NSGA II) [48], multi-objective particle swarm optimization (MOPSO) [49], and multi-objective ant
lion optimization (MOALO) [50], were used to compare with the developed model with MODA
algorithm. The comparative results are established in Table 13, based on which we can conduct the
following discussions:
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(1) Regardless of the forecasting steps and observation sites, the employed MODA was always
superior to NSGA II, MOPSO, and MOALO indicated by the lower MAE, MAPE, RMSE, and SSE
values. For example, the mean MAPE values of the developed model are 2.789%, 2.854%,
and 3.195% from Site 1 to Site 3, respectively, whereas the mean MAPE values of combined model
using NSGA II algorithm (5.439%, 5.184%, 5.186%, respectively), combined model using MOPSO
algorithm (4.735%, 4.605%, 4.574%, respectively), and combined model using the MOALO
algorithm (4.151%, 4.373%, 4.313%, respectively) are obviously inferior to the proposed model
based on MODA algorithm. Thus, the MODA algorithm can provide better forecasting results
relative to NSGA II, MOPSO, and MOALO algorithm in combined short-term wind speed
forecasting system.

(2) From another perspective, with the increase of forecasting steps, the evaluation criteria values
of the proposed model changes in a much smaller range compared with other comparative
models, which reveals that the developed model with MODA algorithm can provide more stable
and robust forecasting performance. In Site 1, the MAPE values of the proposed model from
one-step to three-step forecasting are 2.209%, 2.935%, and 3.221%, and in the same condition,
the corresponding values obtained from the MOALO based combined model whose forecasting
capacity is second only to the MODA algorithm are 3.046%, 4.203%, and 5.203%, respectively.
Thus, when the forecasting steps increase, the MAPE values of MOALO based combined model
increase rapidly compared with the proposed MODA based combined model, which also applies
to NAGA II and MOPSO algorithm. Ultimately, we can conclude that MODA is a powerful tool
for solving multi-objective optimization issues in our work, significantly improving forecasting
accuracy and stability.

Table 13. Comparison of the evaluation metrics for the proposed strategy with models using different
optimization algorithms.

Dataset Model
One-Step Two-Step Three-Step

MAE MAPE RMSE SSE MAE MAPE RMSE SSE MAE MAPE RMSE SSE

Site 1

NSGA II-C-Model 0.249 4.047 0.322 14.961 0.335 5.541 0.469 31.630 0.362 6.728 0.474 32.408
MOPSO-C-Model 0.213 3.487 0.277 11.047 0.251 4.220 0.312 14.021 0.398 6.497 0.530 40.378
MOALO-C-Model 0.181 3.046 0.227 7.389 0.256 4.203 0.326 15.312 0.295 5.203 0.357 18.361
Proposed model 0.138 2.209 0.189 5.165 0.174 2.935 0.229 7.563 0.199 3.221 0.256 9.403

Site 2

NSGA II-C-Model 0.284 4.575 0.373 20.051 0.304 5.145 0.397 22.665 0.355 5.833 0.475 32.528
MOPSO-C-Model 0.228 3.757 0.288 11.903 0.260 4.533 0.333 16.007 0.321 5.526 0.427 26.293
MOALO-C-Model 0.200 3.416 0.251 9.076 0.278 4.394 0.355 18.182 0.290 5.310 0.358 18.464
Proposed model 0.145 2.352 0.193 5.371 0.183 2.966 0.251 9.057 0.197 3.243 0.270 10.476

Site 3

NSGA II-C-Model 0.292 4.715 0.383 21.076 0.303 5.127 0.395 22.466 0.348 5.716 0.454 29.613
MOPSO-C-Model 0.216 3.527 0.261 9.817 0.271 4.788 0.359 18.603 0.311 5.407 0.406 23.782
MOALO-C-Model 0.206 3.300 0.259 9.624 0.274 4.371 0.348 17.398 0.299 5.266 0.366 19.238
Proposed model 0.175 2.804 0.228 7.500 0.197 3.193 0.261 9.830 0.216 3.588 0.285 11.674

Note: The best results are indicated in bold. NSGA II-C-Model, MOPSO-C-Model, MOALO-C-Model in the table
represent the combined model based on Elitist Nondominated Sorting Genetic Algorithm (NSGA II), multi-objective
particle swarm optimization (MOPSO)MOPSO, multi-objective ant lion optimization (MOALO) algorithm MOALO,
respectively. The measure unit of MAPE in our paper is %.

5.6. The Forecasting Performance Verify of Our Model with Longer Testing Set

In order to further test the long-term prediction ability of our proposed model, we expanded
the original data set to 5760 records with a time span of 1 January to 9 February 2011. The ratio
of training set to testing set was still 4:1, indicating that 4608 training samples and 1152 testing
samples in each dataset and the observation sites are the same as that in the previous experiments.
Accordingly, the forecasting horizon of the combined model reaches 288 periods, that is, two days. If the
prediction performance of our proposed model is good in this case, it will prove that after one training,
our proposed model can maintain a high prediction accuracy and avoid training the proposed model
again when rolling the prediction of future wind speed of 288 periods. SSA-BP, CEEMD-C-model, ELM,
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and MOALO-C-model are adopted in this discussion as comparative models due to their relatively
superior forecasting ability in previous experiments and discussion. The comparison results for the
proposed model based on the testing set with two-day length and some good performing models
based on the testing set with two-day length are presented in Table 14, where CEEMD-C-model and
MOALO-C-model represent the CEEMD-MODA based combined model and SSA-MOALO based
combined model. From the table, we can conduct that the developed model can always provide
accurate and stable forecasting when the testing set length becomes two days. The detailed analysis in
terms of the comparative results are presented in the following:

(1) With longer duration of continuous prediction, the proposed combined model can achieve
satisfactory forecasting performance in the selected observation sites whether in one-step
forecasting or multi-step forecasting. For example, the mean MAPE of the proposed model in Site
1 is 3.133% and corresponding mean MAE, RMSE, and SSE values are 0.191, 0.253, and 8.294,
which improve to a great extent compared with ELM forecasting model whose forecasting capacity
is the worst among all selected models. Similar to the forecasting results based on the testing
set with one-day length, the proposed model can always provide more stable forecasting results
because the evaluation criteria values increase slightly with the increase of forecasting steps,
whereas the values in other models increase to a great extent.

(2) Compared with the forecasting results based on the testing set with one-day length, the simulation
results based on the testing set with two-day length (intra-day and the next day’s forecasting)
display slightly higher errors, either one step or multi-step. This is understandable because more
uncertain information is contained in forecasting process when the forecasting length increases.
For example, the mean MAPE values of the proposed model in this section are 3.133%, 3.282%,
and 3.604%, respectively and the corresponding values in the forecasting based on the testing set
with one-day length are 2.789%, 2.854%, and 3.195% from Site 1 to Site 3, respectively. It does
not mean that our developed model is invalid for wind speed forecasting based on the testing
set with a longer length because the MAE, MAPE, RMSE, and SSE values are all better than the
compared models with more accurate and stable forecasting performance. Thus, it is credible and
reliable that the developed model can achieve great forecasting performance whether based on
the testing set with one-day length or two-day length.

Table 14. Comparison of forecasting evaluation metrics based on the testing set with two days length
for the proposed strategy with some good performing models.

Dataset Model
One-Step Two-Step Three-Step

MAE MAPE RMSE SSE MAE MAPE RMSE SSE MAE MAPE RMSE SSE

Site 1

SSA-BP 0.175 3.049 0.229 6.818 0.219 3.769 0.291 11.320 0.424 7.607 0.551 37.966
CEEMD-C-model 0.195 3.285 0.244 7.985 0.275 4.671 0.351 15.407 0.286 5.440 0.362 17.554

ELM 0.366 6.113 0.463 28.707 0.482 8.435 0.635 53.978 0.661 12.065 0.841 88.484
MOALO-C-model 0.194 3.274 0.244 7.943 0.275 4.518 0.351 16.461 0.317 5.593 0.384 19.738
Proposed model 0.158 2.541 0.218 5.940 0.187 3.155 0.246 8.130 0.229 3.704 0.294 10.813

Site 2

SSA-BP 0.181 3.101 0.243 9.166 0.263 4.359 0.347 15.092 0.403 6.831 0.540 39.066
CEEMD-C-model 0.223 3.801 0.282 9.953 0.276 4.657 0.364 17.777 0.345 5.778 0.410 22.458

ELM 0.373 6.178 0.482 31.055 0.552 9.375 0.728 66.331 0.679 11.861 0.868 94.289
MOALO-C-model 0.230 3.929 0.289 10.438 0.277 4.669 0.398 39.645 0.333 6.106 0.412 21.234
Proposed model 0.167 2.705 0.222 6.177 0.210 3.411 0.288 10.415 0.227 3.730 0.310 12.047

Site 3

SSA-BP 0.253 4.015 0.333 16.787 0.256 4.267 0.332 14.746 0.440 7.510 0.571 40.829
CEEMD-C-model 0.214 3.536 0.274 10.019 0.270 4.385 0.345 15.932 0.336 5.795 0.410 21.057

ELM 0.397 6.639 0.513 35.301 0.556 9.708 0.701 65.782 0.703 12.490 0.888 98.820
MOALO-C-model 0.237 3.795 0.297 11.068 0.294 4.699 0.374 18.703 0.343 6.056 0.420 22.123
Proposed model 0.188 3.014 0.245 8.063 0.226 3.672 0.301 11.304 0.248 4.126 0.327 13.425

Note: The best results are indicated in bold. The measure unit of MAPE in our paper is %. CEEMD-C-model
represents combined models based on CEEMD technology and MOALO-C-Model represents the combined model
based on multi-objective ant lion optimization (MOALO) algorithm.
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5.7. Pragmatic Applications in Power Systems

Accurate wind speed forecasting is a prerequisite to improve the stability of wind power systems
and the efficiency of wind power generation [51,52]. As an improvement to the existing wind power
systems, the developed wind speed prediction strategy, with the target of improving prediction
accuracy and stability, shows the ability to minimize the risks of wind power generation due to wind
variation and achieve real-time forecasting in terms of wind power generation scheduling and safe
operation [53]. The contributions of an effective wind speed forecasting system to power systems are
listed below:

• Optimizing the potential wind energy in every wind farm is important for maintaining the upper
limit of wind energy output. As wind energy is proportional to the cube of wind speed, precisely
predicting wind speed is critical so that the wind energy capacity can be determined, and smart
grids can be effectively planned by decision makers [54].

• With wind speed forecasting, decisions regarding the operation and administration of wind
turbines can be credibly made. To ensure the largest output of wind energy, managers can alter
the wind turbine potential without delay according to the predicted wind. Once the wind turbine
capacity is under the forecasted wind speed, the output can be closed to prevent breakdown and
minimize operation costs.

• The scheduling and management of power systems, to a large extent, rely on wind speed
forecasting. We must consider the balance between power demand and supply to satisfy
demand and ensure sustainable energy development. Excess power supply poses a problem in
practical applications, which may result in supply quality degradation, power system insecurity,
and operational cost increases [55]. Thus, it is imperative to formulate more exact and stable
wind speed forecasting models to assist decision makers to make timely decisions so that these
problems can be effectively addressed.

6. Conclusions

Short-term wind speed forecasting, an important tool in wind energy research and practical
applications, has been growing in popularity, mostly due to its importance in the scheduling and
operation of power grids [56]. However, wind speed time series are fluctuating and stochastic,
which creates challenges for wind speed forecasting and generation. Anticipating this constraint is
important because higher uncertainty requires more comprehensive forecasting models to meet specified
accuracy and stability objectives [57]. In this study, we developed a combined strategy that effectively
integrates data preprocessing technology and an optimization algorithm and significantly improves
wind speed forecasting accuracy and stability. To overcome the passive impacts of high-frequency
noise on forecasting performance, an effective de-noising method was firstly applied to decompose
raw wind speed sequences and retain the fundamental characteristics of wind speed data. Then,
a typical statistical model, ARIMA, and three classical neural networks, BPNN, ELM, and ENN,
were used as wind speed forecasting system benchmarks. To combine these forecasting models,
MODA was successfully used to confirm the optimal weight coefficient of our developed SSA-MODA
system. Based on the above processes and actual wind speed sequences, three numerical experiments,
four evaluation criteria, and seven discussions were conducted to verify the accuracy and stability of
our developed model. In experiment 1, the MAPE values of one-step forecasting obtained at Sites 1 to
3 in our developed strategy were 2.209%, 2.935%, and 3.221%, respectively, whereas the lowest MAPE
values in the compared models were 2.836%, 3.506%, and 6.310%, respectively, which are larger than in
the developed model. In Experiments 2 and 3, regardless of the forecasting step or the observation
site, the proposed combined strategy was always superior to all the selected methods because the
performance metrics were the lowest and fluctuated over a small range, indicating that the proposed
strategy accurately and stably predicts short-term wind speed. Moreover, in the discussions, we have
verified the forecasting significance and forecasting effectiveness of our developed model and further
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proved that our proposed model can provide accurate and stable wind speed forecasting performance.
To verify the superiority of MODA, we conduct a comparison among MODA, NAGA II, MOPSO,
and MOALO, and the results indicate that the MODA is a helpful choice for short-term wind speed
forecasting in our work. Besides, the developed model is used to intra-day and next day forecasting
and the simulation results have testified the effectiveness of our developed model in both intra-day
and next day forecasting, which can help wind producers bid their offers in day-ahead schedule.
Ultimately, the practical applications of the developed model in power system are illuminated in
detail to verify the practical value of the developed model. Overall, the developed model significantly
increases short-term wind speed forecasting accuracy and stability, providing a reference for smart
grid planning.

The main limitation of this research is that only power systems including wind farms were
considered, whereas other fields including stock price forecasting were not included. Recommendations
for improvements in our work in the future include:

(1) Applying more effective data pretreatment techniques to handle the stochastic and fluctuating
wind speed data to increase the forecasting accuracy.

(2) Improving existing optimization algorithms to enhance the global search ability and
convergence speed and further improving optimization performance and forecasting accuracy of
combined models.

(3) Developing new neural network models and statistic methods to grasp the characteristic of wind
speed series and constructing fundamental forecasting models.
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Abbreviations

FL fuzzy logic
KF Kalman filtering
ENN elman neural network
ANN artificial neural network
RMSE root mean square error
IMFs intrinsic mode functions
NWP numerical weather prediction
BP back propagation neural network
EEMD ensemble empirical mode decomposition
MOALO multi-objective ant lion optimization
ARIMA autoregressive integrated moving average model
ARFIMA autoregressive fractional integrated moving average
CEEMD complete ensemble empirical mode decomposition
MODA multi-objective dragonfly optimization algorithm
MOGWO multi-objective grey wolf optimization algorithm
MC Markov chain
CS cuckoo search
MAE mean absolute error
SSE error sum of square
WNN wavelet neural network
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DM Test Diebold Mariano test
ELM extreme learning machine
WDD wavelet domain de-noising
SSA singular spectrum analysis
EMD empirical model decomposition
MAPE mean absolute percentage error
DA dragonfly optimization algorithm
MOPSO multi-objective particle swarm optimization
NSGA II Elitist Nondominated Sorting Genetic Algorithm
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