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Abstract: High energy demand has led to excessive fuel consumption and high-concentration CO2

production. CO2 release causes serious environmental problems such as the rise in the Earth’s
temperature, leading to global warming. Thus, chemical industries are under severe pressure to
provide a solution to the problems associated with fuel consumption and to reduce CO2 emission at
the source. To this effect, herein, four highly porous aromatic Schiff bases derived from melamine were
investigated as potential media for CO2 capture. Since these Schiff bases are highly aromatic, porous,
and have a high content of heteroatoms (nitrogen and oxygen), they can serve as CO2 storage media.
The surface morphology of the Schiff bases was investigated through field emission scanning electron
microscopy, and their physical properties were determined by gas adsorption experiments. The Schiff
bases had a pore volume of 0.005–0.036 cm3/g, an average pore diameter of 1.69–3.363 nm, and a
small Brunauer–Emmett–Teller surface area (5.2–11.6 m2/g). The Schiff bases showed remarkable
CO2 uptake (up to 2.33 mmol/g; 10.0 wt%) at 323 K and 40 bars. The Schiff base containing the
4-nitrophenyl substituent was the most efficient medium for CO2 adsorption and, therefore, can be
used as a gas sorbent.

Keywords: porosity properties; adsorption capacity; carbon dioxide storage; melamine Schiff bases;
surface area; energy

1. Introduction

Fuel consumption has been increasing over the years to meet the high demand for energy required
for various human activities. Therefore, CO2 concentration has increased drastically to unprecedented
levels in the atmosphere [1]. Fossil fuel combustion is the main contributor (60%) to the increased CO2

concentration level in the environment [2]. Chemical, agro, power, and pharmaceutical industries
contribute to approximately 70% greenhouse gas emission, which primarily causes climate changes
and global warming [3,4]. The rise of sea and ocean levels, increased acidity of water, and drastic
global weather changes are the main environmental problems associated with the increased CO2

emission, which will consequently lead to economic collapse [5,6]. Additionally, the CO2 levels in the
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environment cannot be lowered rapidly due to the large-scale and high consumption of fuels, which
are difficult to be reduced. Novel strategies must be developed to not only resolve the environmental
problems arising from global warming but also reduce carbon emission at the source. In addition,
it is important to devise new technologies and design novel materials that can be used as a media to
capture CO2 effectively [7–10].

Various technologies have been developed to capture and store CO2 that can efficiently reduce
its atmospheric level [11–16]. Recently, researchers from both academia and industry directed their
attention toward the capture and storage of CO2 [17–19]. Various chemical absorbents have been
used as media for CO2 capture, in which amines (e.g., ethanolamine) are the most common ones [20].
The use of amines involves a simple process; however, it is limited because of high operational cost,
energy requirement, and the use of very volatile chemicals [21]. Therefore, other techniques that
involve the use of adsorbents were developed. Such materials reportedly exhibit adsorption capacity
of >4.4% by weight, long life duration, recyclability, and reusability [22–24].

Chemical adsorption of CO2 is a simple as well as cost and energy effective process. Metal-based
adsorbents such as metal oxides are known as common capture media for CO2 because of their basic
and ionic nature [25]. For example, calcium and magnesium oxides can adsorb CO2 stoichiometrically
to produce the corresponding metal carbonate through an exothermic reaction [26]. However,
the adsorption capacity of materials varies on the basis of kinetic factors [25]. The adsorption
capacity of calcium oxide is limited but sufficiently high to facilitate its use as an effective medium
for CO2 capture. Several other materials such as ionic liquids in a solid matrix [27], zeolites [28],
silica [29], and those containing activated carbons [30–32] have been evaluated as CO2 sorbents. Some
of these materials possess unique thermal properties, high chemical stability, high surface area, tunable
chemical structures, recyclability, and reusability. However, zeolites are not suitable for CO2 capture
from flue gases because of their excellent hydrophilic properties [33]. In addition, materials containing
activated carbon exhibit poor selectivity [34].

Activated carbon has been prepared from different materials such as polymers, resins, and biomass
and can be used as an efficient adsorbent for CO2 [30]. Various chemical and physical processes have
been conducted to activate and modify the surface area and pore volume of such adsorbents to increase
their capacity for CO2 capture. The chemical process of activation requires the use of a base, while the
physical one requires an appropriate carbonization gas [35,36]. The adsorption capacity of activated
carbon depends on the distribution of the chemical activator within the matrix. Polyacrylonitrile in the
presence of a base (e.g., potassium hydroxide; KOH) was used as an effective medium to capture CO2

and exhibited good CO2 uptake at 25 ◦C and under 1 bar [31]. The CO2 uptake was even higher for the
resorcinol–formaldehyde resin at the same temperature and pressure in the presence of potassium
carbonate as an activator [37].

Metal–organic frameworks (MOFs), synthesized from different molecular building units, have
been investigated as adsorbents for CO2 because of their extended surface area [38–40]. The interaction
between MOFs and CO2 is strong because it occurs through hydrogen bonding and requires a low
heat of adsorption, similar to that observed for zeolites [25]. The CO2 storage capacity of MOFs can be
enhanced through the addition of polar residues within their surfaces [41]. Porous-organic polymers
(POPs) are highly stable chemically and thermally as well as have low density, tunable structure with
a desirable surface area, and different functional groups; therefore, they act as good adsorbents for
CO2 [33]. The presence of heteroatoms (e.g., nitrogen, oxygen, sulfur, phosphorus) within the skeleton
of POPs enhances CO2 capture capacity [33]. The surface polarity of POPs can be increased by the
addition of organic moieties containing polar groups or inorganic ions, which facilitates the strong
interaction between CO2 and adsorbent materials [33]. Various POPs showed good CO2 capture
capacity; however, the use of metals in the synthesis of POPs produces toxic pollutants. More research
is still needed to optimize the synthetic procedures for POP production by employing simple and
effective processes [42].
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Nitrogen-rich heterocycles such as triazines have potential use in supramolecular applications
because they interact with many chemicals through π–π interactions, hydrogen bond formation,
and chelation [43]. Melamine has a high nitrogen content (66% by weight) and has been used in
various applications such as the production of raw materials with high nitrogen content, plastic,
medicinal products, metal-free catalysts, and CO2 adsorbents [44–46]. Melamine Schiff bases can be
easily synthesized through the reaction of melamine and aromatic carbonyl compounds in the presence
of a catalyst. Recently, we have synthesized various Schiff bases and investigated their use as additives
to stabilize polymeric films against irradiation [47–53]. Melamine Schiff bases have all the qualities
needed for their use as efficient adsorbents for CO2. In this study, we report the use of melamine Schiff
bases, which are highly aromatic and porous, as an efficient media for the capture of CO2 at 40 bars
and 323 K.

2. Materials and Methods

2.1. Materials

Chemicals, reagents, and solvents were purchased from Merck (Schnelldorf, Germany) and were
used as received.

2.2. Physiochemical Measurements

The surface morphology of Schiff bases was observed through field emission scanning electron
microscopy (FESEM, TESCAN MIRA3, Kohoutovice, Czech Republic) at an accelerating voltage of
10 kV. The N2 adsorption–desorption isotherms of the Schiff bases were recorded on a Quantchrome
chemisorption analyzer (Quantachrome Instruments, Boynton Beach, FL, USA) at 77 k. The Schiff
bases 1–4 were degassed in a vacuum oven for a long period (6 h) at a high temperature (100 ◦C) under
a flow of N2 gas (Cascade TEK, Cornelius, OR, USA) to ensure the removal of any residues or small
molecules such as water from the pores of materials. The surface area of the Schiff bases was calculated
using the Brunauer–Emmett–Teller (BET) equation at a relative pressure (P/P◦) of 0.98. The pore size
of the Schiff bases was verified by the Barrett–Joyner–Halenda (BJH) method. The CO2 uptake was
measured at 40 bars and 323 K using the H-sorb 2600 high-pressure volumetric adsorption analyzer
(Gold APP Instruments Corp., Beijing, China), which has two degassing and analyzing ports that can
be simultaneously operated. The experiment of CO2 storage was repeated for at least 10 times for
pressure optimization. A known quantity of gas was injected into a measurement tube that contained
the Schiff base sample until an equilibrium between the adsorbed gas and the Schiff base sample was
established. The final equilibrium pressure was recorded automatically using a software program and
the adsorbed quantity of gas was calculated from the obtained data.

2.3. Synthesis of Schiff Bases 1–4

Schiff bases 1–4 were synthesized using a reported procedure by the condensation of melamine
and 3 molar equivalents of aromatic aldehydes; 4-nitrobenzaldehyde, 2-hydroxybenzaldehyde,
3-hydroxybenzaldehyde, and 4-hydroxybenzaldehyde, in boiling dimethylformamide containing
acetic acid as a catalyst under reflux for 6 h [47].

3. Results

3.1. Synthesis of Schiff Bases 1–4

The spectroscopic data from the 1H-NMR and FT-IR spectra, elemental analysis results,
and physical properties (e.g., melting points and colors) of the synthesized Schiff bases 1–4 were
identical to those of the previously reported bases [47]. Figure 1 represents the chemical structures of
the synthesized Schiff bases 1–4. Schiff base 1 contained a nitro group, while Schiff bases 2–4 contained
a hydroxyl group with different arrangements (ortho, meta, and para).
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Figure 1. Schiff bases 1–4 [47].

3.2. FESEM of Schiff Bases 1–4

The morphologies of Schiff bases 1–4 were investigated through FESEM. Figures 2–5 show that
Schiff bases 1–4 had a relatively uniform and amorphous surface with micro-size particles. The pore
dimensions of the Schiff base samples varied and were found to be 20–392 nm. It was clear that the
particle size of Schiff base 1 (Figure 2) was smaller than those of Schiff bases 2–4. Schiff bases 2 and 4
(Figures 3–5) have the largest pore dimensions. Schiff base 1 had a different morphology compared to
the other Schiff bases because it contains a nitro group, which causes more noticeable irregularity in
particle size and shape and, thus, a highly porous structure. The presence of the functional group that
had a high content of nitrogen (nitro group) could improve not only the porosity but also the surface
area and efficiency for CO2 uptake [33].
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The pore dimensions of Schiff bases 1–4 were smaller than those reported for some POPs and
larger than those for telmisartan tin complexes [54–56]. For example, POPs containing polyphosphates
derived from 1,4-diaminobenzene showed irregular and porous structures with pore dimensions of
49–981 nm [54]. In addition, polyphosphates derived from benzidine showed porous structures with
pore dimensions of 28–806 nm [55]. In contrast, the pore dimensions of telmisartan tin complexes
ranged from 20 to 51 nm.

3.3. N2 Adsorption–Desorption of Schiff Bases 1–4

The N2 adsorption–desorption measurements for the Schiff bases 1–4 were conducted at 77 K.
The N2 isotherms and pore sizes and volumes of Schiff bases 1–4 are represented in Figures 6–9.
The shape of the N2 isotherm for 1 was similar to the type IV isotherm. Schiff bases 2–4 showed N2

sorption isotherms that are almost identical to the type III isotherm, in which monolayer formation
was not identified.
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The BET surface area (SBET), pore volumes, and average pore diameters of Schiff bases 1–4 were
calculated (Table 1). Among the synthesized Schiff bases, 1 (containing a nitro group) exhibited the
highest surface area (SBET = 11.6 m2/g) and total pore volume (0.036 cm3/gm), but the lowest pore
diameter (1.69 nm). Schiff base 1 had a mesoporous structure, while, 2–4 (containing a hydroxy
group at ortho-, meta- and para-position of the aryl ring) had microporous structures (pore diameter =

2.44–3.63 nm). Some POPs and tin complexes showed porous structures with similar pore diameters.
For example, porous polyphosphates derived from either 1,4-diaminobenzene or benzidine exhibited a
pore diameter of 1.96–2.43 nm [54] or 2.43–2.86 nm [55], respectively, compared to that of 2.43 nm for
telmisartan tin complexes [56].

Table 1. Porosity properties of 1–4.

Schiff Base SBET (m2/g) Pore Volume (cm3/g) Average Pore Diameter (nm)

1 11.6 0.036 1.69
2 5.2 0.004 3.63
3 10.2 0.016 2.44
4 8.5 0.005 3.62

A gravimetric technique was used to detect the gas uptake quantity and, therefore, determine the
gas adsorption isotherm [57]. In addition, the gas quantity that has been removed from the gas phase
was used to estimate the physisorption isotherms of the gas. The desorption or adsorption branch of
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the isotherm can be used to calculate the pore size distribution. The CO2 sorption isotherms for Schiff
bases 1–4 are shown in Figures 10–13 and their CO2 uptake are reported in Table 2.
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Table 2. CO2 adsorption capacity of Schiff bases 1–4 at 323 K and 40 bars.

Schiff Base CO2 Uptake (cm3/g) CO2 Uptake (mmol/g) CO2 Uptake (wt%)

1 52.29 2.33 10.0
2 30.64 1.36 6.1
3 45.15 2.01 9.0
4 32.27 1.44 6.4

As seen in Figures 10–13, Schiff bases 1–4 do not have an apparent adsorption–desorption hysteresis,
which indicates the reversible adsorption of CO2 within the Schiff base pores at the temperature and
pressure used (323 K and 40 bars). The CO2 uptake for Schiff bases 1–4 was high (6.1–10.0 wt%),
possibly because of the excellent pore diameter and the strong van der Waals interactions and hydrogen
bonding between the Schiff bases and CO2. In addition, Schiff bases 1–4 contain strong Lewis base
sites that aid the capture of CO2. Indeed, porous materials containing heteroatoms such as oxygen,
nitrogen, and phosphorous can selectively capture CO2 over methane and nitrogen gases [54–56].

The surface area for the Schiff bases was relatively low (5.2–11.6 m2/g); however, they showed
remarkable CO2 uptake (1.36–2.33 mmol/g; 6.1–10.0 wt%). Similar observations have been previously
reported at similar temperature and pressure. For example, porous polyphosphates containing
benzidine showed low surface area (27.5–30.0 m2/g) and high CO2 uptake (up to 14.0 wt%) [55].
On the other hand, polyphosphates containing 1,4-diaminobenzene exhibited high surface area
(82.7–213.5 m2/g), but the CO2 uptake was limited to 0.6 wt% [54]. Telmisartan tin complexes showed
surface area of 32.4–130.4 m2/g and up to 7.1 wt% CO2 uptake [56]. Materials with the highest surface
area showed the most effective CO2 uptake. Polyacrylonitrile carbon fibers in the presence of a base
provided a CO2 uptake of 2.74 mmol/g at room temperature and normal pressure [31]. In contrast,
porous nanocarbons with a high surface area (1114 m2/g) in the presence of potassium oxalate and
ethylenediamine provided a CO2 uptake as 4.60 mmol/g at a similar temperature and pressure [30].
Porous nanocarbons with a small surface area (439 m2/g) provided a low CO2 uptake (1.94 mmol/g [30].
Ionic liquids in a silica matrix led to materials having a very small surface area (1–9 m2/g) and relatively
poor sorption capacity towards CO2 as 0.35 g of CO2 per g of adsorbent [27].

4. Conclusions

Four melamine Schiff bases have been investigated as potential media for CO2 storage at 323 K and
40 bars. These Schiff bases have a relatively low surface area (SBET = 5.2–11.6 m2/g) and varied porous
structures, showing pore volumes of 0.004–0.036 cm3/g and diameters of 1.69–2.63 nm. The Schiff
bases showed remarkable CO2 uptake (6.1–10.0 wt%), possibly because of their high aromaticity and
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heteroatom contents. The Schiff base containing a nitro group showed the most effective CO2 uptake
(10.0 wt%) owing to the high content of nitrogen (heteroatom) within the porous material. The Schiff
bases containing a hydroxy group have a lower surface area and pore volume, but higher pore diameter
compared to the one containing a nitro group. Such Schiff base is inexpensive and easily producible in
high yield and, therefore, can be used at an industrial scale.
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