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Abstract: As enterprises pay more and more attention to environmental issues, the green supply
chain management (GSCM) mode has been extensively utilized to guarantee profit and sustainable
development. Green supplier selection (GSS), which is a key segment of GSCM, has been investigated
to put forward plenty of GSS approaches. At present, enterprises prefer to construct the large-scale
teams of decision makers to obtain the more reasonable ranking results during GSS process. However,
the existing methods pay little attention to the large-scale GSS procedure. To investigate the GSS issue
with a large-scale group of decision makers, a new GSS approach under a q-rung interval-valued
orthopair fuzzy environment is developed. The q-rung interval-valued orthopair fuzzy numbers are
introduced to describe the evaluation information of green suppliers. Combined with a clustering
approach and several clustering principles, the large-scale decision makers are divided into several
subgroups. Next, the similarity measures between the evaluation matrices are computed to determine
the weights of subgroups, and the collective evaluation information can be obtained using the q-rung
interval-valued orthopair fuzzy aggregation operator. According to the weighted entropy measure,
the weights of criteria are calculated; then, the q-rung interval-valued orthopair fuzzy multi-objective
optimization on the basis of ratio analysis plus the full multiplicative form (q-RIVOF-MULTIMOORA)
method is constructed to determine the best green supplier. At last, a practical GSS example is applied
to show the feasibility of the proposed approach, and the sensitivity and comparative analyses
indicate that for the large-scale GSS issues, the proposed approach can obtain the more robust and
reasonable ranking results.

Keywords: large-scale green supplier selection; q-rung interval-valued orthopair fuzzy set; clustering
method; q-RIVOF-MULTIMOORA method

1. Introduction

At present, the environmental protection issues have been widely concerned by global professions
and trades, especially in the developing countries. Many laws and regulations have been issued
by governments to restrict the enterprises’ behaviors of damaging the environment; on the other
hand, consumers are paying more and more attention to the environmental factor when they choose
from different enterprises [1]. Under the pressures of government and consumers, most enterprises
have changed their development mode from pursing profits blindly to synergistic development of
benefits and environmental protection issues [2]. Consequently, the green supply chain management
(GSCM) mode has been utilized to promote the environmental performance of enterprises during the
management procedures of supply chains [3–6]. As a critical link of supply chains, green suppliers
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determine the environmental impact levels of supply chains and enterprises to a certain extent [7–9];
therefore, how to determine the best green supplier from several alternatives has been a hot topic, and a
series of green supplier selection (GSS) approaches have been proposed by scholars [9]. On the basis of
several potential green suppliers after the preliminary identification, this paper aims at developing a
novel GSS approach with a large-scale group of decision makers to obtain the ranking result, which can
provide guidance for enterprises in practice. On the other hand, the order allocation issue of different
green suppliers also plays an important role during the GSCM process. Considering the multiple
periods, multiple products, and other conditions, Moheb-Alizadeh and Handfield [10,11] constructed
the multi-objective programming models to solve the GSS and order allocation issues, simultaneously,
which will be the future research direction of this study.

During the GSS process, enterprises or decision makers express their evaluation information of
green suppliers concerning a collection of criteria; then, the ranking of green suppliers can be obtained
through the information fusion. Accordingly, the GSS issues can be regarded as a kind of typical
multiple criteria group decision making (GDM) problems [12–14]. Although many scholars have
paid attention to investigate the GSS issue under fuzzy environment, the existing GSS approaches
still present several limitations. (1) The fuzziness and uncertainty of evaluation information given by
decision makers needs further characterization. (2) The involvement of large-scale decision makers
during the evaluation process is rarely considered. (3) The robustness of ranking results needs to be
further improved. Consequently, a novel GSS approach under a q-rung interval-valued orthopair
fuzzy (q-RIVOF) environment is proposed in this paper to overcome the aforementioned limitations.

In practice, the decision makers’ evaluation information of green suppliers is always imprecise
and uncertain; thus, the tradition information form, i.e., crisp numbers, cannot deal with these
situations effectively. To solve this problem, many scholars have introduced different forms of
fuzzy sets to represent the evaluation information [15–17]. Among them, the q-rung orthopair
fuzzy set (q-ROFS) [18] can describe the positive, negative, and indeterminacy membership levels of
decision makers, simultaneously, which has been proven to be a powerful tool for evaluation process
in practice [19–21]. Next, the interval numbers were utilized to extend the aforementioned three
membership degrees to develop the q-rung interval-valued orthopair fuzzy set (q-RIVOFS) [22,23],
whose capacity of expressing uncertainty is improved. Thus, this paper utilizes the q-RIVOFS to
evaluate green suppliers during the evaluation process.

With the GSS issues attracting increasing attention, the ranking result obtained by a small-scale
group of decision makers cannot already meet the high requirements of enterprises. Instead, enterprises
hope to refer to more opinions; thus, the approach for GSS with large-scale decision makers (more
than 20 decision makers [24]) is a valuable research topic. Nevertheless, to the best of our knowledge,
few studies have focused on large-scale GSS issues. Furthermore, once the number of decision
makers is relatively large, the extreme or non-consensus evaluation information may be inevitably
expressed; hence, the accuracy of the ranking result will be affected negatively without managing the
non-consensus evaluation information [25,26]. Therefore, we construct a clustering method under
q-RIVOF environment to divide the large-scale group of decision makers into several subgroups,
while the non-consensus evaluation information given by individual decision makers can be filtered
out to be ignored; consequently, the accuracy of the ranking result obtained in this paper can be
improved significantly.

Since the evaluation information of each subgroup is obtained by the proposed clustering method,
the collective evaluation matrix can be obtained combined with the aggregation operators of q-rung
interval-valued orthopair fuzzy numbers (q-RIVOFNs) [23]. Next, the important issue during the GSS
process is how to rank the potential green suppliers according to their collective evaluation information;
hence, many improved multiple criteria decision-making (MCDM) ranking approaches under a fuzzy
environment were proposed to determine the best green supplier [9]. Brauers [27] investigated the
robustness of different MCDM ranking methods and put forward that the robustness of MCDM ranking
methods increases with the increase of its ranking patterns. Obviously, the ranking modes of most
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MCDM ranking approaches are single; the MOORA with the full multiplicative form (MULTIMOORA)
ranking method is composed of three different ranking modes [28]; i.e., the ratio system, the reference
point approach, and the full multiplicative form, which has been proven to be a powerful MCDM
ranking tool with relatively strong robustness in practice [29–31]. In this study, the MULTIMOORA
approach is applied into the q-RIVOF environment; thus, the q-rung interval-valued orthopair fuzzy
MULTIMOORA (q-RIVOF-MULTIMOORA) ranking approach is developed to determine the best
green supplier.

According to the aforementioned presentation, the purpose of this paper is to develop a new
approach for solving the large-scale GSS issues, in which the uncertainty expression of evaluated
information, the aggregation of large-scale decision makers’ information, and the robustness of the
ranking result have been improved. The main contributions of this study are concluded as in the
following. (1) The q-RIVOFS is introduced to evaluate green suppliers, which can characterize the
uncertainty and fuzziness of evaluation information and enlarge the evaluation freedom degree of
decision makers, simultaneously. (2) A clustering approach based on the q-RIVOFS is developed to
divide the large-scale decision makers into several subgroups, in which the evaluation information
that deviates from group opinions can be ignored purposefully. (3) The MULTIMOORA approach
is firstly applied to the q-RIVOF environment to construct the q-RIVOF-MULTIMOORA approach,
in which a ranking of green suppliers with relatively strong robustness can be obtained. To achieve
these improvements, the rest of this study can be arranged as below. Section 2 reviews the related
literature systematically. Section 3 presents some important definitions of q-RIVOFS. A novel large-scale
GSS approach is proposed in Section 4. A practical GSS example is implemented to investigate the
performance of the proposed method in Section 5. Section 6 sums up several conclusions of this study.

2. Literature Reviews

2.1. GSS Approaches

During the past decades, due to the complexity of the GSS issues in practice, many fuzzy MCDM
approaches have been introduced into the research field of improving the GSS process, including
analytic hierarchy process (AHP), technique for order preference by similarity to ideal solution (TOPSIS),
ViseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and so on. For example, Deshmukh
and Sunnapwar [32] utilized the triangular fuzzy numbers to replace the crisp numbers during the
pairwise evaluation of green suppliers; then, the fuzzy AHP approach was proposed to determine
the ranking. Dobos and Vörösmarty [33,34] improved the environmental performance of suppliers
according to the data envelopment analysis (DEA) model. Govindan et al. [35] improved the Simos
procedure to calculate the criteria weights and applied the preference ranking organization method for
enrichment evaluation (PROMETHEE) approach to rank green suppliers. Mati’c et al. [36] developed a
hybrid GSS method based on the rough complex proportional assessment (COPRAS) method and the
rough Dombi aggregator to evaluate green suppliers.

Besides, the weight vector of criteria also plays a critical role in determining the best green supplier.
Many scholars utilized the existing weighting methods to compute the weights of criteria, which include
the best–worst method (BWM), AHP, entropy weighting method, analytical network process (ANP),
and so on; hence, many integrated GSS approach have been developed. For instance, combined with
the BWM and alternative queuing method (AQM), Liu et al. [37] computed the weights of criteria and
constructed the GSS approach under an interval-valued intuitionistic uncertain linguistic environment.
Similarly, Yucesan et al. [38] utilized the BWM to calculate the criteria weights and developed the
TOPSIS method based on an interval type-2 fuzzy set to rank green suppliers. In consideration of
the subjective and objective elements, the AHP and entropy approaches were utilized to compute
the comprehensive criteria weights; then, the entropy, elimination and choice expressing the reality
III (ELECTRE III) approach was introduced to determine the best green supplier for the TFT-LCD
industry [39]. In addition, Abdel-Baset et al. [40] applied triangular neutrosophic numbers to evaluate



Processes 2019, 7, 573 4 of 24

green suppliers and ranked them using an integrated MCDM method, which is composed of the ANP
and VIKOR methods. Considering the interactions between the criteria, Hashemi et al. [41] calculated
the weights of criteria by ANP method and determined the best green supplier using an improved
grey relational analysis (GRA) approach. Similarly, combined with a synthetic method based on the
decision-making trial and evaluation laboratory (DEMATEL) and ANP approaches, Kuo et al. [42]
determined the criteria weights and solved the GSS issues with the VIKOR approach.

During the evaluation process of GSS, the evaluation behaviors of decision makers may be
bounded rationally; hence, to deal with this situation, the TODIM (TOmada de Decisao Interativa
e Multicritevio) method, which was developed according to prospect theory, was introduced to
select green suppliers by many scholars [12,43]. Furthermore, to investigate the advantages of GSS
approaches based on different MCDM methods, Banaeian et al. [15] and Rashidi and Cullinane [44]
discussed the performance of different GSS approaches, which include approaches according to DEA,
TOPSIS, VIKOR, and GRA methods.

2.2. Q-RIVOFS

In practice, the evaluation information is difficult to be characterized by crisp numbers accurately;
decision makers may come from diverse professional backgrounds; they are likely to give the uncertain
and fuzzy evaluation information. Therefore, since the fuzzy set theory was put forward by Zadeh [45],
its generalized forms, i.e., triangular fuzzy set, type-2 fuzzy set, and interval type-2 fuzzy set,
have been extensively utilized to evaluate green suppliers [16,32,46]. Nevertheless, the aforementioned
generalized fuzzy sets only express the membership levels of decision makers, thus some practical
evaluation information cannot be described by them; for instance, when one expert evaluates a
viewpoint, he/she may think the correct probability is 0.7, and the error probability is 0.2. To overcome
this limitation, the non-membership function was introduced to define the concept of an intuitionistic
fuzzy set (IFS) [47]; later, the interval-valued intuitionistic fuzzy set (IVIFS) was proposed [48].
However, once the uncertainty of decision makers increases to a certain level, in which they want to
expand the range of evaluation information; then, IFS cannot deal with this situation. For example,
the expert above may express the correct and error probabilities as 0.7 and 0.4, respectively. Therefore,
Yager [49] relaxed the range of membership and non-membership levels to propose the Pythagorean
fuzzy set (PFS); next, PFS was extended to develop the interval-valued Pythagorean fuzzy set (IVPFS)
theory [50]. To further expand the range of evaluation information, Yager [18] put forward the q-ROFS
based on IFS and PFS, which allows the expert above to give the correct and error probabilities as 0.8
and 0.7, respectively. Thus, the space of acceptable orthopairs produced by IFS, PFS, and q-ROFS can be
investigated as presented in Figure 1. According to the q-ROFS and interval numbers, Wang et al. [23]
proposed the q-RIVOFS to construct a new GSS approach; unfortunately, the approach ignored the
situations of the large-scale decision makers and the non-consensus evaluation information.
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2.3. Large-Scale GDM Problems

With the increasing importance of environmental issues in enterprises, enterprises pay more and
more attention to determine the best green supplier during the GSCM process. Hence, enterprises
will refer to more and more decision makers’ evaluations of green suppliers. On the other hand,
the non-consensus evaluation information may be given by individual decision makers, thus how to
weaken its impact on the ranking result is an important issue. At present, many scholars have made
efforts to propose large-scale GDM methods in different fields. For instance, Xu et al. [25] proposed an
approach to manage the minority opinions and non-cooperative behaviors of decision makers and
constructed an iterative-based consensus model to determine the best choice during the large-group
emergency decision making procedure. Considering the multigranular linguistic scales utilized by the
large-scale decision makers, Zhang et al. [51] normalized the different linguistic evaluation information
to develop a novel large-scale GDM method. Palomares et al. [52] put forward an iterative consensus
reaching algorithm to deal with the large-scale GDM issues, while the weights of decision makers
with non-cooperative behaviors were penalized. Later, Liu et al. [53] utilized the consensus level to
calculate the objective weights of participants during the large-scale GDM process. Wu and Xu [26]
constructed a large-scale GDM approach under hesitant fuzzy environment, in which the clusters
were allowed to change. To explore the effect of different classical consensus approaches during the
large-scale GDM scenario, Labella et al. [54] made a comparative analysis between them to conclude
several challenges of the classical consensus reaching processes. Unfortunately, little attention has
been paid to the large-group GSS issues under q-RIVOF environment.

3. Preliminaries

In this section, several basic definitions of q-RIVOFS are recalled briefly. In addition, the Minkowski
distance measure of q-RIVOFS is constructed, which will play an important role in this study.

3.1. Q-RIVOFS

According to IFS and PFS, Yager [18] developed the concept of q-ROFS to relax the decision
makers’ evaluation environment. Later, Joshi et al. [22], and Wang et al. [23] utilized the interval
numbers to improve the q-ROFS, and the q-RIVOFS theory was proposed.

Definition 1 ([22,24]). Let X be a non-empty and finite set, a q-RIVOFS Q on X is given as:

Q =
{〈

x,
(
µ̃Q(x), ṽQ(x)

)〉
|x ∈ X

}
, (1)

where the interval numbers µ̃Q(x) =
[
µ−Q(x),µ

+
Q(x)

]
⊂ [0, 1] and ṽQ(x) =

[
v−Q(x), v+Q(x)

]
⊂ [0, 1] indicate

the positive and negative membership levels of the element x ∈ X to Q, respectively, which meet the condition
of 0 ≤

(
µ+Q(x)

)q
+

(
v+Q(x)

)q
≤ 1, q ≥ 1. In addition, the interval number π̃Q(x) =

[
π−Q(x),π

+
Q(x)

]
=[

q
√

1−
((
µ+Q(x)

)q
+

(
v+Q(x)

)q)
, q
√

1−
((
µ−Q(x)

)q
+

(
v−Q(x)

)q)]
represents the indeterminacy membership level

of the element x ∈ X to Q. For the convenience of research, we call a = ([µ−,µ+], [v−, v+]) a q-RIVOFN.

To better apply the q-RIVOFS theory to practical decision-making issues, Wang et al. [23]
investigated the operations and comparison method of different q-RIVOFNs in detail.

Definition 2 ([23]). Let a = ([µ−,µ+], [v−, v+]), a1 =
([
µ−1 ,µ+1

]
,
[
v−1 , v+1

])
, and a2 =

([
µ−2 ,µ+2

]
,
[
v−2 , v+2

])
be three q-RIVOFNs, λ > 0, ac is the complementary q-RIVOFN of a; then

ac =
([

v−, v+
]
,
[
µ−,µ+

])
; (2)
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a1 ⊕ a2 =

([
q
√(
µ−1

)q
+

(
µ−2

)q
−

(
µ−1

)q(
µ−2

)q
,

q
√(
µ+1

)q
+

(
µ+2

)q
−

(
µ+1

)q(
µ+2

)q
]
,
[
v−1 v−2 , v−1 v−2

])
; (3)

a1 ⊗ a2 =

([
µ−1 v−2 ,µ−1µ

−

2

]
,
[

q
√(

v−1
)q
+

(
v−2

)q
−

(
v−1

)q(
v−2

)q
,

q
√(

v+1
)q
+

(
v+2

)q
−

(
v+1

)q(
v+2

)q
])

; (4)

λa =


 q

√
1−

(
1− (µ−)q

)λ
,

q

√
1−

(
1− (µ+)q

)λ, [(v−)λ,
(
v+

)λ]; (5)

aλ =

[(µ−)λ,
(
µ+

)λ]
,

 q

√
1−

(
1− (v−)q

)λ
,

q

√
1−

(
1− (v+)q

)λ
. (6)

Definition 3 ([23]). Let a = ([µ−,µ+], [v−, v+]) be a q-RIVOFN, then its score and accuracy functions can be
defined, respectively, as follows:

s(a) =
1
4

[(
1 + (µ−)q

− (v−)q)
+

(
1 +

(
µ+

)q
−

(
v+

)q)]
; (7)

h(a) =
1
2

(
(µ−)q

+ (v−)q
+

(
µ+

)q
+

(
v+

)q)
. (8)

Definition 4 ([23]). Let a1 =
([
µ−1 ,µ+1

]
,
[
v−1 , v+1

])
and a2 =

([
µ−2 ,µ+2

]
,
[
v−2 , v+2

])
be two q-RIVOFNs, then

(1) If s(a1) < s(a2), then a1 < a2;
(2) If s(a1) = s(a2), then:

a. if h(a1) < h(a2), then a1 < a2;
b. if h(a1) = h(a2), then a1 = a2.

3.2. Distance Measure of q-RIVOFS

Inspired by the literature [55,56], we can put forward the Minkowski distance measure between
different q-RIVOFNs, and several particular distance measures reduced from the Minkowski distance
are presented.

Definition 5. Let a1 =
([
µ−1 ,µ+1

]
,
[
v−1 , v+1

])
and a2 =

([
µ−2 ,µ+2

]
,
[
v−2 , v+2

])
be two q-RIVOFNs, afterwards the

Minkowski distance between them is given by:

dM(a1, a2) =
(1

4

∣∣∣µ−1 − µ−2 ∣∣∣p + 1
4

∣∣∣µ+1 − µ+2 ∣∣∣p + 1
4

∣∣∣v−1 − v−2
∣∣∣p + 1

4

∣∣∣v+1 − v+2
∣∣∣p)1/p

, p ≥ 1. (9)

When p = 1, the Minkowski distance between a1 and a2 can be reduced to the Hamming distance as

dH(a1, a2) =
1
4

(∣∣∣µ−1 − µ−2 ∣∣∣+ ∣∣∣µ+1 − µ+2 ∣∣∣+ ∣∣∣v−1 − v−2
∣∣∣+ ∣∣∣v+1 − v+2

∣∣∣). (10)

When p = 2, the Minkowski distance between a1 and a2 can be reduced to the Euclidean distance as

dE(a1, a2) =
(1

4

∣∣∣µ−1 − µ−2 ∣∣∣2 + 1
4

∣∣∣µ+1 − µ+2 ∣∣∣2 + 1
4

∣∣∣v−1 − v−2
∣∣∣2 + 1

4

∣∣∣v+1 − v+2
∣∣∣2)1/2

. (11)
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When p→ +∞ , the Minkowski distance between a1 and a2 can be reduced to the Chebyshev
distance as

d∞(a1, a2) = max
{∣∣∣µ−1 − µ−2 ∣∣∣, ∣∣∣µ+1 − µ+2 ∣∣∣, ∣∣∣v−1 − v−2

∣∣∣, ∣∣∣v+1 − v+2
∣∣∣}. (12)

It can be easily proven that the Minkowski distance measure between different q-RIVOFNs above
has the following properties.

Theorem 1. Let dM(a1, a2) be the Minkowski distance between two q-RIVOFNs a1 =
([
µ−1 ,µ+1

]
,
[
v−1 , v+1

])
and; we have then

(1) 0 ≤ dM(a1, a2) ≤ 1;
(2) dM(a1, a2) = 0, if and only if a1 = a2;
(3) dM(a1, a2) = dM(a2, a1).

3.3. The Q-rung Interval-Valued Orthopair Fuzzy Weighted Aggregation Operators

The aggregation operator is a key tool to fuse evaluation information; thus, we introduce the
q-RIVOFWA and q-RIVOFWG operators [23] to aggregate the q-RIVOFNs, which will be utilized to
construct the MULTIMOORA approach under q-RIVOF environment.

Definition 6 ([23]). Let ai =
([
µ−i ,µ+i

]
,
[
v−i , v+i

])
(i = 1, 2, . . . , n) be a series of q-RIVOFNs; the q-RIVOFWA

operator is a mapping Qn
→ Q as

q−RIVOFWA(a1, a2, . . . , an) =
n
⊕

i=1
wiai, (13)

where w = (w1, w2, . . . , wn)
T is the weight vector of q-RIVOFNs, which satisfies the conditions of 0 ≤ wi ≤ 1

and
∑n

i=1 wi = 1. Combined with the operational laws of q-RIVOFNs, the aggregated value by using
q-RIVOFWA operator is also a q-RIVOFN as

q−RIVOFWA(a1, a2, . . . , an) =


 q

√
1−

n∏
i=1

(
1− µ−i

)wi , q

√
1−

n∏
i=1

(
1− µ+i

)wi

, [ n∏
i=1

(
v−i

)wi ,
n∏

i=1

(
v+i

)wi
]. (14)

Definition 7. ([23]). Let ai =
([
µ−i ,µ+i

]
,
[
v−i , v+i

])
(i = 1, 2, . . . , n) be a series of q-RIVOFNs; the q-RIVOFWG

operator is a mapping Qn
→ Q as

q−RIVOFWG(a1, a2, . . . , an) =
n
⊗

i=1
ai

wi , (15)

where w = (w1, w2, . . . , wn)
T is the weight vector of q-RIVOFNs, which satisfies the conditions of 0 ≤ wi ≤ 1

and
∑n

i=1 wi = 1. Combined with the operational laws of q-RIVOFNs, the aggregated value by using
q-RIVOFWG operator is also a q-RIVOFN as

q−RIVOFWG(a1, a2, . . . , an) =

[ n∏
i=1

(
µ−i

)wi ,
n∏

i=1

(
µ+i

)wi
]
,

 q

√
1−

n∏
i=1

(
1− v−i

)wi , q

√
1−

n∏
i=1

(
1− v+i

)wi


. (16)

4. The Proposed Large-Scale GSS Approach

With the increasing attention on the GSS issues, the scale of decision makers involved the
decision-making process is also growing significantly in practice. In general, a GDM problem, in which
the number of decision makers exceeds 20, can constitute a large-scale GDM issue [57,58]. Hence,
this paper aims to develop a novel approach for the large-scale GSS, which can be implemented by
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four processes; namely, the clustering process of large-scale decision makers, aggregation process of
individual evaluation information, determination process of the criteria weights, and ranking process
using the q-RIVOF-MULTIMOORA method. The visible flow diagram of the proposed large-scale GSS
approach is shown in Figure 2.

For a large-scale GSS issue, suppose that a large-scale group of decision makers
DMk(k = 1, 2, . . . , l; l ≥ 20) evaluates a collection of green suppliers Gi(i = 1, 2, . . . , m) concerning
several criteria C j( j = 1, 2, . . . , n) by using the linguistic terms. Consequently, the q-RIVOF evaluation

matrices of decision makers Fk =
(
ak

i j

)
m×n

can be obtained by transforming the linguistic terms into

their corresponding q-RIVOFNs, where ak
i j =

([
µk−

i j ,µk+
i j

]
,
[
vk−

i j , vk+
i j

])
.
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4.1. Clustering Process of Large-Scale Decision Makers

During the GDM process, the consensus level between decision makers is a critical factor to
measure the rationality of the ranking result, especially when large-scale decision makers participate
in the evaluation mission. In practice, decision makers may vary, with diverse backgrounds and
experiences, thus, the evaluation information that deviates from group opinions may be expressed by
individual decision makers. Hence, we can introduce the clustering approach to determine the ranking
result accepted by decision makers or enterprise. After the clustering analysis, several subgroups can
be derived from the numerous evaluation information, in which the decision makers have similar
opinions on the potential green suppliers. Subsequently, the evaluation information of subgroups
can be utilized to complete the subsequent decision making, and the clustering analysis makes the
following processes easier to handle, simultaneously.

Many clustering algorithms have been introduced to propose the large-scale GDM methods,
which include the preference clustering approach [59], hierarchical clustering approach [60],
and k-means algorithm [26]. Although these existing methods can deal with the large-scale evaluation
information effectively, their operation processes are relatively complex, which will make the clustering
process of large-scale decision makers more difficult to manage in the GSS problem. In contrast, the
clustering approach based on the similarity measure is more appropriate to solve this situation due
to its features of simplicity and effectiveness [61]. Therefore, we can develop the similarity measure
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of q-RIVOFS to construct a novel clustering approach for implementing the clustering process in the
large-scale GSS problem.

Step 1. Normalize the individual q-RIVOF evaluation matrices Fk.
During the GSS procedure, the criteria can be separated into the cost type and benefit type. Hence,

before the clustering process, we should transform the evaluation information concerning different
types of criteria into the unified form. Then, the individual evaluation matrices Fk can be converted

into the normalized q-RIVOF evaluation matrices Qk =
(
ak

i j

)
m×n

as

ak
i j =

([
µk−

i j ,µk+
i j

]
,
[
vk−

i j , vk+
i j

])
=


([

vk−
i j , vk+

i j

]
,
[
µk−

i j ,µk+
i j

])
if C j is the cos t type;([

µk−
i j ,µk+

i j

]
,
[
vk−

i j , vk+
i j

])
if C j is the benefit type.

(17)

Step 2. Cluster the evaluation information into several subgroups.
Inspired by the literature [61], similarity measure is the basis of the clustering approach, thus,

we define the similarity measure between different q-RIVOFNs as follows:

Definition 8. Let a1 =
([
µ−1 ,µ+1

]
,
[
v−1 , v+1

])
and a2 =

([
µ−2 ,µ+2

]
,
[
v−2 , v+2

])
be two q-RIVOFNs, then the

similarity measure between them can be defined by:

SM(a1, a2) = 1− dM(a1, a2), (18)

where dM(a1, a2) is the Minkowski distance between q-RIVOFNs above. Furthermore, let Q1 =
(
a1

i j

)
m×n

and

Q2 =
(
a2

i j

)
m×n

be two q-RIVOF evaluation matrices, then the similarity measure between them is given by:

SM
(
Q1, Q2

)
=

1
mn

m∑
i=1

n∑
j=1

SM
(
a1

i j, a2
i j

)
=

1
mn

m∑
i=1

n∑
j=1

(
1− dM

(
a1

i j, a2
i j

))
. (19)

Another important segment is how to determine an appropriate threshold, which can guide the
large-scale decision makers to be separated into several subgroups. Based on the literature [61,62],
we can utilize the majority principle to construct the clustering threshold as

λ = min
s,t=1,2,...,l;s,t

SM
(
Qs, Qt

)
+

2
3

(
max

s,t=1,2,...,l;s,t
SM

(
Qs, Qt

)
− min

s,t=1,2,...,l;s,t
SM

(
Qs, Qt

))
, (20)

where SM
(
Qs, Qt

)
is the similarity measure between the normalized evaluation matrices Qs and Qt

based on Definition 8.
Subsequently, we can utilize the predefined clustering threshold λ

(
λ ∈ [0, 1]

)
to divide the

evaluation matrices Qk into several subgroups SK(K = 1, 2, . . . , L), and the number of decision makers
in subgroup SK is assumed as lK. To determine a more reasonable ranking, three principles should be
followed during the clustering process, which include:

(1) Whether SM
(
Qs, Qt

)
≥ λ, then the evaluation matrices Qs and Qt are classified into the

same subgroup;
(2) It must be guaranteed that at least three subgroups of evaluation information are maintained,

in which the extreme case of two opposite subgroups exist can be avoided;
(3) The number of decision makers in each subgroup should exceed one; otherwise, the single

decision maker is advised to withdraw from the evaluation of green suppliers [59].

4.2. Aggregation Process of Individual Evaluation Information

Since the large-scale evaluation information is clustered into several subgroups, the next issue is
to obtain a collective q-RIVOF evaluation matrix of green suppliers, which can be implemented by
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two steps. First, the evaluation information in the same subgroup should be aggregated to obtain the
subgroup q-RIVOF evaluation matrix; then, we can determine the collective q-RIVOF evaluation matrix
of green suppliers combined with the subgroup evaluation matrices and the weights of subgroups.

Step 3. Obtain the subgroup evaluation matrices RK

For the decision makers in the same subgroup SK, the similarity level between them is relatively
high. Thus, each decision maker in the subgroup SK can be regarded as equally important. Hence,
we can assume the weight vector of decision makers in the subgroup SK as wK = (1/lK, 1/lK, . . . , 1/lK)

T

and utilize the q-RIVOFWA operator to aggregate their evaluation information; subsequently, the

subgroup evaluation matrices RK =
(
rK

ij

)
m×n

can be obtained from

rK
ij =

([
µK−

i j ,µK+
i j

]
,
[
vK−

i j , vK+
i j

])
=

q−RIVOFWA
(
a1

i j, a2
i j, . . . , alK

i j

)
=


 q

√
1−

lK∏
k=1

(
1−

(
µk−

i j

)q)1/lK
, q

√
1−

lK∏
k=1

(
1−

(
µk+

i j

)q)1/lK
,
[

lK∏
k=1

(
vk−

i j

)1/lK
,

lK∏
k=1

(
vk+

i j

)1/lK
].

(21)

Step 4. Calculate the weights of subgroups
Before the aggregation of the subgroup evaluation matrices RK, we should determine the weight

vector of subgroups. According to the literature [63,64], the consensus level between decision makers
is a critical factor in measuring the rationality of ranking result in GDM process, and a ranking with a
high consensus level is more desirable. Therefore, we can utilize the consensus degree to compute
the weight vector of subgroups; i.e., the larger the similarity measure between a subgroup with the
other subgroups, the larger the weights of the subgroup. Then, the weights of subgroups can be
determined as

λK =

∑L
T=1 SM

(
RK, RT

)
∑K

K=1
∑L

T=1 SM
(
RK, RT

) . (22)

Step 5. Obtain the collective evaluation matrix Rc

Once the subgroup evaluation matrices RK and the weights of subgroups λK are obtained, we can

utilize the q-RIVOFWA operator to determine the collective evaluation matrix Rc =
(
rc

i j

)
m×n

as

rc
i j =

([
µc−

i j ,µc+
i j

]
,
[
vc−

i j , vc+
i j

])
=

q−RIVOFWA
(
a1

i j, a2
i j, . . . , aL

ij

)
=


 q

√
1−

L∏
K=1

(
1−

(
µK−

i j

)q)λK

, q

√
1−

L∏
K=1

(
1−

(
µK+

i j

)q)λK
,
 L∏

K=1

(
vK−

i j

)λK

,
L∏

K=1

(
vK+

i j

)λK
.

(23)

4.3. Determination Process of the Criteria Weights

The weights of criteria also play a key role in ranking green suppliers. Thus, we construct the
weighted entropy measure of q-RIVOFNs to obtain the weight vector of criteria. Inspired by the
literature [65], we put forward the entropy measure of q-RIVOFN as in the following.

Definition 9. Let a = ([µ−,µ+], [v−, v+]) be a q-RIVOFN, then the entropy measure of a, i.e., ε(a) can be
given by

ε(a) = 1− dM(a, ac), (24)

where dM(a, ac) is the Minkowski distance between the q-RIVOFN a and its complementary q-RIVOFN.

Subsequently, the weighted entropy measure of q-RIVOFNs can be developed.
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Definition 10. Let A = {a1, a2, . . . , an} be a set of q-RIVOFNs and ε
(
a j
)
( j = 1, 2, . . . , n) be the entropy

measure of a j, thus

E(A) =
n∑

j=1

w jε
(
a j
)

(25)

is called the weighted entropy measure of set A = {a1, a2, . . . , an}, where w j are the weights of q-RIVOFNs and
satisfy the conditions of 0 ≤ w j ≤ 1 and

∑n
j=1 w j = 1.

According to the definitions above, the weights of criteria can be computed objectively during the
GSS process.

Step 6. Compute the overall weighted entropy, concerning different criteria
Combined with the weights of subgroups and the subgroup evaluation matrices, the overall

weighted entropy concerning different criteria can be computed by

E
(
C j

)
=

L∑
K=1

λK
m∑

i=1

ε
(
rK

ij

)
. (26)

Step 7. Obtain the weights of criteria
According to the entropy theory, once the weighted entropy value with respect to a criteria is

smaller across the potential green suppliers, a larger weight should be assigned to the criteria [30]; i.e.,
the smaller the value of E

(
C j

)
, the larger weight the criteria C j. Hence, the weights of criteria can be

determined by

w j =

∑L
K=1 λ

K∑m
i=1

(
1− ε

(
rK

ij

))
∑n

j=1
∑L

K=1 λ
K∑m

i=1

(
1− ε

(
rK

ij

)) . (27)

4.4. Ranking Process Using the q-RIVOF-MULTIMOORA Approach

The traditional MULTIMOORA approach is composed of the ratio system, the reference point
approach, and the full multiplicative form, and is a powerful tool to obtain a ranking with strong
robustness. To determine the best green supplier, we construct the improved MULTIMOORA approach
under the q-RIVOF environment, in which the q-RIVOFWA and q-RIVOFWG operators are introduced
to implement the ratio system and reference point approach, respectively, and the weighted Chebyshev
distance of q-RIVOFNs is utilized in the improved reference point approach. Hence, the MULTIMOORA
approach can be improved to adapt to the q-RIVOF environment, and the weights of criteria are also
highlighted during the ranking process. Consequently, the q-RIVOF-MULTIMOORA approach can be
implemented by the following steps:

Step 8. The q-RIVOF ratio system
Combined with the collective evaluation matrix Rc and the weights of criteria w j, the

comprehensive utilities of green supplier Gi with respect to all the criteria can be computed by

ỹ∗(Gi) = q−RIVOFWA
(
rc

i1, rc
i2, . . . , rc

in

)
=


 q

√
1−

n∏
j=1

(
1−

(
µc−

i j

)q)wi
, q

√
1−

n∏
j=1

(
1−

(
µc+

i j

)q)wi
,
 n∏

j=1

(
vc−

i j

)wi
,

n∏
j=1

(
vc+

i j

)wi

.

(28)

Obviously, the comprehensive utilities of green suppliers ỹ∗(Gi) are the q-RIVOFNs; thus, we can
compare the values of them to rank green suppliers. The larger the score value of ỹ∗(Gi), the higher
the ranking of green supplier Gi.

Step 9. The q-RIVOF reference point approach
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The Minkowski measure [66] can be introduced to calculate the distance between the collective
evaluation information of green suppliers concerning each criterion and the positive reference point
r∗ = ([1, 1], [0, 0]) as follows:

d(r∗, Gi) =


n∑

j=1

[
d
(
r∗, rc

i j

)]γ
1/γ

,γ ∈ N+. (29)

According to the literature [27], the robustness of the decision making problems, by Minkowski
measurement, increases by enhancing the value of γ, thus we set γ→∞ , the distance above is reduced
to the Chebyshev distance as

d(r∗, Gi) = max
1≤ j≤n

d
(
r∗, rc

i j

)
. (30)

Subsequently, considering the weights of criteria w j, the weighted Chebyshev distance between
the collective evaluation information of green suppliers concerning each criterion, and the positive
reference point can be obtained as in the following:

d(r∗, Gi) = max
1≤ j≤n

w jd
(
r∗, rc

i j

)
= max

1≤ j≤n

w j

4

(∣∣∣∣1− µc−
i j

∣∣∣∣+ ∣∣∣∣1− µc+
i j

∣∣∣∣+ ∣∣∣∣vc−
i j

∣∣∣∣+ ∣∣∣∣vc+
i j

∣∣∣∣). (31)

Accordingly, the smaller the weighted Chebyshev distance d(r∗, Gi), the higher the ranking of
green supplier Gi.

Step 10. The q-RIVOF full multiplicative form
Similar to the q-RIVOF ratio system, the multiplicative utilities of green supplier Gi with respect

to all the criteria can be computed by

Ũ∗(Gi) = q−RIVOFWG
(
rc

i1, rc
i2, . . . , rc

in

)
=


 n∏

j=1

(
µc−

i j

)wi
,

n∏
j=1

(
µc+

i j

)wi
,
 q

√
1−

n∏
j=1

(
1−

(
vc−

i j

)q)wi
, q

√
1−

n∏
j=1

(
1−

(
vc+

i j

)q)wi

.

(32)

Hence, we can compare the values of multiplicative utilities Ũ∗(Gi) to determine the ranking of
green suppliers; the larger the score value of Ũ∗(Gi), the higher the ranking of green supplier Gi.

Step 11. Determine the final ranking according to the dominance theory
Since the three rankings of green suppliers are obtained by the q-RIVOF ratio system, the q-RIVOF

reference point approach, and the q-RIVOF full multiplicative form, the final ranking result can be
determined combined with the dominance theory [31].

5. Case Study

To investigate the feasibility and superiority of the proposed large-scale GSS method, we introduce
the numerical example explored in the literature [23] in this section. To reduce the CO2 emissions during
the production process for improving the environmental performance, a manufacturing enterprise
plans to choose an appropriate supplier for cooperating. Considering the importance and complexity
of this GSS issue, a large-scale group of decision makers DMk(k = 1, 2, . . . , 20) is constructed by the
enterprise, and they evaluate five potential green suppliers Gi(i = 1, 2, 3, 4, 5) concerning four criteria
C j( j = 1, 2, 3, 4). Namely, the product quality factor (C1), i.e., the quality level of raw materials for
production; the environmental factor (C2), i.e., the environmental performance of raw materials for
production; the delivery factor (C3), i.e., the flexibility level in the delivery of raw materials for
production; and the price factor (C4), i.e., the price of raw materials for production, where C4 is the cost
type criteria, and the others are the benefit type criteria. The structure of determining the best green
supplier in this numerical example is presented in Figure 3. According to the literature [19,29], we can
construct the relationships between linguistic terms and their corresponding q-RIVOFNs (q = 3) as
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shown in Table 1. Twenty decision makers use the linguistic terms to evaluate green suppliers as
presented in Table 2; then, the linguistic terms can be transformed into the evaluation matrices of
green suppliers Fk =

(
ak

i j

)
5×4

. It is remarkable that we utilize the Hamming distance (p = 1) between
q-RIVOFNs reduced by Minkowski distance to implement the GSS process. Subsequently, the ranking
of green suppliers can be determined by the proposed approach as in the following subsection.
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Table 1. Linguistic terms and the corresponding q-rung interval-valued orthopair fuzzy numbers
(q-RIVOFNs).

Linguistic Terms Corresponding q-RIVOFNs

Extremely High (EH) ([0.90,0.95], [0.10,0.15])
Very High (VH) ([0.80,0.85], [0.20,0.25])

High (H) ([0.70,0.75], [0.30,0.35])
Medium High (MH) ([0.60,0.65], [0.40,0.45])

Medium (M) ([0.50,0.55], [0.50,0.55])
Medium Low (ML) ([0.40,0.45], [0.60,0.65])

Low (L) ([0.30,0.35], [0.70,0.75])
Very Low (VL) ([0.20,0.25], [0.80,0.85])

Extremely Low (EL) ([0.10,0.15], [0.90,0.95])

Table 2. Linguistic terms of decision makers.

Decision Makers Green Suppliers Criteria

C1 C2 C3 C4

DM1

G1 H M H L
G2 M MH VH EL
G3 ML VH M M
G4 VH M M MH
G5 L ML ML H

DM2

G1 VL H ML L
G2 MH L VH MH
G3 M VH MH VH
G4 VH VH MH MH
G5 H ML ML H

DM3

G1 VH M MH EL
G2 M MH VH EL
G3 ML VH M MH
G4 VH M ML MH
G5 VL ML ML MH
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Table 2. Cont.

Decision Makers Green Suppliers Criteria

C1 C2 C3 C4

DM4

G1 H M EH EH
G2 ML H VL EL
G3 ML VL M ML
G4 L ML M VL
G5 L H MH L

DM5

G1 H M H L
G2 M M EH EL
G3 ML VH ML M
G4 VH ML M H
G5 L ML ML MH

DM6

G1 H ML EH EH
G2 ML MH VL EL
G3 ML VL MH ML
G4 L ML M L
G5 L H H L

DM7

G1 L H ML L
G2 M L VH H
G3 M H MH VH
G4 VH VH M MH
G5 H ML ML H

DM8

G1 VH M EH EH
G2 ML H VL EL
G3 ML L MH ML
G4 ML L M VL
G5 L H MH L

DM9

G1 H MH MH L
G2 M MH VH EL
G3 ML VH M MH
G4 VH ML M MH
G5 L ML L EH

DM10

G1 H M H L
G2 M MH VH EL
G3 L VH ML M
G4 H M M MH
G5 L ML M H

DM11

G1 H H H L
G2 MH L L EL
G3 VH VH M EL
G4 VH VL M H
G5 VH H L L

DM12

G1 VL H ML L
G2 MH L VH MH
G3 ML H H VH
G4 VH VH MH MH
G5 MH ML ML MH

DM13

G1 H M EH EH
G2 L H VL EL
G3 ML VL M ML
G4 ML ML MH VL
G5 L MH MH ML
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Table 2. Cont.

Decision Makers Green Suppliers Criteria

C1 C2 C3 C4

DM14

G1 H ML H VH
G2 VH MH VL EL
G3 ML EH MH MH
G4 M EH VL ML
G5 ML ML ML H

DM15

G1 VL H ML ML
G2 MH ML VH MH
G3 M VH MH VH
G4 H VH MH H
G5 H ML L H

DM16

G1 H M H EH
G2 ML H VL L
G3 ML VL VH L
G4 L M M VL
G5 L H MH L

DM17

G1 VH M H L
G2 M MH MH EL
G3 ML VH M MH
G4 VH M M H
G5 VL ML M H

DM18

G1 H ML VH VH
G2 H L L VH
G3 MH VH M MH
G4 VH EH M VH
G5 VL ML VH H

DM19

G1 L MH ML L
G2 MH VL VH MH
G3 M H MH VH
G4 VH VH MH MH
G5 H ML L H

DM20

G1 EH M EL L
G2 ML VH MH EL
G3 VH VH ML M
G4 VH ML VH MH
G5 H VH H L

5.1. Implementation

Step 1. Normalize the individual q-RIVOF evaluation matrices Fk.
Because of the criteria C4 is the cost type criteria, we can utilize the Equation (17) to obtain the

normalized q-RIVOF evaluation matrices Qk =
(
ak

i j

)
5×4

.

Step 2. Cluster the evaluation information into several subgroups.
According to the normalized evaluation matrices Qk, the similarity measures between them can

be computed by Equation (19). Then, the clustering threshold λ, which is used to divide the large-scale
group of decision makers into several subgroups, can be obtained based on Equation (20) as λ = 0.8633.
Combined with the principles during the clustering process, the large-scale decision makers can be
divided into three subgroups as follows:

S1 = {DM1, DM3, DM5, DM9, DM10, DM17};
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S2 = {DM2, DM7, DM12, DM15, DM19};

S3 = {DM4, DM6, DM8, DM13, DM16}.

It is worth noting that the evaluation information of decision makers DM11, DM14, DM18, and DM20

is ignored during the subsequent decision making process due to the low similarity degrees between
their evaluation information and that of other decision makers.

Step 3. Obtain the subgroup evaluation matrices RK

Assume that decision makers in the subgroup SK are regarded as equally important, then the

subgroup evaluation matrices RK =
(
rK

ij

)
5×4

(K = 1, 2, 3) can be obtained using the q-RIVOFWA

operator, as presented in Tables 3–5.

Table 3. Subgroup evaluation matrix R1.

Green Suppliers C1 C2 C3 C4

G1
([0.7399,0.7909],
[0.2621,0.3129])

([0.5203,0.5703],
[0.4817,0.5319])

([0.6718,0.7221],
[0.3302,0.3806])

([0.7566,0.8154],
[0.2498,0.3039])

G2
([0.5000,0.5500],
[0.5000,0.5500])

([0.5863,0.6363],
[0.4152,0.4653])

([0.8048,0.8604],
[0.2000,0.2532])

([0.9000,0.9500],
[0.1000,0.1500])

G3
([0.3869,0.4367],
[0.6156,0.6657])

([0.8000,0.8500],
[0.2000,0.2500])

([0.4720,0.5217],
[0.5313,0.5815])

([0.4563,0.5060],
[0.5477,0.5979])

G4
([0.7869,0.8374],
[0.2140,0.2644])

([0.4720,0.5217],
[0.5313,0.5815])

([0.4865,0.5363],
[0.5154,0.5655])

([0.3728,0.4223],
[0.6316,0.6818])

G5
([0.2746,0.3236],
[0.7319,0.7820])

([0.4000,0.4500],
[0.6000,0.6500])

([0.4288,0.4781],
[0.5793,0.6296])

([0.3279,0.3753],
[0.6934,0.7438])

Table 4. Subgroup evaluation matrix R2.

Green Suppliers C1 C2 C3 C4

G1
([0.2501,0.2986],
[0.7584,0.8085])

([0.6835,0.7337],
[0.3178,0.3680])

([0.4000,0.4500],
[0.6000,0.6500])

([0.6835,0.7337],
[0.3178,0.3680])

G2
([0.5834,0.6334],
[0.4183,0.4684])

([0.3134,0.3619],
[0.6971,0.7473])

([0.8000,0.8500],
[0.2000,0.2500])

([0.3842,0.4339],
[0.6188,0.6689])

G3
([0.4836,0.5335],
[0.5186,0.5687])

([0.7469,0.7980],
[0.2551,0.3059])

([0.6242,0.6745],
[0.3776,0.4279])

([0.2000,0.2500],
[0.8000,0.8500])

G4
([0.7841,0.7337],
[0.2169,0.2674])

([0.8000,0.8500],
[0.2000,0.2500])

([0.5834,0.6334],
[0.4183,0.4684])

([0.3842,0.4339],
[0.6188,0.6689])

G5
([0.6835,0.7337],
[0.3178,0.3680])

([0.4000,0.4500],
[0.6000,0.6500])

([0.3669,0.4163],
[0.6382,0.6883])

([0.3256,0.3750],
[0.6787,0.7288])

Table 5. Subgroup evaluation matrix R3.

Green Suppliers C1 C2 C3 C4

G1
([0.7249,0.7757],
[0.2767,0.3272])

([0.4836,0.5335],
[0.5186,0.5687])

([0.8779,0.9327],
[0.1246,0.1777])

([0.1000,0.1500],
[0.9000,0.9500])

G2
([0.3842,0.4339],
[0.6188,0.6689])

([0.6835,0.7337],
[0.3178,0.3680])

([0.2000,0.2500],
[0.8000,0.8500])

([0.8779,0.9327],
[0.1246,0.1777])

G3
([0.4000,0.4500],
[0.6000,0.6500])

([0.2279,0.2765],
[0.7789,0.8290])

([0.6341,0.6869],
[0.3807,0.4335])

([0.6242,0.6745],
[0.3776,0.4279])

G4
([0.3475,0.3968],
[0.6581,0.7083])

([0.4108,0.4601],
[0.5966,0.6470])

([0.5242,0.5741],
[0.4782,0.5284])

([0.7841,0.8347],
[0.2169,0.2674])

G5
([0.3000,0.3500],
[0.7000,0.7500])

([0.6835,0.7337],
[0.3178,0.3680])

([0.6242,0.6745],
[0.3776,0.4279])

([0.6835,0.7337],
[0.3178,0.3680])
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Step 4. Determine the weights of subgroups
Since the subgroup evaluation matrices RK are obtained, we can compute the similarity

degrees between them; then, the weights of subgroups can be calculated by Equation (22) as
λ = (0.347, 0.330, 0.323)T.

Step 5. Obtain the collective evaluation matrix Rc

Combined with the subgroup evaluation matrices RK and weight vector of subgroups λ, the

q-RIVOFWA operator is utilized to determine the collective evaluation matrix Rc =
(
rc

i j

)
5×4

, as shown

in Table 6.

Table 6. Collective evaluation matrix.

Green Suppliers C1 C2 C3 C4

G1
([0.6607,0.7125],
[0.3787,0.4342])

([0.5811,0.6316],
[0.4300,0.4813])

([0.7371,0.8042],
[0.2935,0.3551])

([0.6518,0.7079],
[0.4092,0.4678])

G2
([0.5054,0.5550],
[0.5050,0.5557])

([0.5765,0.6262],
[0.4518,0.5044])

([0.7308,0.7877],
[0.3130,0.3729])

([0.8276,0.8927],
[0.1959,0.2595])

G3
([0.4281,0.4776],
[0.5769,0.6271])

([0.7047,0.7579],
[0.3362,0.3936])

([0.5867,0.6379],
[0.4263,0.4780])

([0.4926,0.5404],
[0.5504,0.6028])

G4
([0.7182,0.7717],
[0.3090,0.3649])

([0.6367,0.6910],
[0.3996,0.4555])

([0.5345,0.5844],
[0.4696,0.5199])

([0.6050,0.6588],
[0.4442,0.5007])

G5
([0.5108,0.5590],
[0.5478,0.6016])

([0.5378,0.5878],
[0.4886,0.5409])

([0.5020,0.5511],
[0.5209,0.5724])

([0.5166,0.5651],
[0.5351,0.5886])

Step 6. Compute the overall weighted entropy concerning different criteria
We can utilize Equation (26) to compute the overall weighted entropy concerning different

criteria as
E(C1) = 3.3402, E(C2) = 3.4691, E(C3) = 3.4849, E(C4) = 2.8234.

Step 7. Determine the weights of criteria
Combined with Equation (27), the weight vector of criteria is computed as w =

(0.241, 0.223, 0.220, 0.316)T.
Step 8–11. Determine the final ranking of green suppliers
According to Equations (28), (31), and (32), the comprehensive utilities of green supplier Gi

with respect to all the criteria ỹ∗(Gi), the weighted Chebyshev distances between the collective
evaluation information of green suppliers concerning each criteria and the positive reference point
d(r∗, Gi), and the multiplicative utilities of green supplier Gi concerning all the criteria Ũ∗(Gi) can
be calculated as presented in Table 7. Once three rankings are obtained in the relevant steps of the
q-RIVOF-MULTIMOORA method; the final ranking result can be determined using the dominance
theory as presented in Table 8.

Table 7. Ranking indexes of the q-rung interval-valued orthopair fuzzy multi-objective optimization
on the basis of ratio analysis plus the full multiplicative form (q-RIVOF-MULTIMOORA) method.

Green
Suppliers ỹ*(Gi) Score Values of ỹ*(Gi) d(r*,Gi) Ũ

*
(Gi) Score Values of Ũ

*
(Gi)

G1
([0.6637,0.7223],
[0.3775,0.4352]) 0.6332 0.1199 ([0.6549,0.7108],

[0.3876,0.4433]) 0.6237

G2
([0.7146,0.7814],
[0.3287,0.3916]) 0.6866 0.1205 ([0.6597,0.7156],

[0.3959,0.4465]) 0.6256

G3
([0.5706,0.6222],
[0.4715,0.5258]) 0.5441 0.1675 ([0.5360,0.5867],

[0.5022,0.5535]) 0.5149

G4
([0.6337,0.6875],
[0.4024,0.4580]) 0.6045 0.1328 ([0.6206,0.6737],

[0.4164,0.4703]) 0.5921

G5
([0.5171,0.5660],
[0.5242,0.5771]) 0.4958 0.1613 ([0.5166,0.5655],

[0.5258,0.5787]) 0.4949
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Table 8. Final ranking of green suppliers.

Green
Suppliers

The
q-RIVOF

Ratio System

The q-RIVOF Reference
Point Approach

The q-RIVOF Full
Multiplicative Form The Final Ranking

G1 2 1 2 2
G2 1 2 1 1
G3 4 5 4 4
G4 3 3 3 3
G5 5 4 5 5

5.2. Sensitivity Analysis

To investigate the robustness of the proposed approach based on the q-RIVOF-MULTIMOORA
method, we can implement the decision-making process of the aforementioned numerical example
with several groups of criteria weight vectors, as presented in Table 9. Obviously, the Exp.0 represents
the weights of criteria obtained in the proposed approach, while each criterion is given a relatively large
weight value in other examples, respectively. Subsequently, the different rankings of green suppliers
with different weight vectors of criteria are illustrated in Figure 4.

Table 9. Weights of criteria in the sensitivity analysis.

Criteria Exp.0 Exp.1 Exp.2 Exp.3 Exp.4

C1 0.241 0.400 0.200 0.200 0.200
C2 0.223 0.200 0.400 0.200 0.200
C3 0.220 0.200 0.200 0.400 0.200
C4 0.316 0.200 0.200 0.200 0.400
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Figure 4 indicates that the ranking order of green supplier G2 changes significantly from one
to three in the Exp.1, which can be explained by the relatively large weight value of criteria C1 and
the outstanding evaluation information of green supplier G2 concerning criteria C1. Besides, in other
examples, the ranking orders of different alternatives almost remain unchanged, especially for the green
suppliers G3, G4, and G5. Because of the ranking indexes obtained from the evaluation information
of green suppliers G1 and G2 are very close, their ranking orders have changed slightly in some
cases. Thus, the sensitivity analysis result shows that the proposed approach has a relatively strong
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robustness. On the other hand, the weights of criteria are proven to be a key factor during the GSS
process, hence we should utilize the appropriate weighting method to calculate the criteria weights in
practice. The criteria weights can be computed objectively using the weighting approach based on a
weighted entropy measure in the proposed approach, which is a good choice with the information of
criteria weights being completely unknown.

5.3. Discussion

To further discuss the effectiveness of the proposed approach, several existing GSS methods
developed in the literature are applied to carry out the same numerical example above, which include the
method based on the q-rung interval-valued orthopair fuzzy weighted Hamy mean (q-RIVOFWHM)
operator [23], the method based on the q-rung interval-valued orthopair fuzzy weighted dual
Hamy mean (q-RIVOFWDHM) operator [23], and the intuitionistic fuzzy TOPSIS (IF-TOPSIS) based
method [17]. It is worth noting that the existing approaches were all developed to solve the GSS issues
without a large-scale group of decision makers; thus, twenty decision makers are assumed as equally
important during the selection process of the existing approaches. In addition, the subjective weights of
criteria in the IF-TOPSIS approach are assumed as w = (0.300, 0.200, 0.300, 0.200)T [23]. The different
rankings obtained by the GSS methods are presented in Figure 5.
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According to the literature [10,11], the GSS and order allocation issues can be solved by novel
multi-objective programming models simultaneously, in which the solution time is an important
index to measure the quality of different methods. However, both the proposed approach and the
aforementioned existing GSS approaches regard the GSS process as a kind of MCDM issue, thus their
solution procedures of the numerical example in this paper are all a scientific numerical calculation
process, and the key factor affecting their solution time is the size of original data, which is different
from the optimization problems. Combined with the Matlab software, the solution time of different
GSS methods taken to obtain the ranking result is all about ten seconds. Obviously, the quality of the
proposed approach and the existing GSS approaches cannot be judged according to their solution
time; nevertheless, we can analyze the advantages and disadvantages of the proposed method by the
ranking results in Figure 5 and the calculation processes of different GSS methods as in the following.

Figure 5 indicates that the ranking obtained by the IF-TOPSIS approach is as same as that of the
proposed approach, and the ranking orders of several green suppliers have changed slightly in the
methods based on the q-RIVOFWHM and q-RIVOFWDHM operators. These inconsistent ranking
results are mainly caused by two reasons: (1) The non-consensus evaluation information that deviates
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from the group evaluation information, i.e., the evaluation information given by decision makers DM11,
DM14, DM18, and DM20, may be expressed inevitably when large-scale decision makers participate in the
evaluation process. Then, the accuracy of the rankings will be reduced without ignoring or improving
the non-consensus opinions in the methods based on the q-RIVOFWHM and q-RIVOFWDHM operators,
and (2) compared with the information fusion of the q-RIVOFWHM and q-RIVOFWDHM operators,
ranking obtained by the proposed approach is determined according to three rankings of relevant steps
in the q-RIVOF-MULTIMOORA method, which may also lead to different ranking results; however,
the robustness of ranking is improved in the q-RIVOF-MULTIMOORA approach. Besides, although
the ranking of green suppliers remains unchanged in the IF-TOPSIS approach, the GSS approach
based on the IF-TOPSIS method still presents several limitations according to its calculation process.
Similarly, the non-consensus opinions are not addressed in the IF-TOPSIS approach, which will affect
the accuracy of ranking negatively. Furthermore, compared with q-RIVOFNs, the intuitionistic fuzzy
numbers are less capable of expressing the fuzziness of evaluation information, and the evaluation
freedom of decision makers is limited. However, considering the subjective and objective factors,
the weights of criteria are determined comprehensively in the IF-TOPSIS approach, which is more
flexible and reasonable than the weighting method in the proposed approach.

Based on the aforementioned analysis, several advantages of utilizing the proposed method to
rank green suppliers are summarized as below.

(1) The q-RIVOFNs are introduced to evaluate green suppliers, which can not only represent the
positive, negative, and indeterminacy membership levels of decision makers, simultaneously,
but also relax the evaluation environment of decision makers. Furthermore, because of three
degrees above are expressed by interval numbers, the uncertainty of evaluation information can
be characterized effectively.

(2) With the GSS issues becoming more and more complex, the scale of the decision maker team will
become bigger and bigger. Considering the situation of large-scale decision makers participating
in the evaluation mission, a clustering method with a deletetion mechanism is constructed to
aggregate the evaluation information, which can reduce the negative impact of the non-consensus
opinions on the ranking of green suppliers.

(3) The q-RIVOFWA operator, the weighted Chebyshev distance of q-RIVOFNs, and the q-RIVOFWG
operator are introduced to improve the ratio system, the reference point approach, and the
full multiplicative form of MULTIMOORA approach, respectively. Subsequently, the q-RIVOF-
MULTIMOORA approach is developed to rank green suppliers, in which the weight vector of
criteria is highlighted during the ranking process, and the robustness of the ranking result is
relatively strong.

Nevertheless, the proposed large-scale GSS method still has several drawbacks. In this paper, the
relationship between different criteria is assumed as independent. In contrast, the interaction may
exist between different criteria; thus, the proposed approach cannot solve the GSS issues under these
situations. The weight vector of criteria is computed by weighted entropy weighting method, in which
the subjective factor is ignored in the proposed approach. Furthermore, another important issue in
GSCM, i.e., the order allocation [10,11] issue, is not considered in this study.

6. Conclusions

With the increasing importance of green suppliers to enterprises, the scale of decision makers
is also constantly increasing during the practical GSS procedure. To investigate the large-scale
GSS problems, this paper develops a new large-scale GSS approach under a q-RIVOF environment.
The q-RIVOFNs are introduced to evaluate green suppliers, in which the uncertainty and fuzziness
of evaluation information can be expressed validly, and the range of decision makers’ evaluation
information is enlarged. Combined with the similarity measure of q-RIVOFNs and the clustering
principles, a clustering method is developed to divide the large-scale decision makers into several
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subgroups, while the non-consensus opinions are ignored. Based on the consensus degrees of different
subgroups, the weights of subgroups are computed; consequently, the collective evaluation information
can be determined by the q-RIVOFWA operator. Next, the weights of criteria are determined using the
weighted entropy weighting method. Later, the q-RIVOF-MULTIMOORA approach is constructed to
rank green suppliers, in which the q-RIVOF ratio system, the q-RIVOF reference point approach, and the
q-RIVOF full multiplicative form are improved by the q-RIVOFWA operator, the weighted Chebyshev
distance of q-RIVOFNs, and the q-RIVOFWG operator, respectively. At last, a numerical example is
presented to demonstrate the feasibility of the proposed approach. Furthermore, the advantages of
utilizing the proposed approach to rank green suppliers are summarized, which include the uncertainty
and fuzziness of evaluation information that can be further characterized, the large-scale GSS issue that
can be solved effectively by ignoring the non-consensus evaluation information, and the robustness of
the ranking result being improved to a certain extent.

In future research, the proposed GSS approach should be revised to solve the GSS issues that
interactions or dependencies exist among the criteria, and the weight vector of criteria should be
determined by considering the subjective and objective aspects of weight information. Furthermore,
inspired by the literature [10,11], we should integrate the order allocation process into the proposed
approach to implement the GSCM procedure more effectively.
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