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Abstract: In modern steam power plants, the ever-increasing complexity requires great reliability and
flexibility of the control system. Hence, in this paper, the feasibility of a distributed model predictive
control (DiMPC) strategy with an extended prediction self-adaptive control (EPSAC) framework is
studied, in which the multiple controllers allow each sub-loop to have its own requirement flexibility.
Meanwhile, the model predictive control can guarantee a good performance for the system with
constraints. The performance is compared against a decentralized model predictive control (DeMPC)
and a centralized model predictive control (CMPC). In order to improve the computing speed,
a multiple objective model predictive control (MOMPC) is proposed. For the stability of the control
system, the convergence of the DiMPC is discussed. Simulation tests are performed on the five
different sub-loops of steam/water loop. The results indicate that the DiMPC may achieve similar
performance as CMPC while outperforming the DeMPC method.

Keywords: distributed model predictive control; steam power plant; steam/water loop; multi-input
and multi-output system; loop design

1. Introduction

The steam/water loop is an important part of a steam power plant, which plays a role in feed water
supply and recycling processes. It is a highly complex and constrained system with multiple variables
and interactions [1]. Meanwhile, due to the harsh and challenging operating environment (sea winds,
sea waves and sea currents) and various operating modes (automatic start-up, reverse, stop, setting
speed, emergency stop and reduction of revolutions) [2], there are difficulties to design a controller that
delivers satisfactory performance for the steam/water loop. In order to design an effective approach
overcoming the difficulties mentioned above and improving their liability and flexibility of the system,
the feasibility of a distributed model predictive control is studied in this paper.

Nowadays, the major concern of the steam power plant is not only the tracking performance,
but also other performances such as the consumed energy or safety in terrible conditions. Apart from
realizing the load tracking performance, the controllers should also fulfill the flexible requirements
for each sub-loop. A general way to improve the flexibility is to apply distributed controllers in the
system [3]. Also, the multiple controllers improve the reliability of the system [4]. Concurrently, in order
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to deal with the constraints in the steam/water loop, model predictive control is selected to maintain
good performance for each sub-loop. In fact, such methods are readily matured for various applications
in the Industry 4.0 paradigm [5]. For the particular class of complex processes with varying time
delays, the simple loop control has been proposed and successfully tested in real life processes [6].
However, the system under investigation in this paper is a multivariable process. Hence, the single
loop control does not suffice to guarantee good performance of all sub-system loops.

In recent years, many advanced control strategies have been developed to improve the performance
of steam power plants, such as: Advanced PID control [7–10]; backstepping control [11–13]; sliding
mode control [14–18]; robust control [19,20]; adaptive disturbance rejection control [21–23]. As it has
the advantage in dealing with the inputs and outputs constraints, a considerable amount of research
has been conducted in the application of model predictive control (MPC) for complex systems in
general and for steam power plants, in particular. To overcome the control problems arising from load
disturbances and intrinsic nonlinearity, an extended state observer based fuzzy MPC was proposed
for the ultra-supercritical boiler-turbine unit [24]. By incorporating both the plant-wide economic
process optimization and regulatory process control into a hierarchical control structure, a hierarchical
MPC was proposed [25]. A stable fuzzy model predictive controller was designed to solve the
superheater steam temperature control problem in a power plant [26], in which the effect of modeling
mismatched and unknown plant behavior variations were overcome by the use of a disturbance term
and steady-state target calculator. Liu proposed an economic model predictive controller by directly
utilizing the economic index of the boiler-turbine system as the cost function. The method realized the
economic optimization as well as the dynamic tracking [27].

However, the methods mentioned above are mainly concerned with the loop control of drum
steam pressure, electric power and steam–water density in the boiler-turbine system. Most of the
concerns concern the tracking performance of the system installed on land. The steam power plant in
this paper is installed on ships, and the steam/water loop is depicted in Figure 1 with five sub-loops:
Drum water level control loop; deaerator water level control loop; deaerator pressure control loop;
exhaust manifold pressure control loop; and condenser water level loop. Also, the steam/water loop
in large scale ships has special characteristics compared with those installed on land: (i) Receiving
more disturbances from the ocean waves; (ii) smaller capacity; (iii) multiple operation points [28].
Hence, effective control strategies are required to ensure the performance of the steam/water loop.

A linear extended predictive self-adaptive control centralized MPC framework was studied in
our previous work. The effects of the predictive horizon and the control horizon on the control system
were summarized [28,29]. It was concluded that the predictive horizon be selected according to the
system dynamics and the control horizon be selected to ensure a good trade-off between the tracking
performance and the computational complexity.

Today’s industry processes, for instance, those in heavy industries (e.g., papermaking, steelmaking,
petrochemical and power generation), are becoming more and more complex [30], and are generally
composed of a couple of interconnected systems, and possess high nonlinear and stochastic
dynamics [31]. Due to the interplay between high performance local control and interactions
between subsystem to subsystem, the centralized model predictive control (CMPC) is largely viewed
as impractical, inflexible and unsuitable for control of such complex processes [32]. For example, as the
authors have five sub-loops in the complete steam/water process, it is necessary to ensure the reliability
of the system. This may be achieved by localizing control functions near each sub-loop with remote
monitoring and supervision (i.e., distributed control) instead of one central controller (i.e., centralized
control). Hence, the applicability of the distributed model predictive control (DiMPC) is investigated in
this paper. A comparison is conducted between the decentralized model predictive control (DeMPC),
the CMPC and the DiMPC, and the results show the effectiveness of the DiMPC.

The convergence issue is discussed to ensure the stability of the DiMPC. It is proved that the
DiMPC, in our study, satisfies certain conditions, under which the properties of the CMPC problem
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are enjoyed by the DiMPC. Then, by the means provided in [33], the stability of the CMPC is proved,
meanwhile, the stability of the DiMPC is guaranteed.

The rest of the paper is organized as follows: Section 2 describes the steam/water loop, and the
modeling of the system is shown. The details about the DiMPC, CMPC and DeMPC are introduced in
Section 3. Section 4 shows the results and analysis. Finally, some conclusions are drawn in Section 5.
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Figure 1. Scheme of a complete steam/water loop [28] (reproduced with permission from Zhao, S.; 
Maxim, A.; Liu, S.; De Keyser, R.; and Ionescu, C, Processes; published by MDPI, 2018). 
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As shown in Figure 1, the steam/water loop is composed of two main loops, in which one is the 
water loop indicated by green line and the other is steam loop indicated by red line. The system 
works as follows. Firstly, the water from the water tank goes to the condenser. Then it is 
deoxygenated in the deaerator. After being pumped to boiler, the feed water goes into the mud 
drum due to its high density. The feed water is turned into a mixture of steam and water in the 
risers. Following this, the steam is separated from the mixture and heated in the superheater. Finally, 
the steam with a certain pressure and temperature services in the steam turbine. The used steam is 
sent back to the exhaust manifold and most of the steam is condensed in the condenser, while the 
remaining part services in the deaerator for deoxygenation [28]. The sub-loops have strong 
interactions between each other, such as the water level between the deaerator and the condenser, 
the pressure between the deaerator and the exhaust manifold system. Hence, there are challenges to 
obtain a desired controller for the steam/water loop. 

In order to explore the characteristics of the steam/water loop, staircase experiments are 
conducted around the operating point on the system. The normalized outputs and corresponding 
static gains are shown in Figure 2; Figure 3, respectively. In the experiment, every 10% step changes 
are imposed in one input variable, while keeping the other inputs constant. The results show that the 
static gains change considerably along with the input changes, which indicates the nonlinearity of 
the system. 

Figure 1. Scheme of a complete steam/water loop [28] (reproduced with permission from Zhao, S.;
Maxim, A.; Liu, S.; De Keyser, R.; and Ionescu, C, Processes; published by MDPI, 2018).

2. Description of the Steam/Water Loop

As shown in Figure 1, the steam/water loop is composed of two main loops, in which one is the
water loop indicated by green line and the other is steam loop indicated by red line. The system works
as follows. Firstly, the water from the water tank goes to the condenser. Then it is deoxygenated in the
deaerator. After being pumped to boiler, the feed water goes into the mud drum due to its high density.
The feed water is turned into a mixture of steam and water in the risers. Following this, the steam is
separated from the mixture and heated in the superheater. Finally, the steam with a certain pressure
and temperature services in the steam turbine. The used steam is sent back to the exhaust manifold
and most of the steam is condensed in the condenser, while the remaining part services in the deaerator
for deoxygenation [28]. The sub-loops have strong interactions between each other, such as the water
level between the deaerator and the condenser, the pressure between the deaerator and the exhaust
manifold system. Hence, there are challenges to obtain a desired controller for the steam/water loop.

In order to explore the characteristics of the steam/water loop, staircase experiments are conducted
around the operating point on the system. The normalized outputs and corresponding static gains
are shown in Figure 2; Figure 3, respectively. In the experiment, every 10% step changes are imposed
in one input variable, while keeping the other inputs constant. The results show that the static gains
change considerably along with the input changes, which indicates the nonlinearity of the system.
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Table 1. The parameters used in the steam/water loop. 

Output Variables Operating Points Range Units 
Drum water level 1.79 [1.39–2.19] m 

Exhaust manifold pressure 100.03 [87.03–133.8] MPa 
Deaerator pressure 30 [24.9–43.86] KPa 

Deaerator water level 0.7 [0.489–0.882] m 
Condenser water level 0.5 [0.32–0.63] m 

Figure 3. Static gain under different input changes. (The figures on left hand indicate the static gain for
drum water level loop, deaerator water level loop, and condenser water level loop; and on the right
hand indicate the static gain for deaerator pressure loop, and exhaust manifold pressure loop).

By linearization around the operating point, the model of the system is obtained as shown in (1),
with five inputs and five outputs. The input vector u = [u1, u2, u3, u4, u5] contains the positions of
the valves that control the flow rates of feedwater to the drum (u1), exhaust steam from the exhaust
manifold (u2), exhaust steam to the deaerator (u3), water from the deaerator (u4) and water to the
condenser (u5), respectively. The output vector y = [y1, y2, y3, y4, y5] contains the values of the water
level in drum (y1), pressure in exhaust manifold (y2), water level (y3) and pressure (y4) in deaerator,
and water level of condenser (y5), respectively. The ranges and operating points of the output variables
are listed in Table 1, and the operating points are obtained according to a real large-scale ship.
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Table 1. The parameters used in the steam/water loop.

Output Variables Operating Points Range Units

Drum water level 1.79 [1.39–2.19] m
Exhaust manifold pressure 100.03 [87.03–133.8] MPa

Deaerator pressure 30 [24.9–43.86] KPa
Deaerator water level 0.7 [0.489–0.882] m
Condenser water level 0.5 [0.32–0.63] m
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The rates and amplitudes of the five inputs are constrained to:

−0.007 ≤ du1
dt ≤ 0.007 0 ≤ u1 ≤ 1

−0.01 ≤ du2
dt ≤ 0.01 0 ≤ u2 ≤ 1

−0.01 ≤ du3
dt ≤ 0.01 0 ≤ u3 ≤ 1

−0.007 ≤ du4
dt ≤ 0.007 0 ≤ u4 ≤ 1

−0.007 ≤ du5
dt ≤ 0.007 0 ≤ u5 ≤ 1

(2)

The inputs units are normalized percentage values of the valve opening (i.e., 0 represents a fully
closed valve, and 1 is completely opened). Additionally, the input rates are measured in percentage
per second.

3. Control Strategies

3.1. Introduction for Centralized MPC (CMPC)

The following is a short summary of the extended prediction self-adaptive control (EPSAC) and
more details are found in [34]. Consider a discrete system described below:

y(k) = x(k) + w(k) (3)

where k is the discrete-time index; y(k) indicates the measured output sequence of system; x(k) is the
output sequence of model; and w(k) is the model/process disturbance sequence. The output of the
model x(k) depends on the past outputs and inputs, and can be expressed generically as:

x(k) = f [x(k− 1), x(k− 2), . . . , u(k− 1), u(k− 2), . . .] (4)

In EPSAC, the future input consists of two parts:

u(k + l
∣∣∣k) = ubase(k + l

∣∣∣k) + δu(k + l
∣∣∣k) (5)

where ubase(k + l
∣∣∣k) indicates lth predicted basic future control scenario and δu(k + l

∣∣∣k) indicates
the optimizing future control actions, and they are all based on the states and inputs of time k.
Then, following the results of lth predicted output is obtained by applying (5) as the control effort.

y(k + l
∣∣∣k) = ybase(k + l

∣∣∣k) + yopt(k + l
∣∣∣k) (6)

where ybase(k + l
∣∣∣k) is the effect of base future control and yopt(k + l

∣∣∣k) is the effect of optimizing future
control actions δu(k

∣∣∣k) , . . . , δu(k + Nc − 1
∣∣∣k) . The part of yopt(k + l

∣∣∣k) can be expressed as a discrete
time convolution as follows:

yopt(k + l
∣∣∣k) = hlδu(k

∣∣∣k) + hl−1δu(k + 1
∣∣∣k) + . . .+ gl−Nc+1δu(k + Nc − 1

∣∣∣k) (7)

where h1, . . .hNp are impulse response coefficients; g1, . . . gNp are the step response coefficients; Nc, Np are
the control horizon and prediction horizon, respectively. Thus, the following formulation is obtained:

Y = Y + GU (8)
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with, Y = [y(k + N1
∣∣∣k) . . . y(k + Np

∣∣∣k)]T
, U = [δu(k

∣∣∣k) . . . δu(k + Nc − 1
∣∣∣k)]T

,

Y = [ybase(k + N1
∣∣∣k) . . . ybase(k + NP

∣∣∣k)]T
and

G =


hN1 hN1−1 . . . gN1−Nc+1

hN1+1 hN1 . . . . . .
. . . . . . . . . . . .
hNP hNP−1 . . . gNP−Nc+1

 (9)

where N1 indicates the time-delay in the system.
The disturbance term w(k) is defined as a filtered white noise signal [30]. When there is no

information concerning the noise, the disturbance model used in (3) is chosen as an integrator, to ensure
zero steady-state error in the reference tracking experiment:

w(k) = w(k− 1) + e(k) (10)

where e(k) denotes the white noise sequence.
In order to apply EPSAC for a multiple-input and multiple-output (MIMO) system, the individual

error of each output is minimized separately. The cost function for the steam/water system with five
sub-loops is as follows:

Ji =

NP∑
l = N1

[ri(k + l
∣∣∣k) − yi(k + l

∣∣∣k)] 2
(i = 1, 2, . . . , 5) (11)

where ri (i = 1, 2, . . . , 5) are the setpoints for the five loops.
By defining Gij as the influence from jth input to ith output, (11) is rewritten as:

(Ri−Yi)
T(Ri−Yi)=(Ri−Yi−

5∑
j=1

Gi jU j)
T(Ri−Yi−

5∑
j = 1

Gi jU j) (12)

with Ri denotes the reference for loop i, and Yi denotes the predicted output for loop i.
Taking constraints from inputs and outputs into account, the process to find the minimum cost

function becomes an optimization problem which is called quadratic programming.

min
Ui

Ji(Ui)=Ui
THiUi+2fi

TUi+ci subject to AU ≤ b (13)

with


Hi=GT

ii Giifi=−GT
ii (Ri−Yi−

5∑
j = 1, j,i

Gi jU j)

ci = (Ri−Yi−
5∑

j = 1, j,i
Gi jU j)

T(Ri−Yi−
5∑

j = 1, j,i
Gi jU j)

where A is a matrix; b is a vector according to the constraints and Ui is the input for sub-loop i.
Figure 4 shows the conceptual representation of the centralized MPC [35]. To get the optimal

solutions for sub-loop i, the interaction
{
u j∈Ni

}
, Ni =

{
j ∈ N : G̃i j , 0

}
from other sub-loops is taken

into account as shown in (13).
Hence, the optimal centralized solution U = [U1 U2 U3 U4 U5] is obtained by solving the following

global cost function:

J =
5∑

i = 1

pi Ji (14)

where Ji are defined in (11), and pi are weighting factors. In our case, the pi are chosen as the values
which can normalize the cost function Ji.
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3.2. Proposed Distributed MPC (DiMPC)

It is noteworthy to mention that the centralized approach implies that all the information
regarding to all the sub-systems (or sub-loops) is gathered in a single controller, as showed in Figure 4.
The advantage is straightforward since the cost function (14) has an optimal solution. However, if one
sub-loop malfunctions, then the entire steam/water loop collapses, with serious consequences for safety
of the large scale ship.

One solution is provided by the distributed MPC (DiMPC) method, that regards all the sub-systems
as independent modules which are controlled by an individual controller. Through the communication
network, the inherent interactions are considered.

Thus, the same local cost function (13) is locally minimized by each controller, in which the coupling

term
5∑

j=1,j,i
GijUj is computed with the input trajectory Uj received from the neighbors, and several

iterations are performed until the local optimal solution is reached. For the sake of clarity, conceptual
representation of the distributed MPC architecture is shown in Figure 5, and a pseudo-code is provided:

Algorithm 1 The Iterative DiMPC

Step 1: Sub-loop I receives an optimal local control action δUi at the iterative time as iter = 0 according to the
EPSAC, and the local control action δUi can be rewritten as δUiter

i , where δUi indicates the vector of the
optimizing future control actions with length of Nci;
Step 2: The δUiter

j ( j ∈ Ni) is communicated to the loop i, and the δUiter+1
i is calculated again with the δUiter

j
from other loops;
Step 3: If the termination conditions ‖δUiter+1

i − δUiter
i ‖ ≤ εi ∨ iter + 1 > iter are reached, the Uiter+1

i is adopted,

where εi is the positive value and iter indicates the upper bound of the number of iteration times.
Otherwise, the iter is set as iter = iter + 1, and return to Step 2;
Step 4: Calculate the optimal control effort as Ut = Ubase + δUiter, and the control effort is applied to
the system;
Step 5: Set t = t + 1, return to Step 1.
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3.3. Classical Decentralized MPC (DeMPC)

In Figure 6, the conceptual representation of the DeMPC is presented. When comparing with the
distributed strategy from Figure 5, it can be seen that the main difference is given by the fact that the
controllers do not exchange information, although the physical coupling remains.
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Hence, the local cost function to be minimized by each controller is:

min
Ui

Ji(Ui)=Ui
THiUi+2fi

TUi+ci subject to AU ≤ b (15)

with

 Hi=GT
ii Giifi=−GT

ii (Ri−Yi)

ci = (Ri−Yi)
T
(Ri−Yi)

which is derived from (13), by removing the coupling influence between sub-loops.

3.4. Multiple Objective Distributed Model Predictive Control (MODiMPC)

Nowadays, setpoint tracking is not the only target for the control system. For some fast dynamic
systems, the computing speed of the control strategies has an important influence. In order to improve
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the computing speed, a small loss in tracking performance is made to realize the fast computing speed.
The scheme of the MODiMPC is shown in Figure 7. There are three layers of structure, in which the
priority is shown as safety > tracking performance > energy.
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The algorithm starts from initial zero conditions and computes the optimal control effort as an
unconstrained solution of the optimization problem that aims to minimize the tracking error.

If the predicted inputs or outputs are not safe (generally out of the hard constraints), the constraints
is included in the optimization to ensure safety. If the variables are in the safety interval, then according
to the tracking error condition, two options are available, namely: (i) Error > ε, the focus is on
performance, and the control effort is kept δUiter

i , (i.e., the control effort is kept to the one which
minimizes the cost function with (11)); or (ii) Error < ε, the focus is on energy, and the control effort is
kept δUiter

i = 0 (i.e., the actuator does not need to do any change), where ε is a tolerance error, and in
this paper, it is chosen as 1% of the upper bound of the corresponding output. According to the end
conditions (‖δUiter+1

i − δUiter
i ‖ ≤ εi ∨ iter + 1 > iter) of the DiMPC, the procedure stops or continues to

obtain a new result.
Due to the hydraulic cylinder being linked with the valve in the steam/water loop, the frequent

changes in valves mean frequent changes in the hydraulic cylinder, which results in a large energy costs.
In this sense, the energy is saved if the valves do not need to do any change under the condition Error < ε.

In the traditional MPC, the influence from constraints has always been considered to
obtain the optimal inputs for the system. In our study, the quadratic programming is applied.
However, the setpoint does not always change during the operation of the system, and most of the
time, the system operates at a stable operating point. During this kind of period, the only thing to
be considered is energy, in which the control effort is always kept the same as the last sampling time.
Hence, no optimization process exists anymore, and there is a huge reduction in computing time.
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3.5. Convergence Issue

In order to analyze the stability of the optimal solution of the distributed control system, first the
convergence issue is discussed. A standard MPC formulation is written in a form of a series of static
optimization problems shown as follows:

SPk : min
S

J(S) (16)

s.t. M(S) = 0
C(S) ≤ 0

where S is the vector of the decision variables, including the state variables X and the control variables
U. M(S) is the prediction model and C(S) denotes the constraints. Although our process model has an
input-output formulation, it can be easily translated into a state-space definition.

In the DiMPC, Equation (16) is decompositioned into subproblems. For the sub-loop i:

SPki : min
Si

Ji(Si, Snei
i ) (17)

s.t. Mi(Si, Snei
i ) = 0

Ci(Si, Snei
i ) ≤ 0

where Si is the vector of the decision variables for sub-loop i, and Snei
i is the vector of the

variables for the sub-loops that have interaction with sub-loop i. Mi and Ci meet the conditions:
∪iSi = S,∪iMi = M,∪iCi = C.

According to [35], if the distributed control methodologies satisfy some conditions, the properties
that can be proved for the equivalent CMPC problem are enjoyed by the solution obtained using the
DiMPC implementation. Also, the convergence issue of the DiMPC is equal to the CMPC. The optimal
results from the DiMPC converge to the global optimal point. The conditions are listed as follows:

(1) The sub-loops can completely cover the full large system;
(2) Ji and Ci are convex;
(3) The sub-loops work sequentially;
(4) The starting point is in the interior of the feasible region;
(5) Each sub-loop cooperates with its neighbors in that it broadcasts its latest iteration to

these neighbors;
(6) Each sub-loop uses the same optimal method to generate its iterations.

However, the conditions 2 and 3 are over strict as many systems are nonconvex and have
nonlinearity in reality. Further, [36,37] show that these two conditions can be relaxed to nonconvex
optimal problems with nonlinearity.

Moreover, the convergence of the DiMPC is further analyzed using the study given in [33].
Hence, starting from the unconstrained optimal solution of the distributed algorithm, the idea is to
rewrite it with a recursive matrix formulation. After some matrix manipulation, a compact description
is obtained:

U∗(k) = F(k) − ĤU
∗
(k − 1) (18)

where U∗(k) consists of the optimal sequences of all the sub-loops, computed at sample time k, while
U∗(k − 1) are the shifted optimal trajectories computed at the previous sampling time k − 1, with the
last term doubled, to ensure the dimensions consistencies. The term F(k) is variable and computed
at each sampling instant using the prediction error, whereas Ĥ is a constant term that is computed
off-line in the initialization stage of the algorithm (see [33] for further details).
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Note that using Equation (18), the convergence of the local optimal solutions can be checked by
verifying that all the eigenvalues from Ĥ are inside the unit circle. Additionally, Equation (18) can be
reformulated in the classical system approach as:

U∗(k) = (I−q−1 Ĥ )F(k) (19)

where q−1 is an operator that shifts the data backward one sampling period, F(k) is regarded as the
system’s input, while U∗(k) denotes the system’s output. It is noteworthy to mention that Equation (19)
can be used to analyze the stability of the optimal solution U∗(k) at sampling time k, in the classical
linear time-invariant framework by verifying that all the eigenvalues of the system equivalent matrix
(I−q−1 Ĥ ) are inside the unit circle. Furthermore, if this condition is satisfied on the equality case,
it results in the optimal solution of the distributed algorithm being marginally stable.

Hence, using this simple approach, the evolution of the system is computed using F(k) as the
system’s input, which is calculated using the prediction error from each sampling period. Although this
is an analytical approach to recursively place the system’s progression in time, it can be straightforwardly
computed in an automatic manner, using the simulation tools available for a control engineer.
Moreover, all the computations are computed in a distributed manner, since using Equation (18), each
sub-loop computes the optimal trajectories of the coupling neighbors, and knowing this information,
it computes its own optimal trajectory at each sampling instant.

4. Simulation Results and Analysis

According to our previous work, the parameter configuration for the EPSAC method is shown in
Table 2.

Table 2. The parameters applied in various MPC controllers.

Controllers Nc Ts Np N1 Ns

DeMPC CMPC
DiMPC

Nc1 = 4, Nc2 = 1, Nc3 = 1,
Nc4 = 4, Nc5 = 6 samples 5 s Np1 = 20; Np2 = 15; Np3 = 15;

Np4 = 20; Np5 = 20 samples 1 300

Where the Ts is the sampling time; Nc1, Nc2, . . . , Nc5 are control horizons; (the control horizons
were selected by finding a good trade-off between tracking performance and computation time for
each loop), Np1, Np2, . . . , Np5 are prediction horizons of the five loops, respectively (the prediction
horizons were selected taking into account the specific transient dynamics for each loop); Ns is the
number of the samples. The step setpoints are provided in Table 3. In the experiments, the initial
condition was set at the operating point of the steam/water loop.

Table 3. Step setpoints changes in the experiments.

Time (s) 2–300 300–600 600–900 900–1200 1200–1500

Drum Water Level (m) 2 2 2 2 2
Exhaust Manifold Pressure(MPa) 100.03 116 116 116 116

Deaerator Pressure (KPa) 30 30 35 35 35
Deaerator Water Level(m) 0.7 0.7 0.7 0.8 0.8
Condenser Water Level(m) 0.5 0.5 0.5 0.5 0.6

The simulation results are shown in Figure 8, including the system outputs and the corresponding
control efforts. In order to test which case provides the best result, performance indexes in an average
value for the five sub-loops were compared including integrated absolute relative error (IARE), integral
secondary control output (ISU), ratio of integrated absolute relative error (RIARE), ratio of integral
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secondary control output (RISU) and combined index (J). These indexes are calculated with the
following expressions:

IARE =
1
5

5∑
i = 1

Ns−1∑
k = 0

∣∣∣ri(k) − yi(k)
∣∣∣/ri(k) (20)

ISU =
1
5

5∑
i = 1

Ns−1∑
k = 0

(ui(k) − ussi(k))
2 (21)

RIARE(C2, C1) =
IARE(C2)

IARE(C1)
(22)

RISU(C2, C1) =
ISU(C2)

ISU(C1)
(23)

J(C2, C1) =
w1RIARE(C2, C1) + w2RISU(C2, C1)

w1 + w2
(24)

where ussi is the steady state value of the ith input; C1, C2 are the compared controllers and the
weighting factors w1 and w2 in (24) are chosen as w1 = w2 = 0.5.

As depicted in Figure 8, the CMPC had similar performance as the DiMPC, and both outperformed
the DeMPC. This conclusion is not only valid for this process, but also for other processes, since the
DeMPC strategy does not take the interactions into account, which lead to some severe fluctuations
when the setpoint changes in other variables. Although the control efforts in the DiMPC are obtained
separately, the performance is still good due to the iteratively communication between the controllers
for each sub-loop. In real life operations, where the addition of the effects of noise and stochastic
disturbances are needed, perhaps with adding periodic disturbances from sea dynamics, the DeMPC
may even lead to instability in the overall system.

Processes 2019, 7, x FOR PEER REVIEW  13 of 21 

 

15

1 0

1 ( ) ( ) ( )
5

sN

i i i
i k

IARE r k y k r k
−

= =

= −  (20) 

 
15

2

1 0

1 ( ( ) ( ))
5

sN

i ssi
i k

ISU u k u k
−

= =

= −   (21) 

 2
2 1

1

( )( , )
( )

IARE CRIARE C C
IARE C

=   (22) 

 2
2 1

1

( )( , )
( )

ISU CRISU C C
ISU C

=   (23) 

 1 2 1 2 2 1
2 1

1 2

( , + ( ,( , )
+

w RIARE C C w RISU C CJ C C
w w

=
） ）

  (24) 

where ssiu  is the steady state value of the ith input; C1, C2 are the compared controllers and the 
weighting factors w1 and w2 in (24) are chosen as w1 = w2 = 0.5. 

As depicted in Figure 8, the CMPC had similar performance as the DiMPC, and both 
outperformed the DeMPC. This conclusion is not only valid for this process, but also for other 
processes, since the DeMPC strategy does not take the interactions into account, which lead to some 
severe fluctuations when the setpoint changes in other variables. Although the control efforts in the 
DiMPC are obtained separately, the performance is still good due to the iteratively communication 
between the controllers for each sub-loop. In real life operations, where the addition of the effects of 
noise and stochastic disturbances are needed, perhaps with adding periodic disturbances from sea 
dynamics, the DeMPC may even lead to instability in the overall system.  

  
(a) 

Figure 8. Cont.



Processes 2019, 7, 442 14 of 21

Processes 2019, 7, x FOR PEER REVIEW  14 of 21 

 

  
(b) 

  
(c) 

  
(d) 

0 500 1000 1500
Time(s)

98

100

102

104

106

108

110

112

114

116

118
Exhaust Manifold Pressure(MPa)

Reference
DiMPC
DeMPC
CMPC

0 500 1000 1500
Time(s)

45

50

55

60

65

70

75

80

85
Valve opening exhaust manifold pressure(%)

DiMPC
DeMPC
CMPC

0 500 1000 1500
Time(s)

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84
Deaerator Water Level(m)

Reference
DiMPC
DeMPC
CMPC

0 500 1000 1500
Time(s)

45

50

55

60

65

70

75
Valve opening deaerator water level(%)

DiMPC
DeMPC
CMPC

Figure 8. Cont.



Processes 2019, 7, 442 15 of 21
Processes 2019, 7, x FOR PEER REVIEW  15 of 21 

 

  
(e) 

Figure 8. The responses of the steam/water loop under the DeMPC, CMPC and DiMPC for (a) drum 
water level control loop, (b) deaerator water level control loop, (c) deaerator pressure control loop, 
(d) condenser water level control loop and (e) exhaust manifold pressure control loop (The figures on 
left hand indicate the outputs, and on the right hand indicate the inputs). 

The iterations are shown in Figure 9 during the optimization of DiMPC. In the algorithm, the 
two conditions to end the iteration are designed as: (i) The difference between consecutive optimal 
inputs fulfill the condition 1 0.002iter iter

i iδ δ+ − ≤U U  ; (ii) the maximum iteration time is five, i.e., 

5iter > . 

 
Figure 9. The iteration times when the DiMPC is applied to the steam/ water loop. 

The same conclusion is also obtained according to the numerical values shown in Table 4; Table 
5. As the index J implies, the DiMPC and CMPC have similar results. However, there is only one 
controller in the CMPC, which means the system may be out of service if there is any problem with 
the controller. On the contrary, the DiMPC has more ability in fault-tolerance and flexibility without 
much performance loss compared with the CMPC. As the DiMPC only needs a part of the entire 
model, it is much easier to find a feasible solution, while CMPC needs the entire model to obtain all 
the solutions at one time. In this context, the DiMPC has better robust performance than the CMPC. 
Hence, the system model required for the DiMPC can be less accurate than the CMPC. In an industry 
context, a staggering 60–70% of the project time is spent on model development, while the rest is 

0 500 1000 1500
Time(s)

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64
Condenser Water Level(m)

Reference
DiMPC
DeMPC
CMPC

0 500 1000 1500
Time(s)

45

50

55

60

65

70

75

80

85
Valve opening condenser water level(%)

DiMPC
DeMPC
CMPC

Ite
ra

tio
n 

Ti
m

es

Figure 8. The responses of the steam/water loop under the DeMPC, CMPC and DiMPC for (a) drum
water level control loop, (b) deaerator water level control loop, (c) deaerator pressure control loop,
(d) condenser water level control loop and (e) exhaust manifold pressure control loop (The figures on
left hand indicate the outputs, and on the right hand indicate the inputs).

The iterations are shown in Figure 9 during the optimization of DiMPC. In the algorithm, the two
conditions to end the iteration are designed as: (i) The difference between consecutive optimal inputs
fulfill the condition ‖δUiter+1

i − δUiter
i ‖ ≤ 0.002 ; (ii) the maximum iteration time is five, i.e., iter > 5.
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The same conclusion is also obtained according to the numerical values shown in Tables 4 and 5.
As the index J implies, the DiMPC and CMPC have similar results. However, there is only one
controller in the CMPC, which means the system may be out of service if there is any problem with the
controller. On the contrary, the DiMPC has more ability in fault-tolerance and flexibility without much
performance loss compared with the CMPC. As the DiMPC only needs a part of the entire model, it is
much easier to find a feasible solution, while CMPC needs the entire model to obtain all the solutions at
one time. In this context, the DiMPC has better robust performance than the CMPC. Hence, the system
model required for the DiMPC can be less accurate than the CMPC. In an industry context, a staggering
60–70% of the project time is spent on model development, while the rest is claimed for the controller
design and validation [38]. Hence, any reduction in identification time requirement greatly diminishes
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overall loop maintenance control related costs. The analysis given in this paper provides a trade-off

solution, yet with acceptable performance but with great yields for cost reduction in control design
and validation time.

Table 4. Performance indexes for IARE and ISU.

Index DiMPC DeMPC CMPC

IARE 2.5117 2.7507 2.4795
ISU 0.4672 0.4686 0.4937

Table 5. Performance indexes for RIARE and RISU.

Index DiMPC VS DeMPC DeMPC VS CMPC CMPC VS DiMPC

RIARE 0.8959 1.1417 1.0011
RISU 0.8863 1.1629 1.0290

J 0.8911 1.1523 1.0151

The results for the DiMPC and the multiple objective distributed model predictive control
(MODiMPC) are shown in Figure 10. The performance indexes are shown in Table 6. The computing
time for MODiMPC is 2.81 s and for the DiMPC 29.36 s, respectively.
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Figure 10. The responses of the steam/water loop under the MODiMPC and DiMPC for (a) drum
water level control loop, (b) deaerator water level control loop, (c) deaerator pressure control loop,
(d) condenser water level control loop and (e) exhaust manifold pressure control loop (The figures on
left hand indicate the outputs, and on the right hand indicate the inputs).
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Table 6. Performance indexes for IARE and ISU.

MODiMPC DiMPC

IARE 2.6289 2.5117
ISU 0.4434 0.4672

It can be seen from the results that there is a large improvement in the computing time after the
MODiMPC was applied and without too much loss in tracking performance.

As previously mentioned, in order to guarantee the stability of the optimal solution in a DiMPC
framework, the convergence of the optimal solution was firstly discussed. Due to the fact that there are
only constraints in input variables in our study, the feasibility of the steam/water loop belongs to the
trivial case (according to [33], solving the optimization problem the existence of a feasible solution
is ensured at each sampling period). The Hi matrices for the five loops are calculated as follows (for
more details about convergence issue, please refer to the reference [33]):

H1 =


0.9613 −0.0352 −0.0308 −0.0639
−0.0352 0.9673 −0.0293 −0.0716
−0.0308 −0.0293 −0.9730 −0.0781
−0.0639 −0.0716 −0.0781 0.2062

, H2 = 0.0003, H3 = 0.0025,

H4 =


0.9866 −0.0125 −0.0113 −0.0224
−0.0125 0.9876 0.0114 −0.0298
−0.0113 −0.0114 −0.9888 −0.0369
−0.0224 −0.0298 −0.0369 0.4255

,

H5 =



0.9788 −0.0189 −0.0159 −0.0119 −0.0077 0.0145
−0.0189 0.9789 0.0189 −0.0160 −0.0121 0.0106
−0.0159 −0.0189 −0.9788 −0.0190 −0.0160 0.0041
−0.0119 −0.0160 −0.0190 0.9788 −0.0188 −0.0049
−0.0077 −0.0121 −0.0160 −0.0188 0.9792 −0.0158
0.0145 0.0106 0.0041 −0.0049 −0.0158 0.4403


By the eig function in MATLAB (R2016b, Mathworks, Natick, MA, USA, 2016), the eigenvalues

are calculated in a centralized manner for the steam/water loop, and the maximum value is ρmax < 1,
which indicates that the DiMPC is convergent. In the steam/water loop, the five sub-loops cover the
full system, and in the DiMPC the information is exchanged iteratively. Hence, the conditions 1 and
3–6 are satisfied. In order to cover the worst circumstances, the sufficient conditions in Section 3.5 tend
to be conservative, and in some cases the convexity are not necessary [37]. Hence, it is concluded that
the DiMPC has the same convergence as the CMPC, and the convergence of the DiMPC is guaranteed.

5. Conclusions

Regarding the multiple sub-loops in the steam/water loop, this paper introduced a distributed
model predictive control based on the EPSAC framework. Different types of the MPC were applied to
the steam/water loop system, including the DeMPC, CMPC and DiMPC. According to the simulation
results, the DiMPC had similar performance with the CMPC, and outperformed the DeMPC. Due to
the multiple controllers in the DiMPC strategy, the DiMPC had better performance of fault-tolerance
and flexibility than the CMPC which improved the reliability of the steam/water loop. By proving
equivalence in stability between the DiMPC and the CMPC, and the stability of the CPMC, the stability
of the DiMPC is guaranteed. Meanwhile, a multiple objective MPC was proposed, and the computing
speed was improved without too much loss in tracking performance.
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Nomenclature

EPSAC Extended Prediction Self Adaptive Control
MPC Model Predictive Control
CMPC Centralized Model Predictive Control
DiMPC Distributed Model Predictive Control
DeMPC Decentralized Model Predictive Control
MOMPC Multiple Objective Model Predictive Control
MODiMPC Multiple Objective Distributed Model Predictive Control
ISU Integral Secondary control output
RISU Ratio of Integral Secondary control output
IARE Integrated Absolute Relative Error
RIARE Ratio of Integrated Absolute Relative Error
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