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Abstract: In this article, a numerical study of a one-dimensional, volume-based batch crystallization 
model (PBM) is presented that is used in numerous industries and chemical engineering sciences. 
A numerical approximation of the underlying model is discussed by using an alternative 
Quadrature Method of Moments (QMOM). Fines dissolution term is also incorporated in the 
governing equation for improvement of product quality and removal of undesirable particles. The 
moment-generating function is introduced in order to apply the QMOM. To find the quadrature 
abscissas, an orthogonal polynomial of degree three is derived. To verify the efficiency and accuracy 
of the proposed technique, two test problems are discussed. The numerical results obtained by the 
proposed scheme are plotted versus the analytical solutions. Thus, these findings line up well with 
the analytical findings. 

Keywords: volume-based population balance model with fines dissolution; quadrature method of 
moments; orthogonal polynomials 

 

1. Introduction 

Population balance models (PBMs) show a significant role in different areas of science and 
engineering. These models have numerous applications in high-energy physics, geophysics, 
biophysics, meteorology, pharmacy, food science, chromatography, chemical engineering, civil 
engineering, and environmental engineering. These models are used in the process of cell dynamics, 
polymerization, cloud formation, and crystallization. In biophysics, these models are concerned with 
population of various kinds of cells. Population balance models are also used in the formation of 
ceramics mixtures and nanoparticles which have a lot of applications. 

In 1964, Hulburt & Katz [1] were first to discuss the PBMs in chemical engineering. A detailed 
description of these models is given in [2]. The main components in the models are the process of 
nucleation, growth, aggregation, breakage, inlet, outlet, growth, and dissolution. The mathematical 
model of population balance equations are partial integro-differential equations (PIDEs). Analytical 
solutions of these PIDEs are very rare except for a few simple cases. Therefore, researchers are 
interested in developing numerical solutions for these equations. Numerous numerical methods are 
accessible in the literature to solve certain kinds of PBMs; see, for example, [3–11]. 

The Quadrature Method of Moments (QMOM) for solving the governed models was first 
introduced by McGraw [12]. The direct QMOM was proposed by Fan et al. [4]. In addition, a new 
QMOM has been proposed by Gimbun [5]. Qamar et al. [13] introduced an alternative QMOM for 
solving length-based batch crystallization models telling crystals nucleation, size-dependent growth, 
aggregation, breakage, and dissolution of small nuclei below certain critical size. Safyan et al. [14] 
followed the technique of [13] for solving volume-based batch crystallization model nucleation, size-
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dependent growth, aggregation, breakage. In this article, the QMOM is used to solve volume-based 
batch crystallization models with fines dissolution. The fines dissolution unit improves the product 
quality and removes unwanted particles. 

In the proposed method, orthogonal polynomials, taken from the lower-order moments, are 
used to find the quadrature points and weights. For confirming accuracy of the scheme, a third-order 
orthogonal polynomial, employing the first six moments, was chosen to estimate the quadrature 
points (abscissas) and equivalent quadrature weights. Hence, it was essential to solve at least a six-
moment system (i.e., 0, …, 5). This type of polynomial provides a three-point Gaussian quadrature 
rule which usually produces precise output for polynomials of degree five or less. The expression for 
the preferred orthogonal polynomial can be derived analytically and the mandatory number of 
moments rises with order of polynomial. It is important to mention that the calculation of six 
moments to generate each time the third-order polynomial is compulsory. However, the technique 
itself is not limited to the calculation of every listed number of moments. The calculation of additional 
moments is conducted by adding ordinary differential equation. 

This article is divided into two parts: In the first part, the mathematical model of volume-based 
Population Balance Equation (PBE) with fines dissolution is presented. In the second part, the 
proposed QMOM is derived for PBEs. Furthermore, the mathematical outcomes of QMOM are 
compared with the analytical outcomes that are accessible in literature.  

2. Materials and Methods  

Suppose 𝑢ௗ represents the number density function, then a general PBE is given by [1,2]:  

d p p d p
nuc p agg p break p diss p

p
Nucleation-term Aggregation-term Breakage-term Dissolution-term

Growth-term

u (T,V ) [G(T,V )u (T,V )]
Q (T,V ) Q (T,V ) Q (T,V ) Q (T,V )

T V
± ±∂ ∂

= − + + + +
∂ ∂    


 

𝑢ௗ൫0, 𝑉௣൯ = 𝑢ௗ଴൫𝑉௣൯     (𝑇, 𝑉௣) ∈ 𝑅ାଶ  

(1) 

where ℝା = (0, ∞). The variable 𝑇 represents the time and 𝑉௣ may be size, length, or composition. 
In this article, it represents the particle volume. In the above equation, each term has its specific 
definition. These terms are given by  

agg p agg p agg pQ (T,V ) B (T,V ) D (T,V )± = −  (2) 

where 

𝐵௔௚௚൫𝑇, 𝑉௣൯ = 12 න 𝛽൫𝑇, 𝑉௣ − 𝑉௣ᇱ, 𝑉௣ᇱ൯𝑢ௗ
௏೛

଴ ൫𝑇, 𝑉௣ − 𝑉௣ᇱ൯𝑢ௗ(𝑇, 𝑉௣ᇱ)𝑑𝑉௣ᇱ  

and 

𝐷௔௚௚൫𝑇, 𝑉௣൯ = න 𝛽൫𝑇, 𝑉௣, 𝑉௣ᇱ൯𝑢ௗஶ
଴ ൫𝑇, 𝑉௣൯𝑢ௗ(𝑇, 𝑉௣ᇱ)𝑑𝑉௣ᇱ  

Here, 𝐵௔௚௚(𝑇, 𝑉௣) represents the birth of particles of volume 𝑉௣ resulting for amalgamation of 
two particles with respective volume 𝑉௣ᇱ  and 𝑉௣ − 𝑉௣ᇱ,  where 𝑉௣ᇱ ∈ (0, 𝑉௣)  and 𝐷௔௚௚(𝑇, 𝑉௣)  is the 
death of particles, describing the decrease in particle volume 𝑉௣ by aggregation with other particles 
of any volume. The aggregation kernel 𝛽൫𝑇, 𝑉௣, 𝑉௣ᇱ൯ is the rate at which aggregation of two particles 𝑉௣ and 𝑉௣ᇱ produces a particle volume 𝑉௣ + 𝑉௣ᇱ. 
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break p break p break pQ (T,V ) B (T,V ) D (T,V )± = −  (3) 

where 

𝐵௕௥௘௔௞൫𝑇, 𝑉௣൯ = න 𝑏൫𝑇, 𝑉௣, 𝑉௣ᇱ൯𝑆ஶ
௏೛ ൫𝑉௣ᇱ൯𝑢ௗ(𝑇, 𝑉௣ᇱ)𝑑𝑉௣ᇱ  

and  

break p p d pD (T,V ) S(V )u (T,V )=   

Here, 𝐵௕௥௘௔௞(𝑇, 𝑉௣) represents the birth of new particles during the breakage process and the 
breakage function 𝑏൫𝑇, 𝑉௣, 𝑉௣ᇱ൯ is the probability density function for the formation of particle volume 𝑉௣  from particle volume 𝑉௣ᇱ , whereas, 𝐷௕௥௘௔௞(𝑇, 𝑉௣)  is the death of particles, and 𝑆൫𝑉௣ᇱ൯  is the 
selection function describing the rate at which the particles are selected to break.  

𝑄ௗ௜௦௦൫𝑇, 𝑉௣൯ = 𝑉ሶ𝑉௖ ℎ൫𝑉௣൯𝑢ௗ(𝑇, 𝑉௣) (4) 

𝑄ௗ௜௦௦൫𝑇, 𝑉௣൯ represents the dissolution term, 𝑉௖ is the volume of crystallizer, 𝑉ሶ  is the volumetric 
flow rate from the crystallizer to dissolution unit, ℎ൫𝑉௣൯  is the dissolution function describing 
dissolution of small particles below some critical size. The population balance equation can be 
simplified through introducing the moment function. The 𝑘௧௛ moment of the population density 
function is mathematically written in the form: 

k
k p d p p

0

m (T) V u (T,V )dV
∞

=   (5) 

The first and second moments 𝑚଴(𝑇),  𝑚ଵ(𝑇)  denote particle population and volume, 
respectively, at any instant  𝑇. Multiply 𝑉௣௞ to left- and right-hand side of Equation (1) and at that 
moment integrate it over the volume 𝑉௣, so we obtain the following equation: 

k
growth p nucleation p aggregation p breakage p dissolution p

dm (T) G (T,V ) Q (T,V ) Q (T,V ) Q (T,V ) Q (T,V )
dT

= + + + +  (6) 

where 

p d pk
growth p p p

p0

[G(T,V ) u (T,V )]
G (T,V ) V dV

V

∞ ∂
=

∂   

k
nucleation p p nuc p p

0

Q (T,V ) V Q (T,V )dV
∞

=    

aggregation p agg p agg pQ (T,V ) B (T,V ) D (T,V )= −   

The aggregation terms agg pB (T,V )  and agg pD (T,V )  are mathematically defined as  
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𝐵௔௚௚തതതതതത൫𝑇, 𝑉௣൯ = 12 න 𝑉௣௞ஶ
଴ න 𝛽൫𝑇, 𝑉௣ − 𝑉௣ᇱ, 𝑉௣ᇱ൯𝑢ௗ

௏೛
଴ ൫𝑇, 𝑉௣ − 𝑉௣ᇱ൯𝑢ௗ(𝑇, 𝑉௣ᇱ)𝑑𝑉௣ᇱ𝑑𝑉௣  

𝐷௔௚௚തതതതതത൫𝑇, 𝑉௣൯ = න 𝑉௣௞ஶ
଴ 𝑢ௗ(𝑇, 𝑉௣) න 𝛽൫𝑇, 𝑉௣, 𝑉௣ᇱ൯ஶ

଴ 𝑢ௗ(𝑇, 𝑉௣ᇱ)𝑑𝑉௣ᇱ𝑑𝑉௣  

breakage p break p break pQ (T,V ) B (T,V ) D (T,V )= −   

whereas break pB (T,V )  and break pD (T,V )  are birth and death functions because of breakage term and 
are given by 

𝐵௕௥௘௔௞തതതതതതതത൫𝑇, 𝑉௣൯ = න 𝑉௣௞ஶ
଴ න 𝑏൫𝑇, 𝑉௣, 𝑉௣ᇱ൯𝑆ஶ

௏೛ ൫𝑉௣ᇱ൯𝑢ௗ(𝑇, 𝑉௣ᇱ)𝑑𝑉௣ᇱ𝑑𝑉௣  

k
break p p p d p p

0

D (T,V ) V S(V ) u (T,V )d V
∞

=    

𝑄ௗప௦௦௢௟௨௧ప௢௡തതതതതതതതതതതതതത൫𝑇, 𝑉௣൯ = 𝑉ሶ𝑉௖ න 𝑉௣௞ℎஶ
଴ ൫𝑉௣൯𝑢ௗ(𝑇, 𝑉௣)𝑑𝑉௣  

Due to aggregation, the upper limit in the birth function is not infinity; therefore, we cannot 
apply quadrature method of moment for this integral. To apply the QMOM, we have to convert the 
upper limit to infinity. Here, we introduce a Heaviside step function 𝐻(𝑉௣ − 𝑉௣ᇱ) to solve the integral 
such that 𝐻൫𝑉௣ − 𝑉௣ᇱ൯ = 0 when 𝑉௣ − 𝑉௣ᇱ < 0 and 𝐻൫𝑉௣ − 𝑉௣ᇱ൯ = 1 otherwise. As a result, we will find 
the limits of integration over 𝑉௣ᇱ from ൫0, 𝑉௣൯ to (0, ∞). Thus, by applying it to the birth function, we 
obtain the following equation: 12 න 𝑉௣௞ஶ

଴ 𝑑𝑉௣ න 𝐻൫𝑉௣ − 𝑉௣ᇱ൯𝛽൫𝑇, 𝑉௣ − 𝑉௣ᇱ, 𝑉௣ᇱ൯𝑢ௗஶ
଴ ൫𝑇, 𝑉௣ − 𝑉௣ᇱ൯𝑢ௗ൫𝑇, 𝑉௣ᇱ൯𝑑𝑉௣ᇱ

= 12 න 𝑢ௗ൫𝑇, 𝑉௣ᇱ൯𝑑𝑉௣ᇱஶ
଴ න൫𝑢 + 𝑉௣ᇱ൯௞𝛽൫𝑇, 𝑢, 𝑉௣ᇱ൯𝑢ௗஶ

଴ (𝑇, 𝑢)𝑑𝑉௣ 

(7) 

On the right side of Equation (7), we have switched the order of integration and made the 
replacement 𝑢 =  𝑉௣ − 𝑉௣ᇱ. Lastly, we have replaced 𝑉௣  for 𝑢  with no damage of generality and 
caught the necessary outcome for birth due to aggregation which is given by 

k

agg p d p p p p p d p p p
0 0

1B (T,V ) u (T,V ) (V V ) (T,V ,V )u (T,V )dV dV
2

∞ ∞

′ ′ ′ ′= + β    

After substituting all of the above terms in Equation (6), we get the system of differential 
equations: 
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𝑑𝑚௞(𝑇)𝑑𝑇 = න 𝑘𝑉௣௞ିଵ𝐺ஶ
଴ ൫𝑇, 𝑉௣൯𝑢ௗ൫𝑇, 𝑉௣൯𝑑𝑉௣ + න 𝑉௣௞𝑄௡௨௖ஶ

଴ ൫𝑇, 𝑉௣൯𝑑𝑉௣
+ 12 න 𝑢ௗ൫𝑇, 𝑉௣ᇱ൯ஶ

଴ න൫𝑉௣ + 𝑉௣ᇱ൯௞𝛽൫𝑇, 𝑉௣, 𝑉௣ᇱ൯𝑢ௗஶ
଴ ൫𝑇, 𝑉௣൯𝑑𝑉௣𝑑𝑉௣ᇱ

− න 𝑉௣௞ஶ
଴ 𝑢ௗ൫𝑇, 𝑉௣൯ න 𝛽൫𝑇, 𝑉௣, 𝑉௣ᇱ൯ஶ

଴ 𝑢ௗ൫𝑇, 𝑉௣ᇱ൯𝑑𝑉௣ᇱ𝑑𝑉௣
+ න 𝑉௣௞ஶ

଴ න 𝑏൫𝑇, 𝑉௣, 𝑉௣ᇱ൯𝑆ஶ
௏೛ ൫𝑉௣ᇱ൯𝑢ௗ൫𝑇, 𝑉௣ᇱ൯𝑑𝑉௣ᇱ𝑑𝑉௣

− න 𝑉௣௞𝑆ஶ
଴ ൫𝑉௣൯𝑢ௗ(𝑇, 𝑉௣)𝑑𝑉௣ + 𝑉ሶ𝑉௖ න 𝑉௣௞ℎஶ

଴ ൫𝑉௣൯𝑢ௗ(𝑇, 𝑉௣)𝑑𝑉௣ 

(8) 

In addition, with solid phase, the liquid phase yields ordinary differential equation for the solute 
mass in the form: 𝑑𝑚(𝑇)𝑑𝑇 = 𝑚ప௡ሶ (𝑇) − 𝑚௢௨௧ሶ (𝑇) − 3𝜎௖𝑘௩ න 𝑉௣ଶ𝐺൫𝑇, 𝑉௣൯ஶ

଴ 𝑢ௗ൫𝑇, 𝑉௣൯𝑑𝑉௣ (9) 

with 𝑚(0) = 𝑚଴  where 𝜎௖ is the density of crystals and 𝑘௩  is a volume shape factor. 𝑚ప௡ሶ (𝑇) −𝑚ప௡ሶ (𝑇) − is the incoming mass flux from dissolution unit to crystallizer and outgoing mass flux from 
crystallizer to dissolution unit, respectively, which is mathematically defined by 𝑚௢௨௧ሶ (𝑇) = 𝑚(𝑇)𝑚(𝑇) + 𝑚௦௢௟௩(𝑇) 𝜎௦௢௟(𝑇)𝑉ሶ  (10) 

where 𝑚௦௢௟௩(𝑇) is the mass of solvent and 𝜎௦௢௟(𝑇)  is the density of the solution. 𝑇௣ = ௏೛௏ ≥ 0 is the 
residence time in the dissolution unit, where 𝑉௣ represents volume of the pipe.  

Here, we will consider the Gaussian quadrature method to solve the complicated integral terms 
appearing in Equations (8) and (9). Consequently, a closed-form system of moments is found. Further, 
we have accurately and efficiently solved the closed-form system with an ODE solver. The 
approximation of definite integral with the help of quadrature rule is an important numerical aspect. 
For this purpose, first we calculate the function at definite points and then use the formula of weight 
function which gives approximation of the definite integral. To approximate a definite integral given 
in Equations (8) and (9), first we find the values of the function at a set of equidistant points. After 
evaluating, the weight function is multiplied to approximate the integrals. In this rule, there is no 
limitation of choosing abscissas and weights. This rule also works for the points which are not 
likewise spread out. Let us assume the integral of the formula   ׬ 𝜓൫𝑉௣൯𝑢ௗ(𝑉௣)𝑑௕௔ 𝑉௣. We can find the 
weights 𝑤௝ and abscissas 𝑉௞௣೔ by approximating the definite integral as 

j

b N

p d p p j d p
j 1a

(V ) u (V )dV w u (V )
=

ψ =  (11) 

where provided it is exact and 𝑢ௗ൫𝑉௣൯  is smooth function. A set of orthogonal polynomials is 
necessary for making certain 𝑛௧௛  order orthogonal polynomial and it should contain only one 
polynomial of order 𝑗 for 𝑗 = 1, 2, 3, …. We can define the scalar product of the two functions 𝑘(𝑉௣) 
and ℎ(𝑉௣) over a weight function 𝜓൫𝑉௣൯ by  

b

p p p p
a

h \ k (V ) h(V ) k(V )d V< >= ψ  (12) 
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If we find the zero scalar product of any two functions ℎ and 𝑘, then these functions are termed 
as orthogonal functions. It is also noted that supplementary information will be required for 
obtaining abscissas and weights if the classical weight function 𝜓൫𝑉௣൯ is not provided. For this 
purpose, we have used the moment:  

j

N
ji

i p d p p jp
j 10

m (T) V u (T,V )dV V w
∞

=

= ≈  (13) 

In the above equation, 𝑢ௗ൫𝑇, 𝑉௣൯ is used as a weight function 𝜓൫𝑉௣൯. 𝑉௣௜ given in Equation (13) 
denotes the polynomial 𝑢ௗ൫ 𝑉௣൯ of 𝑖௧௛  order. To find 𝑛 abscissas weights, we need 2𝑛 moments 
from 𝑚଴  to 𝑚ଶ௡ିଵ . For 𝑖 ≤ 2𝑛 − 1 this approximation will be exact. For simplicity and accurate 
approximations, we set 𝑛 = 3. As a result, six-moment system for 𝑚଴, … … , 𝑚ହ  is calculated. To 
discuss the procedure, we consider ODEs (8) and (9). Using Equation (13) in Equations (8) and (9), 
we obtain the following equations: 𝑑𝑚௞(𝑇)𝑑𝑇 = 𝑘 ෍(𝑉௣೔)௞ିଵே

௜ୀଵ 𝑤௜𝐺൫𝑇, 𝑉௣೔൯ + 𝑎௡௨௖(௞)
+ 12 ෍ 𝑤௜ே

௜ୀଵ ෍ ቀ𝑉௣೔+𝑉௣ೕቁ௞ 𝛽 ቀ𝑇, 𝑉௣೔, 𝑉௣ೕቁ 𝑤௝ே
௝ୀଵ− ෍൫𝑉௣೔൯௞𝑤௜ே

௜ୀଵ ෍ 𝛽(𝑇, 𝑉௣೔, 𝑉௣ೕ)𝑤௝ே
௝ୀଵ+ ෍൫𝑉௣೔൯௞𝑤௜ே

௜ୀଵ ෍ 𝛽 ቀ𝑇, 𝑉௣೔, 𝑉௣ೕቁ 𝑆(𝑉௣ೕ)𝑤௝ே
௝ୀଵ+ 𝑉ሶ𝑉௖ ෍ 𝑤௜൫𝑉௣೔൯௞ℎ൫𝑉௣೔൯       𝑘 = 0,1,2, … …ே

௜ୀଵ  

(14) 

where (k) k
nuc p nuc p

0

a V Q dV
∞

=   and 

𝑑𝑚(𝑇)𝑑𝑇 = 𝑚ప௡ሶ (𝑇) − 𝑚௢௨௧ሶ (𝑇) − 3𝜎௖𝑘௩ ෍ 𝑤௜ே
௜ 𝑉௣ଶ𝐺൫𝑇, 𝑉௣೔൯ (15) 

Our next step is computing the quadrature points 𝑉௣௜, 𝑉௣௝ᇱ  and the quadrature weights 𝑤௜ and 𝑤௝. The quadrature points 𝑉௣௜, 𝑉௣௝ᇱ  are obtained from the roots of orthogonal polynomials. The 
construction of orthogonal polynomials is described as follows:  

-1 0 j p j j-1 j j-1p 0,       p 1,        p (V - )p - p= = = α β  (16) 

with  

p j 1 j 1
j

j 1 j 1

V p / p
,                      j 1,2,....

p / p
− −

− −

< >
α = =

< >
 (17) 

j 1 j 1
j

j 2 j 2

p / p
,                      j 2,3,....

p / p
− −

− −

< >
β = =

< >
 (18) 

Since the function 𝑢ௗ൫𝑇, 𝑉௣൯ is used as a weight function 𝜓൫𝑉௣൯, so from Equation (12) we have  
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b
2

j j d p j p
a

p / p u (T,V )p dV< >=    

Using all of the above definitions, the orthogonal polynomials of any order can be obtained. Our 
first step is to find the roots of the 𝑛௧௛ order polynomial. The quadrature points 𝑉௣ are then obtained 
from these roots. To explain the procedure of deriving these orthogonal polynomials, we have 
calculated 𝑝ଵ(𝑉௣), 𝑝ଶ൫𝑉௣൯, 𝑝ଷ(𝑉௣). 𝑝ଵ(𝑉௣) as 

1 p p 1 0 p 1p (V ) (V )p (V )= − α = − α   

First, 𝛼ଵ will be calculated, which is given by 

2
p d p 0 p

p 0 0 0 1
1

0 0 02
d p 0 p

0

V u (T,V )p dV
V p / p m (T)

p / p m (T)
u (T,V )p dV

∞

∞

< >
α = = =

< >




  

so  

1
1 p p

0

mp (V ) V
m

= −  (19) 

Now 

2 p p 2 1 2 1p (V ) (V )p p= − α − β  (20) 

Again from Equations (17) and (18) we have  

2
2 1

p d p 1 p p d p p p
2 30p 1 1 0 0 3 0 0 1 2 1

2 2 221 1 2 0 0 12 1
d p 1 p d p p p

00 0

mV u (T,V )p dV V u (T,V ) V dV
mV p / p m m 2m m m m

p / p m m m mmu (T,V )p dV u (T,V ) V dV
m

∞ ∞

∞ ∞

 
− 

 < > − +α = = = =
< > − 

− 
 

 

 
 (21) 

and  

2
1

p d p p p
200 2 0 11 1

2 2
0 0 0

d p p
0

mV u (T,V ) V dV
m m m mp / p

p / p m
u (T,V )dV

∞

∞

 
− 

  −< >β = = =
< >




 (22) 

so from Equation (20) we have  

2 2 2
p 0 2 1 p 1 2 0 3 1 3 2

2 p 2
0 2 1

V (m m m ) V (m m m m ) m m m
p (V )

m m m

− + − + −
=

−
 (23) 

Proceeding in a similar way, we can calculate the polynomial of higher order. The third-order 
polynomial 𝑝ଷ൫𝑉௣൯ is given by the following equation:  
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2 4 1 0 4 3 2 0 5 3 1 5 1 2 3 p3

3 p p 3 2 2
2 2 4 0 2 3 1 3 0 4 1
2 2 2 2 3 2

2 5 1 0 4 0 5 3 4 3 1 2 4 3 2 p 2 4 3 2 5 3 4 1 5 3 1
3 2 2 3
2 2 4 0 2 3 1 3 0 4 1 2 2 4 0

(m m m m m m m m m m m m m m m )V
p (V ) V

m m m m 2m m m m m m m

(m m m m m m m m m m m m m m m )V 2m m m m m m m m m m m )
m m m m 2m m m m m m m m m m m

− + + − −
= +

− − + +

+ − − − + − − − ++ +
− − + + − − 2 2

2 3 1 3 0 4 12m m m m m m m+ +

 (24) 

The roots of the selected polynomial will give us the abscissas 𝑉௣. Next, the weights 𝑤௜ will be 
calculated. According to Press et al. [15], the expression for the weight function is given by 𝑤௜ = < 𝑝ேିଵ 𝑝ேିଵ⁄ >𝑝ேିଵ ൫𝑥௝൯𝑝ேᇱ (𝑥௝)       𝑖 = 1,2, … … … . 𝑁 (25) 

where N is the order of the selected polynomial. At last, the resulting system of ODEs is then solved 
by any standard ODE solver in MatLab. 

3. Results 

Test Problem 1: Aggregation with Fines Dissolution 

Here, the proposed scheme is analyzed for aggregation with fines dissolution (see Figure 1) 
problem encountered in several particulate methods (i.e., fluidized beds, formation of rain droplets, 
and manufacture of dry powders). The effects of further procedures, such as breakage, growth, and 
nucleation, are negligible. During the aggregation process, the total mass of particles 1m  is 
conserved and the amount of particles 0m  reduces during the processing time. The aggregation 

kernel is held to be constant and is defined as 0),( ββ =′pp VV , where 10 =β . The exponential 

initial particle size distribution is given by 𝑢ௗ൫0, 𝑉௣൯ = 𝑁଴𝑉௉బ 𝑒𝑥𝑝൫− 𝑉௣ 𝑉௉బ⁄ ൯ (26) 

where 10 =N  and 10 =pV . The dissolution term ℎ(𝑉௣) explains the dissolution of particles below 

certain critical size, that is, 2 × 10ିସ𝑚ଷ . The analytical solution in terms of the number density 𝑢ௗ൫𝑇, 𝑉௣൯ is given by Scott [16]:  𝑢ௗ൫𝑇, 𝑉௣൯ = 4𝑁଴𝑉௉బ(𝜏 + 2)ଶ 𝑒𝑥𝑝൫−2𝑉௣ᇱ 𝜏 + 2⁄ ൯ (27) 

where tN 00βτ =  and 0/ pp VVV =′ . The plot in Figure 2 shows normalized moments. The 

outcomes of our QMOM are in decent agreement with analytical outcomes. It is also observed from 
Figure 2 that during the aggregation process, the number of particles 𝑚଴(𝑇) decreases while the 
volume of the particles 𝑚ଵ(𝑇) remains constant.  
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Figure 1. Single batch setup process with fines dissolution. 

 

Figure 2. Aggregation with fines dissolution. 

Test Problem 2: Aggregation and Breakage with Fines Dissolution 

In this problem, we take a batch crystallizer in which aggregation and breakage are the main 
occurrences and which is connected with a fines dissolver. The growth and nucleation terms are 
neglected in this process. The initial distribution is given by 

𝑢ௗ൫0, 𝑉௣൯ = 𝑀଴. 𝑀଴𝑀ଵ 𝑒𝑥𝑝 ൬− 𝑀଴𝑀ଵ 𝑉௣൰ (28) 
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and first moments, respectively. A constant aggregation term, ,1),( 0 ==′ ββ pp VV  a breakage 

kernel ,/2),( ppp VVVb ′=′ , and uniform daughter distribution pp VVS =)(  are taken. The 

analytical solution is given by Patel [17]: 𝑢ௗ൫𝑇, 𝑉௣൯ = 𝑀଴ଶ𝑀ଵ 𝑒𝑥𝑝 ൬− 𝑀଴𝑀ଵ 𝑉௣൰ (29) 

The numerical results are displayed in Figure 3. The moments of the numerical system are in 
good agreement with those taken from the analytical solution. It is also observed from Figure 3 that 
during the aggregation and breakage process, the number of particles 𝑚଴(𝑇) decreases while the 
volume of the particles 𝑚ଵ(𝑇) remains constant.  

 

Figure 3. Aggregation and breakage with fines dissolution. 

4. Conclusions 

The moment-generating function was used to convert the governing partial differential equation 
into a system of ordinary differential equations. The mathematical term for fines dissolution was 
incorporated in the model for improving the quality of the product. The Gaussian quadrature method 
was implemented to solve the complicated integrals in this research. An orthogonal polynomial of 
degree three, which utilizes the first six moments, was used for better accuracy of the proposed 
scheme. To check the significance of the scheme, two case studies were discussed. The results of the 
proposed scheme are in perfect agreement with the available analytical results. No dissipation was 
observed in the results. This work is extendable for batch preferential crystallization models with 
fines dissolution. Furthermore, the developed scheme could be applicable to solve multidimensional 
batch crystallization models with fines dissolution.  
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