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Abstract: It is significant to analyze the blend homogeneity of cohesive powders during pharmaceutical
manufacturing in order to provide the exact content of the active pharmaceutical ingredient (API) for
each individual dose unit. In this paper, an online monitoring platform using an MEMS near infrared
(NIR) sensor was designed to control the bin blending process of cohesive powders. The state of
blend homogeneity was detected by an adaptive algorithm, which was calibration free. The online
control procedures and algorithm’s parameters were fine-tuned through six pilot experiments and
were successfully transferred to the industrial production. The reliability of homogeneity detection
results was validated by 16 commercial scale experiments using 16 kinds of natural product powders
(NPPs), respectively. Furthermore, 19 physical quality attributes of all NPPs and the excipient were
fully characterized. The blending end time was used to denote the degree of difficulty of blending.
The empirical relationships between variability of NPPs and the blending end time were captured by
latent variable modeling. The critical material attributes (CMAs) affecting the blending process were
identified as the particle shape and flowability descriptors of cohesive powders. Under the framework of
quality by design (QbD) and process analytical technology (PAT), the online NIR spectroscopy together
with the powder characterization facilitated a deeper understanding of the mixing process.

Keywords: near-infrared sensor; blend homogeneity; cohesive powder; adaptive modeling algorithm;
raw material variability; quality by design

HIGHLIGHT

> The near infrared (NIR) spectroscopy combined with modified adaptive algorithm was used to
monitor the blending process of natural product powders and excipient systems.

> The effectiveness of the online monitoring platform was justified through 16 batches of commercial
blending operations.

> An empirical relationship between raw material variability and detected blending end time
were established.

> The particle irregularity and powder flowability were identified as critical material attributes
affecting the cohesive powder blending process.

Processes 2019, 7, 568; doi:10.3390/pr7090568 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://www.mdpi.com/2227-9717/7/9/568?type=check_update&version=1
http://dx.doi.org/10.3390/pr7090568
http://www.mdpi.com/journal/processes


Processes 2019, 7, 568 2 of 23

1. Introduction

The powder mixing process is one of the key processes for the production of pharmaceutical
oral solid preparations. Only mixed homogeneous pharmaceutical powder can be subdivided into
individual doses to provides the exact content of an active pharmaceutical ingredient (API) [1,2] to
ensure the quality, safety and therapeutic effect of the drug [3]. As the most critical quality attribute
(CQA) of mixed intermediate, blend uniformity (BU) is affected by a number of factors including raw
material properties, blending equipment and operations, and environmental conditions [4,5]. In order
to effectively monitor the CQA and system dynamic changes of the mixing process, the pharmaceutical
industry is encouraged to adopt new process analysis methods under the American Food and Drug
Administration (FDA) guidance on process analytical technology (PAT) [6]. Many techniques such
as near infrared (NIR) spectroscopy [7–10], Raman spectroscopy (RS) [3,11] and chemical imaging
(CI) [12,13] have been reported on determination of BU. Compared with the stratified sampling and
offline analysis mode, these online methods enable high frequency sampling, multi-point detection,
real time and non-invasive process control, as well as increased production efficiency and reduced
operation costs.

The NIR spectroscopy was most widely reported to be used in pharmaceutical mixing
unit [14–18]. The NIR data have to be processed by chemometric methods to obtain meaningful results.
Available methods can be roughly divided into two types: The qualitative and the quantitative. For both
methods, the NIR data carrying the information of the uniformity state or the API concentrations were
known beforehand and were used to build the calibration set. Since the physiochemical characteristics
of powders such as particle size, shape, surface properties, interparticle forces, density, flowability,
and moisture content play a critical role on the blend performance [19–23], a representative sample set
covering as much as variability of material properties such as API concentrations, grades, and density
was vital to achieve the calibration robustness [24–26]. Nevertheless, the static calibration model,
even from a detailed design of an experiment, cannot cover all the varying effects of scale, environment,
and powder properties, compromising model reliability [27].

Alternatively, a more flexible way that removes some challenges of both qualitative and quantitative
methods has become increasingly attractive [27,28]. A typical version of such methods is moving
window F test (MW-F test) derived from the Caterpillar algorithm, the main idea of which is to compare
the current variation of the process with its recent variation [29,30]. The MW-F test method relates
the inhomogeneous risks to the regulatory BU requirement, and the test criteria is set according to
the F statistics at given significance level. It is adaptive in nature, offers easier calibrations, and is
designed to be suitable for various situations such as scale-up and transfer between different blenders.
Currently, the adaptive method was proven to be efficient in both batch and continuous blending
processes [8,17]. However, the available applications were product specific, and only a limited number
of formulation materials including the APIs of anhydrous theophylline and excipients of lactose
monohydrate, microcrystalline cellulose (MCC), corn starch and dibasic calcium phosphate were
investigated. The impact of material properties on blend metrics is rare and not thoroughly studied.

Many pharmaceutical powders are known to be cohesive and have poor flowability, meaning that
they have strong interparticle cohesive forces higher than the particle’s own weight. According to
Geldart’s classification of powders [31], particles with size lower that 30 µm are referred to as cohesive
powders. Besides, particles with size below 100 µm are generally considered to show a degree of
cohesiveness [32]. The blending of cohesive powders is more challenging because the interparticle van
der Waals force can restrict the de-agglomeration of fine particles [33,34]. Understanding the blending
performance of different cohesive materials under online spectroscopic monitoring conditions would
be valuable information for the blending process engineering design, development and scale up.

Generally speaking, the MEMS NIR spectrometer, whose polychromatic light is directed onto
the MEMS-chip, has a lower resolution and narrower wave number ranges compared to the bench
top NIR device [35]. However, the MEMS devices have the advantages of no expensive fiber optic
cables, a small size, minimal system maintenance and dust resistance, all of which enable favorable
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performance in challenging good manufacturing practice (GMP) -regulated pharmaceutical process
environments [36]. In this paper, an MEMS NIR sensor, which was built specifically for blend analysis
and had high spectral resolution (4 cm−1), was incorporated into the online monitoring platform
for the blending process of binary mixes consisting of the natural product powders (NPPs) and the
excipient. NPPs are multicomponent in nature and were expected to exhibit more physical variation.
The blending endpoint was detected by an adaptive modeling algorithm, which was calibration free and
was designed to be feasible for different powder systems. Parameters of the adaptive algorithm were
optimized through six batches of pilot experiments. Then, the algorithm was used to detect the blending
endpoints of 16 kinds of NPPs during their industrial production in 3000 L bins, which provided higher
drop heights for the cohesive powder to develop enough shear rate and facilitate both macro- and
micro-mixing [37–39]. The online homogeneity judgement results were validated by off-line sampling
and an HPLC analysis of API content. Moreover, the physical properties of NPPs and the excipient
were fully characterized. The critical material attributes (CMAs) affecting the blending endpoints
for the NPP—excipient binary powder system were identified. Under the framework of quality
by design (QbD) and process analytical technology (PAT), the online MEMS-based NIR technique
combined with modified adaptive algorithm facilitated a deeper understanding of the mixing process
for cohesive powers.

2. Materials and Methods

2.1. Materials

Twenty-two kinds of natural product powders and dextrin (Batch No. 16010220160102) were provided
by Beijing Tcmages Pharmaceutical Co., Ltd. All NPPs were manufactured in a GMP-certified facility by
the same preparation processes, such as the pretreatment of herbs, water extraction, concentration and
spray drying. However, one major problem of quality control lies in the unstable yield of the extracts,
since the quality of raw natural materials could fluctuate from batch to batch [40,41]. Consequently, it was
required to add soluble excipients (e.g., dextrin) to the extracts through the mixing process to adjust
the weight consistency, which is convenient for clinical application. The weight proportions of added
dextrin are given in Table 1, which provides an ideal random design of experiment to study mixing
process of binary cohesive powders. The first 6 batches of NPPs (materials No. 1–6) were used in the pilot
experiment and the materials No. 7–22 were used in the industrial production. The reference substance
of each NPP for HPLC analysis was purchased from the National Institutes for Food and Drug Control.
The information of the corresponding reference substances is shown in Table 1.

Table 1. Names and batch numbers of materials used.

Material
No.

NPP Powder
(Lot Number)

Reference Substance for HPLC
(Lot Number)

Proportion of
Dextrin Added

(%)

1 Paeoniae Radix Alba (J1600160) Paeoniflorin (110736–201438) 3.75

2 Processed Fructus xanthii
(J1600481) Chlorogenic acid (110753–201415) 10.02

3 Processed toasted almond
(J1502067) Amygdalin (J1502067) 1.60

4 Lonicerae Japonicae Flos (J1600420) Chlorogenic acid (110753–201415) 2.50

5 Processed semen plataginis
(J1600260) Geniposide (J1600260) 6.89

6 Alismatis Rhizoma (J1502050) 23-Acetyl-Alismol
(111846–201504) 13.78

7 Lonicerae Japonicae Flos (J1601959) Chlorogenic acid (110753–201415) 5.72
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Table 1. Cont.

Material
No.

NPP Powder
(Lot Number)

Reference Substance for HPLC
(Lot Number)

Proportion of
Dextrin Added

(%)

8 Ecliptae Herba (J1601771) Wedelolactone (110773–201313) 10.59

9 Cibotii Rhizoma (J1601774) Protocatechuic Acid
(110809–200604) 3.34

10 Glycyrrhizae radix et rhizome
Praeparata cum melle (J1601741) Liquiritin (111610–201106) 12.14

11 Alismatis Rhizoma (J1601527) 23-Acetyl-Alismol
(111846–201504) 21.96

12 Belamcandae Rhizoma (J1601762) Irigenin (111557–200602) 5.56

13 Radix Paeoniae Rubra (J1601588) Paeoniflorin (110736–201640) 4.13

14 Scrophulariae Radix (J1601477) Harpagoside (111730–201307) 12.40

15 Chuanxiong Rhizoma (J1601790) Ferulic Acid (110773–201313) 10.21

16 Taraxaci Herba (J1601803) Caffeic Acid (110885–200102) 10.58

17 Processed Radix Polygalae
(J1601902) 3,6-Disinapoylsucrose (J1601902) 2.98

18 Rhei Radix Et Rhizoma (J1601751) Aloe-Emodine (110795–201308) 7.86

19 Angelica sinensis (J1601665) Ferulic Acid (1110773–201313) 4.80

20 Dipsaci Radix (J1601913) Asperosaponin (111685–201304) 20.00

21 Mume Fructus (J1601679) Citric Acid (110773–201313) 4.30

22 Cirsii Herba (J1601841) Linarin (111528–201308) 2.67

2.2. Physical Characterization of Powder Materials

Nineteen physical parameters were used to comprehensively characterize the properties of NPPs
and dextrin. Whenever possible, the pharmacopoeia test methods were preferred. Before measurement,
all powders were sifted through a 24-mesh size sieve to remove any clumps. Each parameter value
was the mean of three replicates.

Bulk density (Da): The bulk density was measured according to the method described in Section
2.9.34 of European Pharmacopoeia 9.0 (E.P. 9.0). In simple terms, 100 g (m) of powder was filled into a
250 ml graduated cylinder with a funnel, and the resulting volume (Va) was recorded. Bulk density
was computed using Equation (1):

Da = m/Va (1)

Tapped density (Dc): The tapped volume (Vc) was obtained after 2500 strokes using a tap density
tester (HY-100; Dandong Hengyu Instrument Ltd., Dandong, China). This parameter was computed
using Equation (2):

Dc = m/Vc (2)

Based on the test results of bulk density and tapped density, inter-particle porosity (Ie), Carr index
(IC) and Hausner ratio (IH) were calculated using Equations (3)–(5), respectively.

Ie = (Dc − Da)/(Dc × Da) (3)

Ic = (Dc − Da)/Dc × 100 (4)

IH = Dc/Da (5)
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The angle of repose (α) was measured according to the official method illustrated in Section 2.9.36
under E.P. 9.0. The sample was poured through a funnel onto a platform until a stable powder cone was
formed. Then the height (h) and the diameter (r) of the powder cone was measured. Finally, the angle
of repose was calculated using Equation (6):

tan(α) = 2h/r (6)

Flow time (t”) was measured according to the official method illustrated in Section 2.9.16 under E.P.
9.0. A 100 g sample was added into a dry funnel whose bottom opening had been blocked. The times
needed for the entire sample to flow out of the funnel were recorded after unblock the bottom.

Moisture content (MC) was measured using the Sartorius MA35 instrument (Sartorius AG,
Goettingen, Germany). About 2.00 g of the test powder was tiled on a sample tray and heated at
105 ◦C. The percentage of moisture content was recorded until a constant weight was obtained.

The percentage of particles measuring <20 µm (pf ) was determined using a laser particle size
analyzer (BT 2001; Dandong Bettersize Instrument Ltd., Dandong, China) according to the official
method in Section 2.9.31 of E.P. 9.0. The particle size distribution of the powder was measured using
air as a dispersion medium, and the percentage of the powder with a particle size less than 20 µm
was calculated.

The homogeneity index (Iθ) test method is the same to the particle size analysis by laser light
diffraction. Due to the small particle size of the NPP and dextrin, the four sizes used were 0.150, 0.075,
0.050, and 0.020 mm, and the percentage of powder in each particle size range was calculated. Iθ was
calculated according to the Equation (7):

Iθ =
Fm

100 + (dm − dm−1)Fm−1 + (dm+1 − dm)Fm+1 + (dm − dm−2)Fm−2 . . .+ (dm − dm+n)Fm−n + (dm+n − dm)Fm+n
(7)

where Fm is the percentage of particles in the majority range, Fm−1 is the percentage of particles in
the range immediately below the majority range, Fm+1 is the percentage of particles in the range
immediately above the majority range, n is the order number of the fraction studied under a series
with respect to the majority fraction, dm is the mean diameter of the particles in the majority fraction,
dm−1 is the mean diameter of the particles in the fraction of the range immediately below the majority
range, and dm+1 is the mean diameter of the particles in the fraction of the range immediately above
the majority range.

Hygroscopicity (H) was determined by pharmacopoeia method descripted in Section 5.11 under
E.P. 9.0. Under a constant temperature, the ammonium sulfate saturated solution placed at the bottom
of the dryer provided a constant humidity environment. Hygroscopicity could be determined by
calculating the percentage of increasing weight of powders in the mentioned dryer after 24 h.

According to the particle size distribution curves tested by the laser diffraction instrument, D10,
D50, and D90 were the particle sizes at the 10th, 50th, and 90th percentiles, respectively. The width of
powder size distribution (Span) was calculated by Equation (8):

Span =
D90 −D10

D50
(8)

For the particle shape, the powder was pasted on a metal disc and placed on an ion sputtering
apparatus (SC7620, Quorum, East Sussex, UK). Then, the surface morphology of the powder was
observed using a scanning electron microscope (Quanta250, FEI, Hillsboro, OR, USA). Photographic
images of about 40 particles for each sample were analyzed by Image Pro plus 6.3 software
(Media Cybernetics, Rockville, MD, USA) to measure various particle shape descriptors, i.e., aspect
ratio, roundness, irregularity, and radius ratio. The aspect ratio means a ratio between major axis
and minor axis of ellipse equivalent to a particle; a perfect circle has an aspect ratio of 1. The radius
ratio represents ratio between maximum radius and minimum radius, and the max or min radius is a
maximum or minimum distance between each particle’s centroid position. The irregularity is a ratio
between the perimeter and the Feret diameter (the longest length of a particle); with an ideal ratio of π
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meaning a perfect circle. The roundness can be calculated by Equation (9). A circular particle will have
a roundness equal to 1, and the other shape will have a roundness greater than 1.

Roundness =
Perimenter

4×π×Area
(9)

2.3. Near Infrared Spectroscopy

The Antaris Target Online Near Infrared Sensor (Thermo Nicolet, Madison, WI, USA) equipped
with a semiconductor tunable light source (covering 5500–7500 cm−1) was used in the blending process
(see Figure 1). For on-line detection, the sensor was firmly mounted onto a flush top of the blend bin
(Wuhan Hengda Chang Machinery Equipment Co., Ltd., Wuhan, China) which was modified with a
sapphire window. The rotating speed of bins for both the pilot scale and the commercial scale was set
constant at 14 r/min. The position of the bin was continuously monitored. When the NIR sensor was
rotated between 170◦ and 190◦, the NIR sensor was triggered to collect the diffuse reflection spectra
through the sapphire window. The sample was scanned 8 times to obtain an average spectrum during
each rotation. A wireless access point enables successful communications between the computer and
the sensor via the 802.11 wireless Ethernet standard. The RESULT software (Thermo Nicolet, Madison,
WI, USA) used workflow controls to receive the spectral data and to synchronize data collection with
the bin position. The parameters of the NIR were set as follows: Log (1/R) was absorbance data format,
and the spectral scanning rang was within 7100–5500 cm−1. The pilot experiment with a 75 L bin
was carried out, and the resolution and magnification of NIR were, respectively, set to 8 cm−1 and
125. In the actual production process, a 3000 L bin was used. The magnification and resolution were,
respectively, set to 625 and 4 cm−1. The sequence NIR data files collected from time-based blending
experiments was achieved in the specified folder on the hard disk. The real-time monitoring of the
blending process as well as the detection of the blending endpoint was achieved by the adaptive
modeling algorithm.
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2.4. Principles of the Adaptive Modeling Algorithm

In this paper, a modified adaptive algorithm including three steps, i.e., dynamic data pretreatment,
process variation identification, and reliable homogeneity judgement, was proposed. The detailed
procedures of the adaptive algorithm are as follows.

Step 1: The NIR sensor is used to collect the spectral data along with the mixing process and the
data are subjected to real-time dynamic pretreatment.

S1-1: At time point h, all the raw near infrared data are combined into a matrix G (size m × n,
where m is the number of samples, and n is the number of spectral variables).

S1-2: The chemometric method, e.g., multiplicative scatter correction (MSC) or standard normal variate
transformation (SNV), is used to preprocess the spectral matrix G to obtain the matrix X (size m × n).

S1-3: At the time point h + 1 (or h + z, where z is an integer), the calculation process is repeated
from step S1-1.

Step 2: Two windows are established to simultaneously move on the preprocessed NIR data.
The data in one window (modeling window) are used to build the principal component analysis (PCA)
model and to set the control limit. The data in the other window (prediction window) are monitored
and the number of samples larger than critical value is counted.

S2-1: On the matrix X, two parallel sample matrices A (size w1 × n) and B (size w2 × n) are set,
where w1 is the number of (m − w1 − w2 + 1) to (m − w2) samples in matrix X, w2 is the number of
(m − w2 + 1) to m samples in matrix X, and m≥ (w1 + w2). The B matrix is used to build the PCA model:

B=TPT+E (10)

In Equation (10), the matrix T (size w2 × k) is the score matrix, the matrix P (n × k) is the loading
matrix, the matrix E (w2 × n) is the residual matrix, and k is number of principal components.

S2-2: Based on the PCA model, the critical value is set according to Equation (11):

Dcrit =
k(w2

2 − 1)

w2(w2 − k)
F(k,w2−k,α) (11)

In Equation (11), F(k,w2−k,α) is the F-distribution critical value at degrees of freedom k and w2 − k,
and α is the significance level.

S2-3: The sample data in the matrix A are projected in the principal component space in the
direction of the load P, and the score matrix Tnew (size w1 × k) of the matrix A is calculated:

Tnew = AP (12)

S2-4: The Mahalanobis distance di (i = 1, 2, 3, . . . , w1) for each sample in matrix A is calculated
using Equation (13):

di = (ti − mu)S−1(ti − mu)T (13)

where the vector ti (size 1 × k) represents the score vector of the sample i in the matrix T, mu is the
mean vector of the matrix B, and S is the covariance matrix of the matrix B. Comparing the values of
di with Dcrit, the number of atypical samples in matrix A is counted.

Step 3: Along with the proceeding of the mixing process, the number of atypical samples generated
at each time point is recorded and displayed in the graphical user interface (GUI). In order to enhance
the reliability of end-point detection, a lag time (LT) could be set. When the number of atypical
samples is kept at zero in the LT interval, the materials in the mixer are considered to reach the blend
homogeneous state.

Several advantages can be found in this modified adaptive algorithm. First, at the current
monitoring window, all previous NIR spectra are preprocessed to reflect the system dynamics in real
time. Second, the modelling window is situated behind the prediction window, since the former



Processes 2019, 7, 568 8 of 23

window is considered to contain more variation information than the latter window along with the
proceeding of mixing process. Third, the reliability of mixing endpoint detection is improved by setting
the LT reasonably.

2.5. Reference Analysis

To validate the reliability of the blending homogeneity detected by the online NIR monitoring
system, a stratified sampling plan was made. Immediately after the blending endpoint was found,
the blender was stopped by the programmable logic controller (PLC). Samples were taken by a thief
probe at 11 locations of the industrial bin. As shown in Figure 2, sampling locations 1, 2 and 3 stand
for the upper powder bed, sampling locations 4, 5 and 6 stand for the bin corner, sampling locations 7,
8 and 9 represent the middle layer of the powder bed, sampling site 10 represents the lower surface
of the powder bed and the tank blind angle, and sampling site 11 denotes the sampling site on the
axis of the powder bed. Figure 2 shows 11 sampling locations. The contents of APIs were detected by
an Agilent 1260 High Performance Liquid Chromatograph (Agilent, Santa Clara, CA, USA,) with a
UV detection scheme. The chromatographic conditions referred to used a 250 mm × 4.6 mm column
(Agilent Extend C-18, Agilent, Santa Clara, CA, USA,), and the column temperature was maintained at
25 ◦C. Other information, such as the mobile phase and the detection wavelength, are listed in Table
S1 (Supplementary Materials). All HPLC methods were validated in accordance with the Chinese
Pharmacopoeia (ChP 2015).
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2.6. Software

The homemade KRT software running on the MATLAB 2009a platform (MathWorks, Natick, MA,
USA) could realize all steps of adaptive algorithms and can be operated at the manufacturing site.
The partial least square (PLS) models were developed by SIMCA 13.0 software (Umetrics, Umea, Sweden).
An analysis of variance (ANOVA) was performed on SAS 8.0 software (SAS, Carey, NC, USA).

3. Results and Discussion

3.1. Physical Properties of Powder Materials

The measured 19 physical quality attributes for 22 NPPs and dextrin (material No. 23) are shown
in Table 2. All tested material properties were stored in the iTCM database [42]. The SEM images
of all materials are displayed in Figure 3 and Figure S1 (Supplementary Materials). This information
reflected different aspects of powder properties, such as particle shape, particle size, density, flowability
and stability.
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Table 2. The physical properties measured for 23 materials.

Number Da H MC Ic Ie α IH pf Iθ Dc Span t D10 D50 D90
Aspect
Ratio

Radius
Ratio Roundness Irregularity

1 0.47 16.23 6.70 31.60 0.67 43.83 1.46 52.04 0.002296 0.69 2.93 +∞ 4.746 18.950 60.30 1.21 1.44 1.04 2.89
2 0.44 21.42 4.71 18.69 0.42 33.05 1.23 55.13 0.001938 0.54 2.88 +∞ 4.425 17.243 54.00 1.25 1.66 1.19 3.10
3 0.13 23.22 7.04 39.47 2.92 49.95 1.65 68.86 0.000786 0.22 4.08 +∞ 3.564 12.663 55.69 1.26 1.74 1.09 2.89
4 0.39 19.90 7.36 34.50 0.89 42.66 1.53 49.35 0.002340 0.59 3.49 +∞ 4.945 20.337 75.88 1.34 2.79 1.29 2.93
5 0.37 17.79 3.41 30.16 0.81 36.31 1.43 75.41 0.000664 0.53 2.59 +∞ 3.670 11.647 33.88 1.33 1.95 1.16 2.91
6 0.51 20.62 8.39 31.16 0.61 38.29 1.45 42.78 0.003321 0.75 2.85 +∞ 4.787 24.477 74.48 1.48 1.98 1.22 2.81
7 0.44 24.54 5.36 21.86 0.50 39.31 1.28 74.73 0.000455 0.56 2.24 +∞ 4.746 12.037 30.68 1.30 1.67 1.08 2.88
8 0.43 39.07 7.52 19.82 0.47 38.60 1.25 78.60 0.000264 0.53 2.29 +∞ 4.425 10.987 28.70 1.22 1.55 1.07 2.95
9 0.35 23.66 5.64 29.44 0.84 59.08 1.42 49.41 0.002416 0.50 2.29 +∞ 3.564 24.167 62.29 1.36 1.85 1.20 2.98

10 0.44 21.07 5.77 21.09 0.48 39.62 1.27 56.19 0.002065 0.56 3.84 29.47 4.945 13.437 55.16 1.24 1.42 1.02 2.88
11 0.33 30.63 8.89 42.93 1.29 50.61 1.75 71.36 0.000390 0.58 2.21 +∞ 3.670 13.017 32.36 1.63 2.32 1.27 2.77
12 0.55 25.19 7.53 31.75 0.58 44.72 1.47 45.25 0.002769 0.81 2.57 +∞ 4.787 22.367 63.13 1.45 1.93 1.15 2.81
13 0.64 16.86 3.10 35.00 0.55 45.29 1.54 43.12 0.002651 0.98 3.90 +∞ 3.602 25.040 103.13 1.57 1.99 1.22 2.71
14 0.65 20.23 3.39 35.76 0.55 47.80 1.56 32.88 0.003975 1.01 2.68 +∞ 3.292 39.083 108.83 1.43 1.84 1.20 2.84
15 0.52 15.68 5.45 40.89 0.78 55.25 1.69 25.97 0.003418 0.88 2.48 +∞ 6.822 48.543 127.80 1.73 2.76 1.37 2.74
16 0.37 37.27 8.53 36.06 0.97 51.35 1.56 75.44 0.000492 0.58 2.44 +∞ 3.487 11.483 31.60 1.36 1.79 1.09 2.82
17 0.44 22.40 2.29 41.36 0.94 59.02 1.71 56.54 0.002176 0.75 3.86 +∞ 3.557 15.827 60.96 1.48 2.30 1.10 2.76
18 0.27 22.08 7.79 44.07 1.62 59.14 1.79 73.24 0.000951 0.49 3.87 +∞ 5.181 9.632 40.87 1.32 1.74 1.11 2.88
19 0.53 23.65 7.50 31.22 0.59 47.44 1.45 43.90 0.003109 0.77 2.56 +∞ 3.517 23.407 65.26 1.32 1.78 1.10 2.88
20 0.15 27.51 6.72 47.75 3.15 58.23 1.91 99.71 0.000000 0.29 1.64 +∞ 4.349 6.113 12.56 1.37 2.29 1.24 2.91
21 0.62 17.61 7.03 19.28 0.31 34.97 1.24 35.17 0.003842 0.76 2.30 +∞ 7.529 27.903 71.75 1.15 1.32 1.04 3.00
22 0.53 39.57 7.54 37.42 0.71 51.05 1.60 88.27 0.000000 0.84 2.62 6.83 3.489 7.460 21.25 1.49 2.12 1.20 2.83
23 0.45 6.05 7.44 38.04 0.85 54.31 1.61 98.10 0.000000 0.72 0.88 +∞ 6.476 11.723 16.85 1.21 1.27 1.03 2.89



Processes 2019, 7, 568 10 of 23

Processes 2019, 7, x FOR PEER REVIEW  9 of 23 

 

particle size distribution. The values of pf were large and the values of Iθ were extremely small, 

indicating that the fine particle content (FPC) in these materials were high. The D50 values of these 

materials were within a range of 6.11–48.54 μm. Except for Scrophulariae Radix (No. 14) and 

Chuanxiong Rhizoma (No. 15), the D50 values of all powders were less than 30 μm. They can be 

classified into Geldart’s group C powders that are cohesive. The range of D90 was within 12.56–127.80 

μm, and only three materials’ D90 values were larger than 100 μm. This indicates that most powders 

in the experiment had cohesive properties. 

 

Figure 3. SEM photomicrographs of natural plant powders and dextrin (No. 1–11 are consistent with 

Table 1, and No. 12 is the dextrin image). 

 

Figure 3. SEM photomicrographs of natural plant powders and dextrin (No. 1–11 are consistent with
Table 1, and No. 12 is the dextrin image).

For the particle size, the D10, D50 and D90 values of NPPs powders were relatively small compared
to that of frequently used pharmaceutical excipients in the report [42,43]. Except for dextrin (Span value
equal to 0.88), the Span values of NPPs were large, indicating that these materials had a wide particle
size distribution. The values of pf were large and the values of Iθ were extremely small, indicating that
the fine particle content (FPC) in these materials were high. The D50 values of these materials were
within a range of 6.11–48.54 µm. Except for Scrophulariae Radix (No. 14) and Chuanxiong Rhizoma
(No. 15), the D50 values of all powders were less than 30 µm. They can be classified into Geldart’s
group C powders that are cohesive. The range of D90 was within 12.56–127.80 µm, and only three
materials’ D90 values were larger than 100 µm. This indicates that most powders in the experiment
had cohesive properties.

With respect to density properties, the fluctuations of Da and Dc values were relatively large.
Additionally, there was a strong linear relationship between Da and Dc (R2 = 0.87). The values of
Ie varied greatly from 0.31 to 3.15, which meant that different voids may be formed during powder
accumulation. The values of IH had a relatively wide range (1.23–1.91), and the IC values (18.69–47.75)
changed obviously. Both IH and IC are qualitative indicators of the cohesiveness of granular materials.
In accordance with Geldart et al. [44], particles with IH values larger than 1.4 were classified into group
C powders. From the perspective of IH, it was found that 18 batches of powders in the experiment
were cohesive powders. According to the E.P. 9.0, when the IH was greater than 1.35 or the IC value
was greater than 26, the flowability of powder was considered poor. Based on the experimental
data and pharmacopoeia standards, the flow properties of most materials in the experiment were
generally poor. As revealed by Capece et al. [45,46], the inter-particle cohesiveness correlated well to
the powder flowability. Poor flowability indicated greater inter-particle cohesiveness. However, the IH
values of processed Fructus Xanthii (No. 2) and Mume Fructus (No. 21) were less than 1.25, and the
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corresponding IC values were the smallest and the second smallest, respectively. This shows that the
two powders behave more like group A powders, which are mildly cohesive. The same phenomenon
was also observed by Berthiaux et al.—some powders like talc, whose cohesion was smaller than
expected, cannot be classified easily with the comparison between cohesion and the Carr index [47].
The reason may be that the Geldart’s classification was only based on particle size and density, and the
powder flowability was influenced by a variety of material properties including particle shape and
surface compositions.

The flow descriptors of all materials were directly assessed by the flow time (t”) and the angle of
repose (α). Angle of repose values ranged between 33.05◦ and 59.14◦. Except for Glycyrrhizae Radix
et Rhizome Praeparata cum Melle (material No. 10) and Cirsii Herba (material No. 22), flow time (t”),
the values of all powders tended to infinity because they could not freely flow out from the funnel.
According to the E.P. 9.0, if the angle of repose is more than 46◦, the flow performance is poor. However,
for Paeoniae Radix Alba (material No. 1), Lonicerae Japonicae Flos (material No. 4), processed Semen
Plataginis (material No. 5), Alismatis Rhizoma (material No. 6), Belamcandae rhizome (material No. 12)
and Radix Paeoniae Rubra (material No. 13), the IC and IH values were, respectively, more than 26 and
1.35, and their α values were lower than 46◦, indicating that the same powder may show different
flowability with different evaluation methods. This result demonstrate that no single parameter can
completely understand flow behavior [48].

With respect to the particle shape factors, it can be seen form Table 2 that the roundness values
were in a range of 1.02–1.37. The roundness values of most powders were close to 1, indicating
that the particles approached a circle, while the rest of the powders were not round. The values of
the aspect ratio were within the range of 1.15–1.73, and radius ratios fluctuated from 1.27 to 2.79,
indicating that some particles were close to circular and some had certain elongation. The descriptors
of irregularity are ranged from 2.71 to 3.10, showing that the particles’ morphology was different to a
certain extent. It is especially noteworthy that the irregularity of processed Fructus Xanthii (3.10) and
Mume Fructus (3.00) were closest to π, indicating that they were closer to the circle. This may be a
reason for their good flowability. Additionally, it was clear from the SEM image (Figure 3 and Figure S1
in Supplementary Materials) that the particles were of different sizes, and this could be confirmed
by particle size distribution of these powders. Though these particles still exhibited inhomogeneous
shapes, there were almost no acicular or sharp-edged structures. In particular, primary particles of
dextrin (No. 12 in Figure 3) could be agglomerated to larger unit, which may have altered their size
and shape.

For the stability factor, the MC values were in a range from 2.29 to 8.89. By contrast, the range of
hygroscopicity (H) was extremely large from 6.05 to 39.57. The H values of all NPP materials were
greater than 15%, indicating they were very hygroscopic according to the E.P. 9.0 standards in Section
5.11. The reason for the high hygroscopicity of the NPPs may be that they contain a lot of hydrophilic
compounds, such as glycosides, organic acids, carbohydrates, and amino acids [49].

3.2. Principle Component Analysis of Physical Properties

In order to discuss the relationship among physical properties of various materials, a PCA model
was established, and a detailed explanation can be seen below.

First principal component (PC1): Descriptors of the particles size and density. The first PC
explained 35.0% and predicted 7.82% of the variability in the properties of the raw materials and
excipient. Figure 4 shows that particle size related parameters such as D10, D50, D90 and Iθ are located
on the right side of the loading scatter plot. The pf is in the opposite direction. A powder with a high
FPC will cause D10, D50, D90 and Iθ to decrease. The density related descriptors such as Da and Dc had
positive loading values to the first PC, revealing that powder with high density may have reduced the
FPC. Figure 4 illustrates that most powder parameters not only changed with the PC1 but also with the
second principal component (PC2). Nevertheless, the Iθ, pf, H and MC are rather unique parameters
that combined a strong loading for PC1 with a neutral loading for PC2.
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PC2: Descriptors of the particles shape and flow. The second PC explained 27.0% and predicted
28.3% of the variability in the properties of the raw materials and excipient. The shape-related
descriptors are displayed on the top right side in Figure 4, indicating that the radius ratio, the aspect
ratio and the roundness exhibited moderately positive PC1 loadings and high positive PC2 loadings.
As expected, the irregularity descriptor was located at the opposite direction of the loading scatter plot,
i.e., the bottom left corner. Overall, the location of irregularity, other shape and flow-related parameters
on the loading scatter plot demonstrated common pharmaceutical knowledge: Low irregularity meant
that the particles were approximately spherical, and more spherical particles always flowed better.

The raw materials can be clustered in the score scatter plot if they possess similar properties.
For example, Angelica sinensis (No. 20) and Dipsaci Radix (No. 21) in Figure 5 are located in the
completely opposite direction, because the Ie values of the two powders are the maximum and the
minimum, respectively. It can be seen from Figure 5 that the six batches of powders (No. 1–6) used
in the pilot experiment are evenly distributed among materials used in the industrial experiment,
indicating that the adaptive algorithm optimized by these six batches of powders has the potential of
being transferrable to other NPP–dextrin binary systems.
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Figure 5. The score plot of PC1 and PC2 (blue ellipse: Hotelling’s T2 (99%). No. 1–22 are consistent
with Table 1. No. 23 is dextrin. The red triangles represent the materials used in the pilot experiment,
and green dots represent the materials used in the industrial production).

3.3. Pretreatment of NIR Spectra

Figure 6a shows the original NIR spectra for the dextrin and six kinds of NPPs used in the pilot
experiment. It can be seen that the near infrared absorption spectra of the natural plant powders were
different from the dextrin, indicating that the NIR sensor has the potential ability to distinguish the
NPP and the excipient. In the pilot experiment, 840 NIR spectra for each sample blend were obtained
during the mixing process, which lasted for one hour. Figure 6b shows changes of NIR spectra in
mixing process of Lonicerae Japonicae Flos extract powder-dextrin. The zoom of a specific spectral
region (7500~7100 cm−1) revealed that the NIR absorption spectrum was not smooth and appeared
to fluctuate because of the large noise. Consequently, this regional band was cutoff in the following
analysis. Then, the NIR spectra were preprocessed by the SNV method to eliminate the influence of
the particle scattering and optical path difference, which was conductive to the optimization of the
parameters of the adaptive algorithm.
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3.4. Parameters Optimization of the Adaptive Algorithm

Before industrial applications of the NIR spectroscopy, the parameters involved in the adaptive
algorithm were optimized in order to make the algorithm sensitive toward process normal variations
and robust enough toward signal disturbances. The significance level α, which is the F test level in the
Dcrit control limit calculation formula, was set to 0.05 according to prevailing statistical considerations.
Next, the number of principal components k and the window size w were fine-tuned. Six pilot blending
experiments using, respectively, NPP materials No. 1–6 in Table 1 were carried out to investigate
impacts of the window size and the principal component number on the performance of the adaptive
algorithm. Each experiment was run for one hour, and a total of 840 NIR spectra were obtained.
At given values of w and k, the total number of atypical samples during the blending process were
recorded. By changing the values of w and k, a response surface for the total number of atypical
samples can be plotted, as shown in Figure 7. All the six binary powder systems exerted a similar
trend, in that the total number of atypical samples grew rapidly with a reduction of the number of
principal components and an increase of the window sizes.
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Figure 7. The occurrences response surface of plot of (a) Lonicerae Japonicae Flos; (b) processed semen
plataginis; (c) Paeoniae Radix Alba; (d) processed Fructus xanthii; (e) processed toasted almond; (f) Alismatis
Rhizoma.

Generally speaking, the modeling window should be wide enough to provide the best possible
representation of the changes in all stages of the mixing process [50]. The NIR datasets in the modeling
window were then concentrated by the principal component analysis into the first few principal
components, which could achieve a high signal to noise ratio. Besides, the combination of w and k with
few atypical samples was favored. For the six experiments, the cumulative contribution rate of the two
first principal components was more than 99.9%, which means that two first principal components
could explain most of variations of the data. Consequently, the optimal number of principal component
k of the adaptive algorithm was set to 2. As for the window size (w), it could be found that when
the window size was 1–5, as the numbers of atypical samples were too small to reflect the mixing
dynamics. When the window sizes exceed 15, the total number of occurrence samples dramatically
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increases. Considering the above criteria for parameters optimization, the window size (w) was set to
10. The optimal settings were combinations with few total atypical samples and a wider windows size.

3.5. Real Time Detection of the Blending Homogeneity during Industrial Production

With the optimized parameters w being set to 10 and k being set to 2, the adaptive algorithm was
utilized to monitor the industrial blending process of natural plant granules in real time. Since the
mixing bin was 3000 L, the lag time was set to 300 s. If the number of atypical samples continued to be
0 during this lag time, a high assurance for accurate detection of the homogeneity would be provided.

Sixteen kinds of NPPs, i.e., No. 7 to the No. 22 in Table 1, were blended with dextrin in the
GMP-certified room. Figure 8 shows an example of the monitoring results from the mixing process of
Mume Fructus extract and dextrin. At the beginning of the mixing stage, the atypical samples were
rapidly raised then promptly reduced to 0, indicating that the NPP and dextrin were mixed briskly
and reached the homogeneous state. At this stage, the powder may have been in the action of strong
convection and may have overcome the hierarchical trend caused by material property differences.
With the mixing process progressing, the number of occurrences started to fluctuate within a small
range, and the mixed powder at this stage may be in a state of mixing and segregation due to the
random diffusion of the powder particles. Finally, in the late stage of the mixing process, the number of
overrun samples continued to be 0 within the lag time, indicating that the NPP and dextrin reached the
homogeneous state. The stop time for the blender was 33.47 min, and the corresponding endpoint time
was 28.47 min. The on-line monitoring results of the other fifteen materials can be seen from Figure S2
in Supplementary Materials. The corresponding endpoint times are listed in Table 3. It can be seen that
the mixing time of the Ecliptae herba extract powder and dextrin was the longest (36.07 min), while that
of Cibotii Rhizoma extract powder was the least (2.60 min).
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Table 3. ResultsofonlineendpointdetectionandofflineANOVAanalysis for16batchesof industrialproduction.

Material
No. Formula Granule

Time of
Endpoint

(min)

Mean Square
(Between
Group)

Mean Square
(Within
Group)

p Value

7 Lonicerae Japonicae Flos 2.77 0.51 0.55 0.53
8 Ecliptae Herba 36.07 4.2 × 10−4 7.0 × 10−5 2.0 × 10−4

9 Cibotii Rhizoma 2.60 1.4 × 10−4 2.7 × 10−4 0.86

10 Glycyrrhizae radix et rhizome
Praeparata cum melle 4.33 2.9 2.0 0.23

11 Alismatis Rhizoma 9.77 1.8 × 10−4 9.7 × 10−5 0.11
12 Belamcandae Rhizoma 8.83 2.0 × 10−4 1.0 × 10−4 0.081
13 Radix Paeoniae Rubra 17.87 1.3 1.5 0.56
14 Scrophulariae Radix 4.57 7.6 × 10−5 5.2 × 10−5 0.22
15 Chuanxiong Rhizoma 3.20 3.3 × 10−5 2.1 × 10−5 0.18
16 Taraxaci Herba 13.30 2.0 × 10−4 3.3 × 10−5 2.0 × 10−4

17 Processed Radix Polygalae 9.03 0.028 0.023 0.34
18 Rhei Radix Et Rhizoma 4.77 0.011 0.0077 0.24
19 Angelica sinensis 6.33 0.019 0.023 0.62
20 Dipsaci Radix 10.53 4.9 2.7 0.12
21 Mume Fructus 28.47 4.2 47 0.99
22 Cirsii Herba 12.47 3.4 × 10−3 7.2 × 10−3 0.89

In order to verify the accuracy of the detected homogeneity, samples were taken at 11 locations
inside the mixing bin by thief sampling immediately after the blender was stopped, according to
the predefined sampling protocol. Each location was sampled three times, and the API content of
33 samples were determined by HPLC. An analysis of variance (ANOVA) was used to determine
whether the mean contents of 11 sampling sites were different. The mean square between group
(MSb) and the mean square within group (MSw) were calculated to represent the variation between
sample means and variation within the samples, respectively. For the one-way ANOVA, the ratio
of the between-group variability to the within-group variability followed a probability distribution
known as an F-distribution. If the probability (p) was low enough, the null hypothesis that all the
group means are equal was rejected using the common significance level of 0.05. The ANOVA results
are provided in Table 3. Except for material No. 8 and material No. 16, the p values were all larger than
0.05, revealing that there was no difference among the mean content and that the binary powder system
reached a homogeneous state. As for material No. 8 and material No. 16, it could be seen that the MSw

values were close to zero and were therefore sensitive to small changes in the MSb values. The relative
standard deviation (RSD) values of the mean content of 11 sampling sites were 1.7% and 0.67% for
material No. 8 and material No. 16, respectively, indicating that the between-group variability was
small (<3.0%) and the uniformity was acceptable.

3.6. Effect of Powder Properties on Mixing Process

The endpoint time is a measure of the difficulty degree to which the powder system reached a
homogeneous state. The longer the mixing time is, the more difficult it is mixed. Through correlation
analysis, it could be seen that the relationship between mixing time and proportion of added dextrin
was extremely poor (R2 < 0.01). Therefore, the factors affecting the mixing time were further explored
from the perspective of the physical properties of powdered materials. Because cohesive powders can
hardly flow freely, the flow time (t”) was not used as an independent variable to develop a model.
The independent variables matrix was composed of 16 samples and numeric difference of 18 physical
parameters (Da, H, MC, IC, Ie, α, IH, Iθ, pf, Dc, aspect ratio, radius ratio, roundness, irregularity, Span,
D10, D50, and D90) between the natural plant powder and the dextrin. Taking Lonicerae Japonicae
Flos extract powder as an example, the numeric difference of bulk density (Da) could be obtained
by calculating the difference of Da between NPP (Da = 0.446) and dextrin (Da = 0.439), and then by
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computing the absolute value (0.007). For ease of understanding, the independent variables matrix
of physical properties difference is shown in Table S2 (Supplementary Materials). The dependent
variables matrix was constructed from the endpoint time of 16 blends detected by NIR with the
adaptive algorithm. Subsequently, a PLS model was established to correlate the independent variables
and the response variable. From Table 4, it can be seen that the first three latent factors can explain
83.9% of the Y-variation (30.4%, 43.4%m and 10.1%). Each PLS factor can explain 33.4%, 10.6% and
20.1% of the X-variation.

Table 4. The result of the PLS regression model.

Components R2
xcum (%) R2

Ycum (%) Q2
Ycum (%)

1 33.4 30.4 −4.49 × 10−2

2 44 73.8 10.6
3 64.1 83.9 30.3

A PLS biplot (Figure 9) was drawn to jointly visualize all samples and all variables. A significant
correlation of variables can be suggested when variables are projected between the outer circle (r = 1)
and the middle circle (r = 0.75). There was a strong relationship among flowability variables α, IH and
IC, among the aspect ratio, the radius ratio and roundness and among variables D50, D90, pf and Iθ.
Moreover, it can be seen from Figure 9 that α, IH, and IC are located near the mixing time, indicating that
the differences of flowability properties were positively correlated with the mixing time. The greater the
differences of these properties were, the longer the mixing time was needed. The critical raw material
attributes (CMAs) influencing the mixing time were investigated by the variable importance in the
projection (VIP) index. As shown in Figure 10, irregularity, α, H, and IC have VIP values larger than 1.
The error bar of the hygroscopicity passed through zero, reflecting that the influence of H on the mixing
process was uncertain. Therefore, irregularity, αand IC were identified as CMAs.
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blue and red circles represent the inner circle (r = 0.5), middle the circle (r = 0.75) and the outer circle
(r = 1), respectively.
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Both α and IC were related to the flowability of powders; the quite different flow performance of
dextrin and NPP means that the mixing process involved in the movement of high and low cohesive
particles. In the blending process, high cohesive particles have more contact with other particles than
those of low cohesion [51], causing a low particle velocity. This can seriously affect the movement
between powders, leading to low particle diffusion and resulting in a longer mixing time. Among 16
binary powders, natural plant granules of Ecliptae Herba (No. 8) and Mume Fructus (No. 21) have the
longest mixing times. It could be seen from Table 2 that the flowability indexes of the two materials
were better than that of dextrin. This meant that the cohesion of dextrin may be stronger than that of
two materials, and dextrin was hard to be de-agglomerated, making it difficult for dextrin to evenly
distribute in binary powders. As for Radix Paeoniae Rubra (No. 13), Scrophulariae Radix (No. 14) and
Chuanxiong Rhizoma (No. 15), the differences in the flowability indexes were small—hence, the mixing
times were smaller than that of the samples No. 8 and 21. However, due to the biggest difference in the
irregularity for the sample No. 13, the mixing time was consequently longer than that of the samples
No. 14 and 15.

In the two batches binary mixtures for Alismatis Rhizoma (No. 11) and Rhei Radix Et Rhizoma (No. 18),
there was no significant difference in flowability performance. However, the irregularity difference
of the two systems was quite different in the Table S2 (Supplementary Materials), which resulted in
the mixing time of sample No. 11 (9.77 min) being longer than that of Sample No. 18 (4.77 min).
This may be due to fact that the shape of the particles is related to the flowability [52,53]. An irregular
shape leads to particle mutual occlusion, hindering particle movement. This is not conductive to the
rearrangement and the diffusion of particles.
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Additionally, it can be seen from Table S2 in Supplementary Materials that the No. 20 sample had
the largest Da difference. This indicates that higher bulk density ratios may lead to segregation [23],
which will affect the mixing process, resulting in prolonged mixing time.

As for Taraxaci Herba (No. 16) and Cirsii Herba (No. 22), the contribution plots for two binary
mixtures are shown in Figure 11. In Figure 11a,b, the dominating bars exhibit the H parameter deviates
most from the model average, which indicates that the hygroscopicity of the powder can affect mixing
time. Hygroscopic powders can increase cohesion and reduce flowability by adsorbing moisture in
the air [54], leading to longer mixing time. These results reflected that the mixing process of cohesive
powder systems was complex, and a distinction should be made between the primary and secondary
influencing factors for a particular cohesive powder mixture.
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4. Conclusions

In this paper, the blending process in the preparation of diverse natural product powders with
typically cohesive characteristics was taken as the research object. The MEMS NIR sensor combined with
the modified adaptive modeling algorithm was successfully used to detect the blending homogeneity
of cohesive powders during their industrial production. Compared with the previous fixed mixing
time during the production, the online MEMS NIR spectroscopy technique can significantly reduce
mixing time, improve mixing efficiency, and save production costs.

The innovation of this work is that it investigates the critical material attributes affecting the
mixing time by developing an empirical relationship. It was found that the particle shape and powder
flowability descriptors play a significant role in mixing cohesive powders. Thereby, decreasing the
difference of flowability or particle shape between powders would be beneficial in improving blending
processability. In future studies, more materials could be used to verify the accuracy of the empirical
model, and numerical simulation studies could be conducted to understand the mixing mechanism of
cohesive powders. Additionally, this paper provided a reference for other types of miniaturized NIR
spectrometer to be applied in the pharmaceutical blending process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/9/568/s1.
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