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Abstract: Grinding is widely used in mechanical manufacturing to obtain both precision and part
requirements. In order to achieve carbon efficiency improvement and save costs, carbon emission
and processing cost models of the grinding process are established in this study. In the modeling
process, a speed-change-based adjustment function was introduced to dynamically derive the
change of the target model. The carbon emission model was derived from the grinding force using
regression. Considering the constraints of machine tool equipment performance and processing
quality requirements, the grinding wheel’s linear velocity, cutting feed rate, and the rotation speed of
the workpiece were selected as the optimization variables, and the improved NSGA-II algorithm was
applied to solve the optimization model. Finally, fuzzy matter element analysis was used to evaluate
the most optimal processing plan.
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1. Introduction

In the production and processing of an enterprise, the grinding process induces a small amount of
cutting, and the post-processing surface roughness of the parts are very low and is mainly used for
precision and ultra-precision machining of parts. The high-speed rotation of the grinding wheel and
the long processing time can lead to large carbon emissions from the machine tool, and this can be
accompanied by a high processing cost and greater use of cutting fluid in the process. According to the
analysis of the energy consumption of the grinding process [1–3] and the mathematical model of CNC
(computer numerical control machine tools) [4–9], a grinding parameter optimization model based on
carbon emissions and cutting costs is established.

Many scholars have carried out research on the optimization of the manufacturing process or
system, and discussion on the connotation of energy efficiency of manufacturing systems [10–16].
Cai et al. [17,18] proposed a new concept of entitled, lean, energy-saving, emission reduction and fine
energy consumption allowance. Greinacher S. et al. [19] focused on the identification of a cost-optimized
combination of lean and green strategies with regard to green targets. Cai et al. [20] measured the
eco-environment loss caused by industrial solid waste. Researchers have studied the model of green
CNC machining. Feng Ma et al. [21] established the multi-objective, laser-sintering forming process
optimization model, with minimum energy consumption and material cost. Jiang et al. [22] proposed
a method to predict the remanufacturing cost based on dates. Lin et al. [23] proposed a method to
directly quantify carbon emissions during the entire turning process and established a low-carbon,
efficient turning model. Yan et al. [24] built a model to improve the thermal efficiency of the arc
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welding process, reducing energy consumption as a result. Bustillo et al. [25] took into account the
optimization of the process by requiring calibration of the main input parameters in relation to the
desired output values.

Grinding forces are key parameters in the grinding modeling process; however, most studies
were based on the analysis of grinding motion and individual abrasive forces. Shen et al. [26] analyzed
the characteristics of the non-circular grinding movement of special-shaped parts and established
an empirical model of grinding force during the processing of special-shaped parts. Li et al. [27]
considered the microscopic interaction between abrasive particles and workpieces at different processing
stages and proposed a detailed cutting force model. Zhang et al. [28] proposed that the aggregate
force was derived through the synthesis of each single-grain force, based on material-removal and
plastic-stacking mechanisms.

For the analysis of the results of green manufacturing, many scholars have proposed many
assessment and decision-making methods of energy efficiency [29–34]. Cai et al. [35] proposed
energy performance certification to manage energy consumption and improve energy performance.
Jia et al. [36] developed an energy consumption evaluation method for the activities related to machine
tools and operators. Green manufacturing processing steps can also be evaluated by the general
principles of fuzzy matter evaluation [37], and carbon emissions from it can be evaluated by aggregating
the unit process to form a combined model [38].

In a comprehensive analysis of the above research, although the optimization of the machining
process is discussed, the influence of the optimization variables on the dynamic changes of the
multi-objective model is rarely considered. In order to improve the accuracy of the model, the dynamic
modeling method needs to be studied. During the actual processing, the use of a single abrasive force
to establish a theoretical model would cause errors, and few researchers dynamically fit the model at
each stage of the process through experimental data. In the analysis of the results, each target of the
multi-objective optimization model is incompatible. So, using the theory of fuzzy matter-element to
evaluate Pareto front-end could improve the efficiency of evaluating incompatible problems in reality.
Methods to improve the accuracy of the models and the results require further research.

2. Establishment of a Multi-Objective Optimization Model for the Grinding Process

2.1. Optimization Variable

Cutting speed vc, feed rate f, and depth of cut ap are three important variables in the machining
process. For the outer circle cutting of the grinding process, the main motion is the rotary motion of
the grinding wheel. The cutting speed is the linear speed vs of the outer circle of the grinding wheel.
The feed rate and the depth of cut are determined by the cutting feed rate vr of the grinding wheel, and
the rotation speed of the workpiece is vw. The optimization variable is

U = (vs, vr, vw)
T (1)

2.2. Carbon Emission Model in the Grinding Process

The operation process of the CNC grinding machine is generally divided into start-up, standby,
no-load, cutting, and retracting stages. The energy-consuming components of each stage are relatively
fixed. Therefore, the power jump corresponding to each stage is relatively stable. The carbon emission
during the grinding process is mainly composed of non-cutting and cutting. Non-cutting parts include
carbon emissions from auxiliary systems such as standby, air cut, and cooling. The cutting part is
mainly the overall carbon emissions of the machine tool during the material removal process. With the
start-stop process of the CNC grinding machine as the aim, the energy consumption characteristics of
each component are individually analyzed, and an energy-based carbon emission model is established.

With energy consumption as the basic input and greenhouse gas (GHG) as the output,
the corresponding carbon emissions in this process are converted through the carbon emission
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coefficient of various energies [39]. ξ is the carbon emission coefficient of the energy type (e.g., fuel,
electricity). δ is the environmental impact, such as the time of production and the area where the
workshop is located. µ is the influence of the auxiliary process, such as the cooling of the processing
environment, etc. The carbon emissions’ factor W can be defined as

W = ξ(1 + δ+ µ)E (2)

According to the study of Li et al. [40], the relationship between cutting speed and carbon
emissions should follow the curve shown in Figure 1. When the cutting speed is increased in Area 1,
the cutting power is also increased, but as processing time decreases, the energy consumption reduced
by the time reduction is greater than the energy consumption increased by the increase of the spindle
load, that is, the carbon emission is reduced. In Area 3, when the cutting speed is increasing and the
power is increased, the energy consumption of the spindle load is greater than the energy consumption
reduced by the time reduction, so the carbon emissions increase. There is an optimum cutting speed in
Area 2 that minimizes carbon emissions.
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Figure 1. Cutting speed-carbon emission curve

When the grinding machine power is turned on, the lighting system, operation panel, machine
tool frequency converter, servo driver, and other components are turned on. The time is short and the
power fluctuation is large, so the start-up energy consumption is ignored. The standby power of the
machine P1 consists of the power of the auxiliary system, the motor and the servo power. The time for
standby preparation and input of the program before processing is t1. When the Z-axis starts to rotate,
the spindle’s no-load rotation power is Pz1 . No-load standby power is Ps = P1 + PZ1 , and no-load
standby time is ts. Then the energy consumption Es after the machine is turned on can be expressed as

Es =

∫ t1

0
P1dt +

∫ ts

0
Psdt (3)

The empty cutting energy consumption of the cylindrical grinding machine includes the movement
of the X-axis of the head frame and the movement of the Z-axis of the grinding wheel. The X-axis
rotation and the Z-axis movement power are respectively PX, PZ2 . Therefore, the energy consumption
of air cut can be expressed as

Eair =

∫ tX

0
PXdt +

∫ tZ2

0
PZ2dt +

∫ tX+tZ2

0
Psdt (4)

In order to ensure the surface roughness of the parts and avoid the quality problems such as
grinding burns, the flow rate and consumption of the cutting fluid change with different grinding
wheel linear speeds and table feed speeds, and the wear amount of the grinding wheel also changes,
resulting in dynamic changes of the model. For the change of the linear speed of the grinding wheel
and the feed rate of the table, the adjustment function is defined as

ψi = αi(∆vs)
2 + βi(∆vr)

2 + γi(∆vw)
2(i = 1, 2) (5)
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where αi, βi, γi are the adjustment factors, ψ1 is the cooling adjustment factor, and ψ2 is the grinding
wheel wear adjustment function. The energy consumption of the auxiliary system includes the energy
consumption generated during the cutting time tm by the power of the filtration and cooling system Pc,
and the energy consumption generated during the standby time tch of the machine tool in the process
of loading and unloading parts, so the auxiliary energy consumption of each part processing can be
expressed as

Eas = ψ1

∫ tm

0
Pcdt+

∫ tch

0
P1dt (6)

Non-cutting process carbon emissions can be expressed as

W1 = ξ(1 + δ+ µ) · (Es + Eair + Eas) (7)

As shown in Figure 2, the grinding force of the grinding wheel is divided into the normal grinding
force Fn and the tangential grinding force Ft. The machining power of the grinding Pm is mainly
determined by the tangential grinding force and the linear velocity.

Pm = Ftvs75× 1.36× 9.81kW (8)
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The speed of the wheel is recorded as follows:

vs = πd0 · n0/(60× 1000) (9)

where d0 is the diameter of the grinding wheel, and n0 is the grinding wheel speed.
The tangential grinding force is an important parameter for power calculation. The index in the

empirical formula is calculated by experimental data to obtain the actual tangential force of this kind
of grinding wheel. The mathematical formula of the cylindrical grinding force is Ft = Fpvx

s vy
r vz

w, and
Fp is an experimental variable based on different processing environments. The experimental value of
the grinding force of the grinding wheel is taken as the natural logarithm, and the regression equation
is shown as follows:

ln Ft = ln Fp+x ln vs+y ln vr+z ln vw (10)

y = b0 + b1x1 + b2x2 + b3x3 (11)

The data of grinding consumption obtained in the experiment were coded, the large value is +1,
the small value is −1, and the four coefficients b0, b1, b2, and b3, of the regression equation are calculated
according to the data of the grinding force. In the grinding, Fi is the i-th grinding variable, F1 is the
grinding wheel linear speed vs, F2 is the grinding wheel cutting feed amount vr, F3 is the workpiece
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rotation speed, and fi j is the j-th experimental value of the i-th grinding amount. Then find the three
values in the regression equation:

xi =
2(ln Fi − ln fi jmax)

ln fi jmax − ln fi jmin
+ 1 =

2
ln fi jmax − ln fi jmin

ln Fi +
− ln fi jmax − ln fi jmin

ln fi jmax − ln fi jmin
(12)

Assuming that Ai =
2

ln fi jmax−ln fi jmin
,ai =

− ln fi jmax−ln fi jmin
ln fi jmax−ln fi jmin

, then xi = Ai ln Fi + ai. Substitute it for xi

in the regression equation.

y = b0 + b1(A1 ln F1 + a1) + b2(A2 ln F2 + a3) + b3(A3 ln F3 + a3)

= (b0 + b1a1 + b2a2 + b3a3) + b1A1 ln F1 + b2A2 ln F2 + b3A3 ln F3
(13)

Ft = e(b0+b1a1+b2a2+b3a3)vb1A1
s vb2A2

r vb3A3
w (14)

Substitute b0, b1, b2, and b3 with their values in Equation (14) to calculate the Ft, and the actual
tangential force is determined according to different depths of cut, wheel speeds, and table feed
speeds. The processing energy consumption model takes the form of integral, and the power from
0 to tm is integrated to obtain the energy consumption value. The Em expression of grinding energy
consumption is

Em =

∫ tm

0

Ftvs

75× 1.36× 9.81
dt (15)

Then total carbon emissions from the grinding process are

W = ξ(1 + δ+ µ) · (Es + Eair + Eas + Em) (16)

2.3. Cost Model in the Grinding Process

The processing cost of a single part increases with the increase of processing time. The grinding
cost is mainly divided into two aspects: processing cost and loss cost. With the part affected by the
optimization variable taken into consideration, the grinding process cost model is established. The
processing cost includes standby, empty cutting, energy consumption cost of cutting operation, the
labor cost during processing time and the use cost of auxiliary equipment, and thus the processing cost
expression for each process is shown as follows:

Cm = (Me + Mas) × (
t1 + ts

Q
+ tair +

ap

vr
+ tch) (17)

where Cm is the grinding cost (yuan), Me is the electricity cost (yuan/s), and Mas is the labor cost and
the use cost of auxiliary equipment (yuan/s); tair is the empty cut time (s); ap is the depth of cut (m)
at which the grinding load is generated and it can be known based on processing requirements; the
number of processing batches is Q.

Loss costs include wheel loss and cutting fluid consumption, and multiple wheel dressings are
required during machining of the part until the wheel is reduced to the minimum diameter. The cost
of the grinding wheel Closs is

Closs = Ma ·ψ2 ·
πr2b− [π(r− ap)

2b]
G

(18)

where Ma is the grinding wheel cost (yuan/mm3); b is the wheel width; r is the workpiece radius; G is
the grinding ratio.
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The consumption of cutting fluid consists of the portion of the machined surface that rises in
temperature and evaporates into the air, the portion taken away by the chip, and the portion deposited
on the surface of the part. Cutting fluid consumption cost Club (yuan) is

Club = Ml × [ψ1 · (
ap

vr
· llub)] (19)

where Ml is the unit cost of cutting fluid consumption (yuan/L); llub is the cutting fluid flow rate (L/s).
The total cost of grinding is

C = (Me +Mas)× (
t1 + ts

Q
+ tair +

ap

vr
+ tch) +Ma ·ψ2 ·

πr2b− [π(r− ap)
2b]

G
+Ml × [ψ1 · (

ap

vr
· llub)] (20)

2.4. Constraint and Optimization Model

With the grinding speed constrained, the grinding wheel speed vs must meet the following
requirement:

vs ∈

[
πd0nmin

1000
≤ vs ≤

πd0nmax

1000

]
(21)

where nmin and nmax represent the minimum and maximum speeds of the CNC grinding machine
spindle, respectively.

The tangential feed amount vr of the grinding wheel needs to be within the range of the maximum
and minimum values of the spindle feed of the machine tool, that is

vrmin ≤ vr ≤ vrmax (22)

The workpiece rotation speed vw needs to be within the range of the maximum and minimum
values of the workpiece speed of the CNC grinding machine, that is

vwmin ≤ vw ≤ vwmax (23)

With the cutting force constrained, the grinding wheel’s tangential force needs to be less than the
maximum cutting force to protect the grinding wheel and the surface quality of the part, namely

Ft = Fpvx
s vy

r vz
w ≤ Ftmax (24)

Power constraint, the calculated power needs to be less than the maximum power of the CNC
grinding machine, namely

Pm =
Ft · vs

75× 1.36× 9.81× η
≤ Pmax (25)

The surface quality of the machine is constrained. The surface roughness value needs to be greater
than the minimum machining roughness value of the machine tool. It is also an important condition
for restraining the linear speed vs of the grinding wheel and the feed rate vw of the table. According to
the Ono theory [41], the surface roughness expression of the external grinding is

Ra = 0.975γ1.2
× (cotϕ)0.1

× (
vw

vs

√
1
2r

+
1
ds
)

0.4

≥ Ramin (26)

where γ is the cutting edge spacing considered by volume density; ϕ is half of the cutting edge angle;
ds is the wheel diameter.
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In summary, the low-carbon and low-cost parameter multi-objective optimization model in the
grinding process is {

min f (U) = (minW, minC)T

U = (vs, vw)
T

s.t.
vs ∈
[
πd0nmin

1000 ≤ vs ≤
πd0nmax

1000

]
,

vrmin ≤ vr ≤ vrmax,
vwmin ≤ vw ≤ vwmax,
Ft = Fpvx

s vy
r vz

w ≤ Ftmax,
Pm = Ft·vs

75×1.36×9.81×η ≤ Pmax,

Ra = 0.975γ1.2
× (cotϕ)0.1

× ( vw
vs

√
1
2r +

1
ds
)

0.4
≤ Ramax.

(27)

3. Parameter Optimization Based on Improved NSGA-II Algorithm

3.1. Improved NSGA-II Algorithm

To solve the multi-objective optimization problems, the weighted summation method is used to
assign weights to each target value, and the multi-objective problem is simplified to a single-objective
problem. However, there is no standard for the assignment of target weights, and the objective
functions usually have different dimensions. If the weight value cannot be determined between
the carbon emissions and the cost cash, such as in this paper, it will have a greater impact on the
calculation results. The algorithm used by a multi-objective function in the MATLAB program is an
improved multi-objective optimization algorithm based on the non-dominated sorting genetic algorithm
(NSGA-II) with an elite strategy, which can effectively solve the multi-objective optimization problem.

The characteristics of the genetic algorithm include determining the dominance and non-inferiority
of the individual, and comparing and judging the better target individual. Based on the dominating
judgment order value, the individuals in the population are assigned to different front-ends according
to the size, and the higher the front, the stronger the dominance. The crowding distance is used to
calculate the distance between a certain body in a front-end and other individuals in the front-end,
and to characterize the degree of crowding between individuals—the greater the distance, the better
the diversity of the population. The improved algorithm introduces the optimal front-end individual
coefficients unique to the gamultiobj function, defines the proportion of individuals in the optimal
front-end in the population, and also directly determines the number of individuals retained during
the pruning process.

The algorithm flow is to first determine the constraint type of the optimization problem, generate
the initial population, and judge whether the algorithm can be exited. And if it exits, get the Pareto
optimal solution. If not, the population will evolve into the next generation. In the process of
evolution, the gamultiobj function only uses the tournament selection method based on the order
value and the crowded distance. The selected individual is assigned to several front-ends to generate
the parent population. The parent population crosses, and the mutation produces the children. The
gamultiobj function allows the elite to automatically retain, and the scaling function is no longer
needed. The parent and the child are merged, and the individuals in the population are sorted by the
non-dominated sorting function so that all the merged individuals are assigned to different front-ends.
Then the crowded distance is used to calculate the distance between each body in a front-end and its
neighbors. According to the optimal front-end individual coefficient, individuals equal to the size of
the population are pruned in the population twice as large as the parent–child mergence to obtain a
new parent population, and it is judged whether the iteration is terminated or whether the algorithm
can be exited. The algorithm flow is shown in Figure 3.
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3.2. Optimization Target Solving

The air compressor crankshaft blank of 45# steel was selected, and the second main journal of the
crankshaft is finely ground by a face cylindrical grinding machine, M-181. The diameter of the main
journal is ϕ 37.96–37.944, the root radius is R 1.4–1.7, the outer diameter of the main shaft is 0.015,
and the roughness of the outer circle is Ra 0.8. The process drawing is shown in Figure 4, and the actual
processing is shown in Figure 5. The grinding machine uses a 100# resin-bonded diamond grinding
wheel to grind the outer end surface of the shaft parts, and the grinding precision and smoothness are
high; the longitudinal movement of the grinding wheel frame is driven by the gear oil pump, and
the movement is stable to ensure the uniform feeding speed of the grinding wheel; double-paired
high-precision rolling bearings can make high rotation accuracy and rigidity. The relevant parameters
of the machine tool are shown in Table 1.
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Table 1. CNC cylindrical grinding machine parameters.

Parameters Numerical Value

Wheel speed (r/min) 1500–3000

Head frame speed (r/min) 50–500

Grinding wheel feed rate (mm/min) 0.05–5000

Wheel size (outer diameter ×width × inner diameter; mm) Ø 500 × 80 × Ø 203

Motor power (kW) 7.5

Surface roughness (µm) Ra 0.08

Control the grinding machine standby, air cutting, and other stages of operation. At each stage,
use the three-phase four-wire wiring method to lap the power recorder and collect the power value
of each stage of the machine tool. At the same time, the current-monitoring equipment is used to
monitor the data reliability of the power meter. Finally, when the second main journal of the crankshaft
is ground, a top force-measuring instrument is installed to detect and collect the grinding force at
different cutting speeds in real-time. The experiment for the grinding force is carried out to obtain
the parameters in Table 2, and the parameters are introduced into the model of the second part. The
specific experimental instruments are shown in Figures 6 and 7, and the corresponding parameter
values are shown in Table 3.

Table 2. Grinding force experiment.

No.
Grinding Variable Coding Measured Value of

Tangential Grinding Force

ap/mm vs/m·min−1 vw/m·min−1 b0 b1 b2 b3 Ft/N lnFt

1 0.005 2.5 12 +1 −1 +1 −1 48 y1 = 3.87
2 0.005 1.0 48 +1 −1 −1 +1 77 y2 = 4.34
3 0.020 1.0 12 +1 +1 −1 −1 87 y3 = 4.46
4 0.020 2.5 48 +1 +1 +1 +1 449 y4 = 6.11
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Table 3. Grinding parameters.

Parameters Numerical Value

P1 1.526 kW
Ps 2.772 kW
Pc 0.322 kW
t1 1200 s
ts 600 s
tch 120 s
ap 5 µm
L 150 mm
Q 30 pieces
N 120 pieces
G 21

Set the optimal front-end individual coefficient to 0.3, the population size to 100, the maximum
evolutionary algebra to 300, the stop algebra to 300, and the fitness function deviation to 0.001 to
calculate the results. Since the initial population of the algorithm is randomly generated, the operation
results obtained each time are different. The Pareto front-end values obtained from the result of a
certain operation is shown in Figure 8. Table 4 shows the specific parameters of the 30 optimal front
individuals, each row representing an individual speed of the grinding wheel outer circle, the cutting
feed rate, the rotational speed of the workpiece, the individual’s carbon emissions, and costs.
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Table 4. Pareto front-end values obtained from a certain operation.

vs vr vw W C

1 24.994 1.602 × 10−4 13.057 0.023 1.055
2 23.998 1.637 × 10−4 14.339 0.027 0.808
3 25.000 1.602 × 10−4 13.003 0.023 1.069
... ... ... ... ... ...
21 24.235 1.609 × 10−4 14.028 0.025 0.825
... ... ... ... ... ...
30 24.975 1.611 × 10−4 13.012 0.023 1.060
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3.3. Fuzzy Matter Element-Based Decision-Making

Multi-objective decision-making schemes include use things, features, and fuzzy magnitudes to
quantitatively analyze and calculate things. Assume that the thing is the plan Ki, and the feature is the
evaluation index Oi (for the purposes of this paper, the evaluation index is the wheel speed, the table
feed speed, the carbon emission, and the cost), and the fuzzy value gives the value of xi j, thereby
constituting the matter element. For the optimization model of this paper, take the smaller and better
decision, and the metric is determined by the correlation coefficient λi j.

λi j =
xi j −minxi j

maxxi j −minxi j
(28)

According to the scheme, the characteristics and the correlation coefficient, it can construct the
complex fuzzy matter element of the dimension correlation coefficient of a thing.

Rλ ==



K1 K2 K3 . . . K30

O1 0.994 0 1 0.976
O2 0.741 1 0 0.264
O3 0.040 1 0 0.007
O4 0.001 1 0 0.001
O5 0.946 0 1 0.968


(29)

Rw is the weighted composite element for each decision-making indicator, and the weight of the

i-th evaluation indicator for each scenario is Wi =
n∑

j=1
λ ji/

n∑
j=1

m∑
i=1

λ ji.

Rw =

[
O1 O2 O3 O4 O5

Wi 0.285 0.249 0.153 0.092 0.222

]
(30)

The weighted average centralized processing is used to construct the correlation fuzzy matter
element, namely

Rk =

[
K1 K2 K3 · · · K30

0.4994 0.4933 0.5067 · · · 0.5593

]
(31)

The minimum value is obtained by sorting the degree of association, and the optimal solution is
K21. The results in the single target case are obtained and compared, as shown in Table 5.

Table 5. Comparison of optimization results.

vs vr vw W C

Low cost 23.99770954 0.000163744 14.3388749 0.026951585 0.808222327

Low carbon and low cost 24.23538375 0.000160926 14.02766146 0.025212982 0.824788898

Low carbon 24.99970889 0.000160212 13.00277846 0.022746323 1.068775876

The best variable for the second main spindle refining of the crankshaft with low carbon and
low cost is the grinding wheel linear velocity of 24.235 m/s, the spindle feed speed is 0.00016 m/s,
the workpiece rotation speed is 14.0428 m/s, and the carbon emission is 0.0252 kg/piece. The processing
cost is 0.825 yuan/piece. With low carbon as the goal, the grinding wheel’s linear speed is high, the
processing time is short, but the grinding wheel wear and cutting fluid usage are significant and the
cost is high; With low cost as the target, the low linear speed of the grinding wheel reduces the amount
of wear and the amount of cutting fluid, but the processing time is long and the carbon emission
is high.
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4. Conclusions

This paper systematically analyzes the energy consumption characteristics and
parts-manufacturing costs of various stages of machine tools in grinding. An optimization model
for the external grinding parameters with the minimum carbon emission and the optimal cost as
the multi-objective is established. The use of auxiliary tools and the division of the whole process
are considered in the modeling process. Considering the dynamic change of cutting fluid and the
service life of the grinding wheel, an adjustment function is introduced based on the linear speed
of the grinding wheel and the feed rate of the working table. The optimized grinding parameters
are calculated by using the NSGA-II algorithm, and these parameters are evaluated through the
fuzzy matter-element decision method. The machining process is fitted in a single grinding depth
during the modeling process, but during the actual production, one part often requires multiple-time
grinding. According to different grinding depth and surface roughness values, applying them in the
multi-objective optimization dynamic model can realize step-by-step optimization in machining and
be referred to for the selection of grinding process parameters.
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