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Abstract: In order to maximize the operating flexibility and optimize the system performance of
a battery energy storage system (BESS), developing a reliable real-time estimation method for the state
of charge (SOC) of a BESS is one of the crucial tasks. In practice, the accuracy of real-time SOC detection
can be interfered with by various factors, such as battery’s intrinsic nonlinearities, working current,
temperature, and aging level, etc. Considering the feasibility in practical applications, this paper
proposes a hybrid real-time SOC estimation scheme for BESSs based on an adaptive network-based
fuzzy inference system (ANFIS) and Coulomb counting method, where a commercially available
lead-acid battery-based BESS is used as the research target. The ANFIS allows effective learning
of the nonlinear characteristics in charging and discharging processes of a battery. In addition,
the‘Coulomb counting method with an efficiency adjusting mechanism is simultaneously used in
the proposed scheme to provide a reference SOC for checking the system reliability. The proposed
estimating scheme was first simulated in a Matlab software environment and then implemented with
an experimental hardware setup, where an industrial-grade digital control system using DS1104 as
the control kernel and dSPACE Real-Time Interface (RTI) interface were used. Results from both
simulation and experimental tests verify the feasibility and effectiveness of the proposed hybrid SOC
estimation algorithm.

Keywords: battery energy storage system (BESS); state of charge (SOC); adaptive network-based
fuzzy inference system (ANFIS)

1. Introduction

In recent years, BESSs have been widely used in renewable energy (RE)-based power generation
(REBPG) applications and microgrids to smooth the intermittent power generation, buffer the power
generation–demand differences, and improve the frequency stability of power systems. BESSs are also very
useful in optimal electrical energy management and grid voltage stabilization [1]. In order to achieve proper
compensation functions, real-time SOC information of BESS is required to determine its operational limits
and prevent overcharging/overdischarging to ensure a desirable battery life. In practice, there are many
factors that affect battery’s SOC, including battery current, ambient temperature, electrolyte concentration,
internal impedance, and aging level, etc. It is indeed difficult to estimate accurately the battery’s SOC using
existing SOC estimation techniques. Moreover, most of the existing SOC estimation techniques are only
suitable for experimental analysis performed in a laboratory and may not be applicable in online estimation
of battery SOC. To have a general understanding of the existing methods and the related algorithms, some
of the reported SOC estimation methods are reviewed in the following part of this section.

Coulomb counting method [2–4] is based on the law of energy conservation. Through real-time
sensing of battery current and the current integration over time, SOC variations can be determined.

Processes 2020, 8, 2; doi:10.3390/pr8010002 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr8010002
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/1/2?type=check_update&version=2


Processes 2020, 8, 2 2 of 22

As a result, real-time SOC can be determined based on a given initial SOC value. This process can be
expressed as (1):

SOC(t) = SOC0 +

[∫ t

t0

K·i(t)dt
]
/Qr, (1)

where SOC(t) represents real-time SOC, SOC0 represents the initial SOC, Qr represents battery
capacity, K is the charging or discharging efficiency adjusting factor, and i(t) represents battery current.
This method is simple and easy to apply when initial SOC is known. However, factors such as
ambient temperature and battery aging level can cause significant error over time. Consequently,
certain adjusting factors are usually needed, or other estimation methods can be combined, to improve
estimation accuracy.

Open-circuit voltage (OCV) methods [5–7] can be used to estimate battery SOC using the
approximately proportional relationship between battery OCV and SOC. The key to this method
is that when measuring the OCV, the battery must be disconnected from any load, and the distribution of
internal electrolyte concentration must be uniform. During charging, the electrolyte concentration near
the electrode plates is high; when discharging, the electrolyte concentration near the electrode plates is
low. Therefore, after several times of charging/discharging operations, the distribution of electrolyte
concentration is not uniform, and thus the OCV is not stable. In order to accurately measure the OCV,
the battery must stop working for a while. At different charging/discharging rates, the chemical reaction
speed of the electrolyte is different, so the required diffusion time is also variable. When electrolyte
concentration returns to uniform distribution, the measured OCV can then accurately correspond to
the real battery SOC. Due to the fact that this method requires a no-load condition, it is not suitable for
practical applications. Furthermore, factors similar to those in the Coulomb counting method can cause
errors in this method as well.

The internal resistance method [8–10] estimates battery SOC by measuring the changes in the
internal resistance of the battery. Different battery internal structures generate different resistances
when current passes through, which is the reason why ideal battery capacities do not match actual
operating capacities. By measuring the battery current and voltage drop, the internal resistance can be
calculated. The positive correlation between internal resistance and battery SOC can then be found
through experiments and used for SOC estimation. The variation in the internal resistance of a battery
is normally very small (mΩ level), and thus a measuring device with relatively high accuracy is
required. In addition, the internal resistance of a battery is also affected by ambient temperature, aging
level, etc., so this method is more suitable for battery state of health (SOH) assessment performed
in laboratory.

The load voltage method [10,11] estimates battery SOC by measuring battery terminal voltage
when the battery is connected to a load. When using this method, in addition to battery characteristics
and SOH, terminal voltage sags and swells due to internal resistance should also be considered.
Therefore, the influence of battery current variation on SOC estimation must also be taken into
consideration. In addition, when battery SOC is around 20–10%, the terminal voltage tends to drop
exponentially. As a result, this method is not suitable for a BESS whose load is constantly changing.
This method is generally used in BESS equipment with low accuracy requirements.

The electrolyte concentration of batteries increases/decreases when charged/discharged.
Theoretically, there is a linear relationship between the concentration of the electrolyte and battery
SOC. Therefore, the SOC can be estimated by measuring battery electrolyte concentration. Similar to
internal resistance method, before measuring it is necessary to let the battery rest and the electrolyte to
distribute evenly after charging/discharging. Moreover, some fully sealed batteries cannot be installed
with a hydrometer. As a result, this method is more suitable for experimental testing of batteries when
they are not in operation [10].

The electrochemical impedance spectroscopy (EIS) method [12] uses small AC voltage or current
to perturb the electrodes for estimating the SOC. AC impedance data are obtained from experiments,
and the corresponding electrode reaction parameters can be calculated according to equivalent circuit
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of the batteries. To have a whole picture of the above mentioned conventional SOC-detecting methods,
Table 1 summarizes their advantages and disadvantages.

Table 1. Summary of conventional state of charge (SOC)-detecting methods.

Method Advantages Disadvantages

Coulomb counting
1. Simple implementation and
modification 1. Requires initial SOC value

2. Widely applicable 2.Accumulated errors

OCV
1. Simple implementation 1. Requires open circuit
2. Relatively precise 2. Requires resting before measuring

Internal resistance 1. Simple implementation 1. Requires high-precision equipment
2. Can easily generate error

On-load voltage 1. Simple implementation 1. Requires high-precision equipment
2. Applicable during
charging/discharging 2. Can easily generate error

Electrolyte concentration 1. Relatively precise 1. Requires resting before measuring
2. Requires access to electrolyte

EIS 1. Relatively precise 1. Easily interfered by ripple/harmonics
2. Requires costly equipment

To overcome the disadvantages of the above methods summarized in Table 1, researchers have proposed
nonlinear methods, e.g., extended Kalman filter (EKF) [13,14], unscented Kalman filter (UKF) [15,16],
particle filter [17,18], Bayesian framework [19,20], sliding mode [21,22], nonlinear observer [23,24], wavelet
analysis [25,26], and H-infinity [27–29]. These methods are applicable to any battery and can simultaneously
identify the parameters of prebuilt models and thereby estimate battery SOC through their nonlinear
mapping capabilities without the need of initial SOC values. However, the required models may need to be
adjusted or rebuilt when battery characteristics change, and the complexity of the models will significantly
affect their SOC-estimating performance. On the other hand, some researchers have proposed intelligent
algorithms for SOC estimation, such as artificial neural network (ANN) [30–32], fuzzy logic [33–35], support
vector [36,37], and adaptive network-based fuzzy inference system (ANFIS) [38–40]. These methods do not
require complicated equivalent circuits or models for obtaining the nonlinear characteristics of batteries,
instead it is done through their learning and inference capabilities. In [41], an ANFIS architecture was
proposed to process a large number of battery characterization data through repeated charge/discharge
experiments. These data were then used for battery’s SOC estimation. The above mentioned ANN and
ANFIS-based SOC estimating methods are relatively easy in implementation but they have a common
drawback, i.e., the reliability of estimation cannot be fully guaranteed. To improve the estimation reliability,
this paper proposes a hybrid real-time battery SOC estimation scheme for practical applications, where two
detecting methods, adaptive Coulomb counting method and ANFIS-based online estimating algorithm,
are integrated to constitute a hybrid SOC estimation scheme. In the proposed scheme, ANFIS is used
to effectively learn the nonlinear mapping relationships among the SOC and characteristic parameters
of a battery during charging and discharging processes. An adaptive Coulomb counting algorithm is
simultaneously used to produce a real-time estimated SOC values for double checking the correctness of the
SOC estimation of ANFIS. It can be expected that the proposed hybrid SOC-detecting scheme with parallel
estimating mechanisms and multiple SOC results can effectively increase the reliability of SOC monitoring.

Following this section, the next section explains the proposed hybrid SOC estimation scheme
and briefly introduces the ANFIS principle. The third section introduces the arrangement of battery
experiments and the method used to obtain characteristic parameters, describes the battery measurement
experiment platform, and analyzes the obtained parameters. In addition, this section also explains how
to establish an ANFIS in a MATLAB environment, and the correctness of the SOC estimation scheme is
verified through simulations. An inverter integrated BESS hardware setup is explained in the fourth
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section for further verifying the proposed hybrid real-time SOC estimation scheme via experimental
tests. A real-time digital control system was developed with the dSPACE DS1104 platform, and three
test cases were carried out. Finally, a conclusion is drawn in the fifth section.

2. Proposed Hybrid Real-Time SOC Estimation Scheme

2.1. System Design, Working Principle, and Design of Training Mechanism

The hybrid real-time SOC estimation scheme proposed in this paper utilizes the parallel computing
capability of ANFIS to simultaneously process multiple battery characteristic parameters and establish the
relationships between selected battery parameters and battery SOC in a manner similar to the nonlinear
mapping of a multiple input and single output system. Due to the fact that the structure of decentralized
memory is adopted in ANFIS, fault tolerance capability is relatively high. Through the adaptive learning
and nonlinear inference capabilities of the ANFIS algorithm, battery SOC can be effectively estimated.
The hybrid SOC-detecting mechanism proposed in this paper was designed with the above-mentioned
intelligent algorithm and Coulomb counting method, as shown in Figure 1. When operating online,
the system senses relevant battery characteristic parameters and then inputs those parameters to the
ANFIS-based SOC estimator to obtain the real-time SOC value (SOC1). At the same time, the Coulomb
counting method with online adjusting factors is simultaneously activated to provide a second SOC result
(SOC2) in the proposed scheme. In practical operation with the proposed method, multiple estimated
SOC results, the estimation on ANFIS (SOC1), the estimation on adaptive Coulomb counting algorithm
(SOC2), the average of the above two estimation results (SOCave), and the difference between the two
estimation results (∆SOC) can be obtained for monitoring battery’s status. If the difference between the
two estimated SOC values (∆SOC) exceeds a certain threshold, it means that the detecting results may
need to be reexamined.
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The battery characteristic parameters selected for the proposed ANFIS algorithm include battery
voltage, current, and temperature. Voltage slew rate (∆V) is also included to improve the performance
of the algorithm. These experimental data can be obtained through experiments and provided for
offline learning. When the learning is complete, the correctness of the algorithm can be verified through
simulation. S-function is used to implement the calculation processes, and the battery SOC estimation
algorithm module is built for online real-time applications. The initial SOC value required by the
Coulomb counting method is obtained using the OCV method and a linear approximation equation is
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established from the battery manufacturer’s OCV-SOC data. The formula for calculating real-time
battery SOC using Coulomb counting algorithm is shown in (1).

As can be seen in the charge and discharge curves of a battery shown in Figure 2, both sides of the
SOC-V curves exhibit nonlinear characteristics and are referred to as the exponential zones, while the
middle section is called the linear zone, which is usually defined as 10–95% of battery’s SOC. Due to
that fact, the battery voltage changes quite rapidly in the exponential zones but relatively slowly in the
linear zone. As a result, the section where the SOC is located can be judged by voltage slew rate within
a sampling interval, and the sensitivity of SOC to battery voltage can be further improved according to
this information. Voltage slew rate (∆V) in this paper is defined as follows:

∆V = (Vk −Vk−1)/Vk, (2)

where Vk represents the current voltage and Vk−1 represents the previous sampled voltage. The designed
ANFIS configuration for SOC estimation is shown in Figure 3 and the block diagram of the full detecting
algorithm is shown in Figure 4. In the proposed algorithm, the efficiency adjusting factors (K) are used to
compensate for the usable capacity variation due to battery current, ambient temperature, and aging
level; they are calculated as follows:

Kdischarge = Qr/Quse; (3)

Kcharge = Quse/Qr, (4)

where Quse and Qr represent, respectively, the actual usable and the rated capacity.
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2.2. Adaptive Network Based Fuzzy Inference System

The composition of an ANFIS system includes fuzzy inference and ANN [26–28]. A fuzzy inference
system simulates a human’s knowledge and logical inference process with if–then conditionality but
requires expert knowledge or empirical rules to constantly adjust the membership functions and fuzzy
rules to obtain optimal parameters, so that there is no definite quantitative analysis and numerical
correction processes. On the other hand, although ANN cannot handle human knowledge and logical
reasoning processes, it has self-learning and organization capabilities. Therefore, ANFIS can make use
of ANN’s features to deal with uncertainty and inaccuracy, perform self-learning, and adjust network
parameters to achieve parameter optimization.

The ANFIS configuration used in this paper is shown in Figure 5, which is a five-level network
structure where each node has similar function. Oh,k denotes the output of the k-th rule in the k-th layer,
xi represents input variable, uji represents fuzzy set, wk represents rule layer output, wk represents the
output of the normalized rule layer, fk represents a one-order Sugeno equation, and y represents the
sum of the inference results.
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In the first layer, which is the input layer, the inputs are mapped into the fuzzy sets. Here,
a Gaussian function is chosen as the mapping function:

O1, ji = µ j(xi) = exp
[
−(xi − c ji)

2/2σ2
ji

]
, f or i = 1, 2, . . . n; j = 1, 2, . . . , m, (5)

where uj,i represents the membership function of the j-th set with the i-th input variable, σji represents
standard deviation, and cji represents maximum value of Gaussian function.

In the second layer, which is the rule layer, the fuzzy sets are arranged using a total of L rules
for fuzzy logic calculation, and T-norm is adopted for fuzzy AND operation. There are many T-norm
operations, and multiplication is used in this paper. Supposing that the network has two sets and two
inputs per set, then we have a network with four rules. The set of calculations is as follows:

O2,1 = w1 = µ1,1(x1)·µ1,2(x2)

O2,2 = w2 = µ1,1(x1)·µ2,2(x2)

O2,3 = w3 = µ2,1(x1)·µ1,2(x2)

O2,4 = w4 = µ2,1(x1)·µ2,2(x2)

(6)

In the third layer, which is the normalization layer, all node outputs of the second layer are
normalized through the calculation of the ratio of k-th output to the sum of all outputs, so that every
output value is between 0 and 1:

O3,k = wk = wk/
L∑

k=1

wk, f or k = 1, 2, . . . , L. (7)

In the fourth layer, which is the inference layer, the outputs of the third layer are multiplied by the
Sugeno inference algorithm:

O4,k = wk fk = wk(pkx1 + qkx2 + rk), k = 1, 2, . . . , L, (8)

where fk = pkx1 + qkx2 + rk is the correlation coefficient of first-order Sugeno fuzzy inference algorithm.
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In the fifth layer, which is the output layer, only a single node exists, which sums up the output
values of the fourth layer as the final output value of the network:

y = O5,1 =
L∑

k=1

wk fk =

 L∑
k=1

wk fk

/
 L∑

k=1

wk

, f or k = 1, 2, . . . , L. (9)

3. Simulation and Analysis

3.1. Measurement and Analysis of Battery Characteristic Parameters

Due to the fact that the lead-acid battery has a relatively wide operating temperature range, and
the effect of current and temperature on its capacity is more observable, it is a good target for analyzing
experimental results and testing the effectiveness of SOC estimation algorithms. In the experiment,
the battery was charged by a DC power supply in a two-stage manner and discharged using an
electronic load with a constant current mode. Figure 6 shows block diagram of the experimental
system. In Figure 7, we can see that the experimental hardware included (1) a single lead-acid battery
(REC14-12), (2) a temperature and humidity controlling chamber (THCC), (3) a power supply, (4) an
electronic load, and (5) a power meter.
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The arrangement of experimental charging/discharging currents and operating temperature range
are based on a datasheet provided by the battery manufacturer. According to the datasheet, the charging
temperature ranges from 0 ◦C to 40 ◦C, and the discharging temperature ranges from−15 ◦C to 40 ◦C. Here,
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experimental temperatures were selected at 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C. The discharging characteristic
curves of the REC14-12 can be found in [42]. Table 2 shows the details in discharging arrangement.

Table 2. Discharging experiment arrangement.

Discharging Rate (C) Current (A) Cutoff Voltage (V)

0.05 0.65 10.6
0.1 1.3 10.5
0.2 2.6 10.3
0.4 5.2 10
0.6 7.8 9.7
0.8 10.4 9.4
1 13 9.2

1.5 19.5 8.8
2 26 8.2

2.5 32.5 7.9

When a battery is being charged, if the current is too large, bubbles will generate through
electrolysis inside the battery, which may adhere to the plate, reducing contact area between the
electrolyte and the plate and thus decreasing charging efficiency. Moreover, the generated gas increases
internal pressure of the battery, resulting in loss of moisture and shortening of battery life. According
to the datasheet, the maximum charging current of REC14-12 is 3.25 A (0.25 C). Therefore, five currents
between 0.05 C and 0.25 C were selected as the experimental charging currents. When the battery is
operating at a high temperature, the internal chemical reaction is fast, and the power increases rapidly.
Therefore, it is necessary to monitor the charging voltage to avoid overcharging. Table 3 shows the
details of the charging arrangement. Tables 4 and 5 summarize results from discharging and charging
experiments, respectively. The usable capacities for different currents are documented at four different
temperatures. Experimental results are plotted in two ways: different currents at the same temperature
and different temperatures at the same current, as shown in Figure 8.

Table 3. Charging experiment arrangement.

Charging Rate (C) Current (A)
Cutoff Voltage (V)

25 ◦C 30 ◦C 35 ◦C 40 ◦C

0.05 0.65 14.4 14.28 14.16 14.04
0.1 1.3 14.4 14.28 14.16 14.04
0.15 1.95 14.4 14.28 14.16 14.04
0.2 2.6 14.4 14.28 14.16 14.04
0.25 3.25 14.4 14.28 14.16 14.04

Table 4. Battery discharging capacities.

Discharging Rate (C) Current (A)
Capacity (Ah)

25 ◦C 30 ◦C 35 ◦C 40 ◦C

0.05 0.65 12.5162 12.5340 12.6579 12.7725
0.1 1.3 12.2326 12.2584 12.3848 12.5043
0.2 2.6 11.3832 11.5411 11.6978 11.8489
0.4 5.2 10.3949 10.5552 10.7416 10.9155
0.6 7.8 9.9651 10.1368 10.3657 10.5763
0.8 10.4 9.4215 9.6063 9.8835 10.1355
1 13 9.0262 9.2316 9.5741 9.8826

1.5 19.5 8.2727 8.5751 8.9349 9.2654
2 26 7.9903 8.4229 8.8267 9.2049

2.5 32.5 7.5326 7.9680 8.3839 8.7863
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Table 5. Battery charging capacities.

Charging Rate (C) Current (A)
Capacity (Ah)

25 ◦C 30 ◦C 35 ◦C 40 ◦C

0.05 0.65 12.7806 12.7857 12.7936 12.8037
0.1 1.3 12.5138 12.5547 12.5779 12.5986

0.15 1.95 11.9875 12.0806 12.1278 12.1756
0.2 2.6 11.5830 11.7316 11.8044 11.8810

0.25 3.25 10.6051 10.7457 10.8231 10.9005
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3.2. Algorithm Training

After obtaining characteristic parameters of the battery, the training tasks for ANFIS can be
performed. First, the measured characteristic parameters were divided into training data and testing
data. When selecting training data, the boundaries must contain the range of all possible applications;
otherwise, performance of the algorithm beyond training range will result in erroneous output.
In addition, the amount of training data will affect learning speed of the algorithm. If the amount of
training data is too large, it will take a lot of time and occupy a large amount of computer memory
and even stop the algorithm from being out of memory range. In order to explore the impact of the
amount of training data on the algorithm, two sets of training data with different sampling intervals
were used. The dataset with more training data was defined as set A, and the dataset with less training
data was defined as set B. Table 6 summarizes the amount of data used in training and testing stages.
Figures 9 and 10 show two of the training results, respectively. Parameters required for efficiency
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adjusting factor estimation were current and temperature. Experimental data obtained by performing
constant–current charging and discharging tests on the battery with ten discharging currents and five
charging currents at four temperatures were used as training data. Training data are graphically shown
in Figures 11 and 12.

Table 6. Amount of training and testing data for SOC estimation algorithm.

Amount of Training Data Amount of Testing Data

Charge Discharge Charge Discharge

Set A 1022 1672 38721 46860
Set B 392 656 39351 47877
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Figure 12. Training data for the discharging efficiency adjusting factor (K).

Table 7 summarizes the charging training results. Due to the fact that there are too many test data,
only the best results at 25 ◦C in Table 7 were selected for analysis, which is the result of membership
function combination 4, 4, 3, 2 and the root mean square error (RMSE) of 0.0862, as shown in Figure 13.
Table 8 summarizes the discharging training results. The best test results at 25 ◦C in Table 8 were
selected for analysis, which were the result of membership function combination 6, 5, 4, 1 and the
RMSE of 0.0615, as shown in Figure 14.

Table 7. Training result of ANFIS SOC estimation during charging.

Number of Membership Function Nodes
Number of Rules RMSE (%) Max. RMSE (%)

V I T ∆V

Set A

4 4 3 2 96 0.0862 0.3796

4 3 3 2 72 0.1037 0.4197

4 3 2 2 48 0.1973 0.7756

3 3 2 2 36 0.2286 0.9391

Set B
4 3 3 2 72 0.1110 0.4456

4 3 2 2 48 0.2087 0.8246

3 3 2 2 36 0.2350 0.9750
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Table 8. Training result of ANFIS SOC estimation during discharging.

Number of Membership Function Nodes
Number of Rules RMSE (%) Max. RMSE (%)

V I T ∆V

Set A

6 5 4 2 240 0.0616 0.5503

4 5 4 2 160 0.1036 0.6886

6 5 4 1 120 0.0615 0.5472

4 5 4 1 80 0.1037 0.6878

Set B
5 5 4 4 400 0.0950 0.5989

4 5 4 2 160 0.1145 0.7504

Processes 2020, 8, x FOR PEER REVIEW 13 of 22 

 

  

(a) (b) 

Figure 13. ANFIS SOC estimation results during charging at 25 °C: (a) results; (b) error. 

Table 8. Training result of ANFIS SOC estimation during discharging. 

 

Number of Membership 

Function Nodes 
Number of 

Rules 
RMSE (%) 

Max. RMSE 

(%) 
V I T ΔV 

Set A 

6 5 4 2 240 0.0616 0.5503 

4 5 4 2 160 0.1036 0.6886 

6 5 4 1 120 0.0615 0.5472 

4 5 4 1 80 0.1037 0.6878 

Set B 
5 5 4 4 400 0.0950 0.5989 

4 5 4 2 160 0.1145 0.7504 

 

 

(a) 

 

(b) 

Figure 14. Testing of ANFIS SOC estimation results during discharging at 25 °C: (a) results; (b) 

error. 

To verify the correctness of coding and performance of the proposed SOC estimation algorithm, 

a simulation with MATALB software was designed. Figure 15 shows the designed simulation system. 

Figure 16 shows real-time calculation of voltage slew rate. Figure 17 shows the estimated outputs of 

efficiency correction factors, and Figures 18 and 19 show SOC estimation results of the Coulomb 

counting and ANFIS, respectively. 

Voltage (V)Current (A)

S
O

C
 (

%
)

E
rr

o
r 

S
O

C
 (

%
)

Data

Voltage (V)Current (A)

S
O

C
 (

%
)

E
rr

o
r 

S
O

C
 (

%
)

Data

Figure 14. Testing of ANFIS SOC estimation results during discharging at 25 ◦C: (a) results; (b) error.

To verify the correctness of coding and performance of the proposed SOC estimation algorithm,
a simulation with MATALB software was designed. Figure 15 shows the designed simulation system.
Figure 16 shows real-time calculation of voltage slew rate. Figure 17 shows the estimated outputs
of efficiency correction factors, and Figures 18 and 19 show SOC estimation results of the Coulomb
counting and ANFIS, respectively.
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4. Inverter Integrated Hardware Implementation of Hybrid SOC Estimation Scheme

To further test the feasibility of the proposed algorithm, an inverter integrated BESS hardware
setup was implemented with dSPACE real-time digital control interface. The DS1104 and dSPACE
Real-Time Interface (RTI) interface are used to efficiently perform the arranged charging/discharging
cases. RTI is a MATLAB/Simulink graphical interface tool provided by dSPACE, and it makes practical
verification of control strategies using dSPACE1104 quite efficient. In addition, its ControlDesk can
be used for data measurement, monitoring, and recording. Figure 20 shows a typical ControlDesk
interface designed for the hardware implementation of the proposed hybrid real-time SOC estimator.

The block diagram of a grid-connected three-phase inverter system with a battery bank is shown in
Figure 21, and a photo of the hardware implementation is shown in Figure 22, including (1) battery bank,
(2) three-phase inverter, (3) controller (DS1104), (4) local load, and (5) power grid. The control command
of the three-phase inverter is equivalent to the charging/discharging power, and the feedback signals
include system voltage, inverter output current, and load current. In this experiment, nine identical
lead-acid batteries with rated capacities of 14 Ah and voltages of 12 V were connected in series at the
DC side of the inverter as the battery bank. The bidirectional three-phase inverter charges/discharges
the batteries by adjusting active power command. When discharging, because part of the power is
consumed by the local load, a larger AC power command is required to achieve active power feeding to
the grid. When charging, because only the power absorbed by the battery bank is considered, the AC
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power required for charging is close to DC power. With the analog-to-digital (ADC) processing, DS1104
feeds actual line voltage and line current signals back to the computer for the related power calculations.Processes 2020, 8, x FOR PEER REVIEW 16 of 22 
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In this section, three test cases were carried out for verifying the performance of the proposed
real-time SOC estimation mechanism: case 1 was for charging operation, case 2 was for discharging
operation, and case 3 was for charging/discharging operation. All test cases were performed at room
temperature of 25 ◦C. In case 1 and case 2, SOC was measured at a fixed battery voltage. In case 3,
the performance of the proposed ANFIS-based estimation scheme and Coulomb counting were compared
through a charge–discharge cycle.

In case 1, charging voltage range was measured between 11.7 V and 14.2 V per single cell, and
charging current was 3 A. Measurement was performed at 12.3 V and 13.7 V, respectively. Figure 23
shows SOC estimated by ANFIS algorithm. Less than 2% error was observed, validating the precision
of the proposed algorithm. Figure 24 shows the AC active power response during charging operation,
including charging power command P* and actual charging power output P, where vs represents
system voltage and io represents inverter output line current.
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(b) 13.7 V.Processes 2020, 8, x FOR PEER REVIEW 18 of 22 

 

 

Figure 24. The inverter active power, voltage, and current waveforms (phase-a) on the grid side 

corresponding to a 3A charging current. (t: 10 ms/div). 

In case 2, the discharging voltage was measured between 10.1 V and 12.7 V per single cell, and 

discharging current amplitude was the same as that of the charging current in case 1. The 

measurement was performed at 11.5 V and 11.9 V, respectively. Figure 25 shows the estimated SOC 

by ANFIS algorithm. Figure 26 shows the AC active power responding to the discharging operation. 

 

(a) 

 

(b) 

Figure 25. SOC estimated by ANFIS algorithm at discharging current of 3 A and voltages of (a) 11.5 

V; (b) 11.9 V. 

 

P = － 390 W

vs = 30 V ioa = 11.5 A

P* = － 390 W

S
O

C
(%

)

Time (min)

S
O

C
(%

)

Time (min)

P = 295 W P* = 295 W

vs = 30 V ioa = －  1.67 A

Figure 24. The inverter active power, voltage, and current waveforms (phase-a) on the grid side
corresponding to a 3A charging current. (t: 10 ms/div).

In case 2, the discharging voltage was measured between 10.1 V and 12.7 V per single cell, and
discharging current amplitude was the same as that of the charging current in case 1. The measurement
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was performed at 11.5 V and 11.9 V, respectively. Figure 25 shows the estimated SOC by ANFIS algorithm.
Figure 26 shows the AC active power responding to the discharging operation.
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Figure 26. The inverter active power, voltage and current waveforms (phase-a) on the grid side
corresponding to a 3A discharging current. (t: 10 ms/div).

To observe the SOC estimation outputs of the ANFIS real-time SOC estimation scheme and the
Coulomb counting method used in the proposed hybrid SOC estimating scheme, in case 3 both the
charging and discharging currents were set to be 3 A. The initial SOC was set to 50%. The charging
time and discharging time were 1 h each. The battery was firstly set to be charged with a −390 W real
power, then rest for 1 h, and then be discharged with a 295 W real power. Figure 27 shows a set of
results concerning the battery current and the variation in battery SOC and ∆SOC. As can be seen in
Figure 27, a very small (<0.41%) difference between the two methods was observed.
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Figure 27. Measured results in case 3: (a) battery current; (b) variations in battery SOC; (c) ∆SOC.

5. Conclusions

In recent years, the BESS has been playing a significant role in various advanced electrical energy
management and control applications. An accurate real-time battery’s SOC is technically desirable
for achieving the designed BESS control functions; however, there are a number of factors that could
affect the SOC of a battery, e.g., the charge and discharge currents, ambient temperature, electrolyte
concentration, internal impedance, and the aging level, which is affected by charging and discharging
cycles used. In fact, all of these have strongly squeezed the feasibility and performance of existing
methods. To ensure the feasibility of SOC-detecting algorithms in practical applications, this paper
has proposed a hybrid real-time SOC estimation scheme, and the lead-acid batteries were chosen for
the required tests. In this paper, the existing SOC estimation methods reported in open literature
have been reviewed and their advantages and drawbacks have been discussed. The design concept,
theoretical basis, and implementation procedure of the proposed hybrid estimating scheme have been
clearly addressed. In the proposed scheme, ANFIS is used to effectively learn the nonlinear mapping
relationships among the SOC and characteristic parameters of a working battery. An adaptive Coulomb
counting algorithm is simultaneously used to produce real-time estimated SOC values for double
checking the correctness of the SOC estimation of ANFIS. It can be expected that the proposed hybrid
SOC-detecting scheme with parallel estimating mechanisms and multiple SOC results can effectively
increase the reliability of SOC monitoring. A set of comprehensive simulation and experimental
studies have been carried out. Both simulation and typical measured results from an experimental
BESS hardware setup demonstrating a maximum of estimated SOC deviation (∆SOC = 0.41%) have
been presented to verify the feasibility and effectiveness of the proposed SOC detection algorithm.
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