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Abstract: The removal of undesirable compounds such as CO2 and NO2 from incineration and natural
gas is essential because of their harmful influence on the atmosphere and on the reduction of natural
gas heating value. The use of membrane contactor for the capture of the post-combustion NO2

and CO2 had been widely considered in the past decades. In this study, membrane contactor was
used for the simultaneous absorption of CO2 and NO2 from a mixture of gas (5% CO2, 300 ppm NO2,
balance N2) with aqueous sodium hydroxide solution. For the first time, a mathematical model was
established for the simultaneous removal of the two undesired gas solutes (CO2, NO2) from flue gas
using membrane contactor. The model considers the reaction rate, and radial and axial diffusion of
both compounds. The model was verified and validated with experimental data and found to be in
good agreement. The model was used to examine the effect of the flow rate of liquid, gas, and inlet
solute mole fraction on the percent removal and molar flux of both impurity species. The results
revealed that the effect of the liquid flow rate improves the percent removal of both compounds.
A high inlet gas flow rate decreases the percent removal. It was possible to obtain the complete
removal of both undesired compounds. The model was confirmed to be a dependable tool for
the optimization of such process, and for similar systems.

Keywords: global warming; chemical absorption; membrane contactor; removal of NO2 and CO2

1. Introduction

Harmful gases are emitted into the atmosphere from industrial plants, because of the increase
in the human population and the associated economic development, energy consumption,
and the requirement of burning fossil fuels for water desalination and power generation purposes.
Nitrogen dioxide (NO2) is believed to be one of the gases that contributes to smog and acid rain
and which is harmful to human and animal well-being. Accordingly, there is an obligation to capture
and eliminate nitrogen dioxide and other harmful gases, such NOx, SO2, and CO2 from industrial
emission streams, proceeding to discharge into the atmosphere [1–3]. Various methods have been
established for capturing the impurity of compounds such as physical and/or chemical absorption,
adsorption, membrane technology, conversion to another compound, and condensation. There are
various technologies available to remove CO2 and NOx [3–5]. Physical absorption incorporates mass
transport within the phases and mass transfer at the liquid–gas boundary. Operating conditions
and gas solubility are the main factors affecting physical absorption. An example of physical absorption
is the capture of CO2 into liquid water using industrial absorption towers or gas–liquid membrane
contactors. Chemical absorption is based on a chemical reaction between the absorbed substances
and the liquid phase, such as the capture of CO2 in amine solutions [4,6]. The most widely used
commercial and economical method is the chemical absorption technique, used in the conventional
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absorption packed bed towers employed in the absorption of CO2, H2S, and NO2 from chimney
gas and natural gas via alkanolamine solutions, where the flue gas and the absorbent liquid are
in direct contact. The conventional scrubbing method requires a huge absorption column with
excess liquid absorbent and a large cross-sectional area in order to prevent foaming and channeling.
The large amount of absorbent liquid utilized in the absorption process (i.e., rich solvent) increases
the operating and regeneration cost as more heat is required for the regeneration and pumping of
the recycled lean solvent. The main disadvantages of conventional chemical absorption processes are
channeling, foaming, corrosion, and a large space area required and hence high operating and capital
cost. The idea of using membrane contactor was first proposed for the absorption of carbon dioxide in
sodium hydroxide as a liquid absorbent utilizing a non-dispersive microporous membrane where gas
and liquid phases are not dispersed in each other [7,8]. A hollow fiber membrane contactor (HFMC)
provides a greater surface contact area per unit volume, more than that of a conventional absorption
column [9–13]. In most cases of membrane contactor operation, gas flows in the shell side, and liquid
absorbent flows in the tube side; vice versa is also possible [14]. The performance of a HFMC declines
when the micropores of the membranes are wetted with a liquid solvent [3,11,15–17]. The advantages of
membrane processes are as follows: Gas and liquid flow rates are independent, high ratio of surface area
per volume, easy scale up and down, and no worry about flooding and channeling [18]. The membrane
acts as an obstacle between gas and liquid and delivers an exchange surface zone for the two phases,
without the dispersion of the gas phase in the liquid phase. In the non-wetted mode, the membrane
pores are filled with gas, and by contrast, in the wetted mode, part of the membrane pores are filled
with the liquid absorbent. The pollutant gas compounds’ amputation process occurs when the gas
filling the membrane micropores diffuses from the gas stream and is absorbed by the liquid absorbent
running in the membrane lumen ide [1,16,19]. The removal of the contaminant gas compounds
from the gas stream depends on the solubility of the acid gas molecules in the absorbent liquid,
and on the concentration incline among the gas stream absorbent solution. The interaction between
the selected gas solute and the selective absorbent liquid defines the performance of the pollutant
gas removal rate [20]. Membrane fouling and membrane wettability are the main drawbacks of
the membrane contactor. The wetted portion of the membrane adds an additional mass transfer
resistance. Accordingly, in order to avoid membrane wettability, researchers focused on the use of
hydrophobic polymeric membranes, such those made from polypropylene (PP), polytetrafluoroethylene
(PTFE), polyvinylidene fluoride (PVDF), and polyethylene (PE) [21–24]. The Gas Liquid Hollow Fiber
Member Contactor (GLMC) processes were used for the removal of CO2 from nitrogen, CO2 from natural
gas, and the instantaneous removal of CO2 and SO2 from combustion released gas [17,19,20,25–33].
The experimental simultaneous capture of CO2 and NO2 from a pretended flue gas mixture containing
CO2/NO2/N2 was first investigated using a commercial PTFE membrane by Ghobadi et al. [23].
The effects of the gas and liquid cross-flow velocity on the percent removal of these gasses were
investigated. Various mathematical models were developed for the removal of carbon dioxide, sulfur
dioxide, and hydrogen sulfide from simulated flue gas and natural gas streams [7,9,15,17,25,32,34–39].
To the extent of the author’s knowledge, so far, there is no mathematical model published to designate
the synchronized capture of CO2/NO2 from a mixture of gas consisting of CO2/NO2/N2.

This study focusses on the development of a numerical model for the capture of CO2/NO2 from
a gas containing: 5% CO2, 300 ppm NO2, and the balance is N2. The principal model equations were
solved using COMSOL Multiphysics (Version 5.4, Comsol Inc., Zürich, Switzerland). The developed
model was used to predict the influence of various operating parameters on the percent removal
and molar flux of the acid gas components. The model was verified and validated with experimental
data from literature [23].

2. Model Development

The gas-liquid membrane process consists of many hollow fibers assembled in a module,
where the liquid solvent flows inside the membrane lumen, and the gas flows in the shell sideways,
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or vice versa, in a co-current or countercurrent parallel flow. The pollutant gas compounds diffuse
through the fiber walls towards the absorbent membrane–tube interface, as a result of the concentration
gradient. Other gases are retained in the membrane pores because of their low diffusivity and low
solubility in the liquid solvent. Figure 1 shows a schematic simplified geometry of the model
domains representing the HFM module grounded on Happel’s free surface [40]. The model considers
the following three separate domains: the liquid phase in the tube side, the non-wetted membrane,
and the gas phase in the shell side. The system is steady state, described by cylindrical coordinates,
angular concentration gradients are neglected, and an asymmetrical approach is considered.
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The sizes of the membrane used in the simulation are presented in Table 1.

Table 1. Membrane module dimensions [23].

Property Value

Inner fiber radius (mm) 0.34
Outer fiber radius (mm) 0.60

Number of fibers 590
Module outer radius (mm) 25.4

Module effective length (mm) 200

As seen from Table 1, the fiber length is 588 times longer than the fiber radius (effective module
length is 200 mm and radius are 0.34 mm). Accordingly, the membrane length is scaled up so as to avoid
an excessive number of elements and nodes and for a better appearance of the module in the simulation;
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therefore, a new scaled length is introduced by dividing the length by 100. The following assumptions
were considered:

• The process is at isothermal and steady state conditions;
• Gas phase is an ideal gas, and the liquid phase is incompressible and Newtonian;
• Solubility is based on Henry’s law at the liquid-gas interface.

The blended gas (CO2, NO2, and N2) is transported in the shell side by convection and diffusion,
whereas, in the membrane section, the only transport mechanism is diffusion. The liquid phase
(NaOH + H2O) is transported in the lumen by diffusion and convection. The following mass
transport equations are formulated to describe the chemical absorption system in the model domains
(tube, membrane, and shell). The developed mass transport equations are presented as follows.

2.1. Tube Side

The mass balance equations for the gas components of CO2, NO2, and N2 in the tube side can be
stated, as per Equation (1), as follows:

Di,t
1
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∂
∂r

r
(
∂Ci,t
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))
+ Di,t

∂2Ci,t
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(
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)
+ Ri (1)

The subscripts in the material balance the following equations: t refers to tube side, m refers to
membrane, and s refers to shell side, where Ci,t refers to the concentration of component i in liquid
moving in the tube side, i refers to the pollutant gas components: CO2, NO2, and Ri is the rate of
reaction of the species i. The length of the fiber is scaled to avoid excessive computation and to
make the simulation result in a better profile. The scaling is performed as follows: let ξ = z/scale.
The scaling factor is substituted in Equation (1). Consequently, the equation becomes Equation (2), as
follows:
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where the velocity of liquid inside the hollow fiber (vz,t) is described by the following parabolic
equation:

vz,t =
2Qt

nπr2
1

1−
(

r
r1
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where Qt is the volumetric liquid flow rate in the tube side, and n is the number of hollow fibers.
The appropriate set of boundary conditions are specified as follows:

at z = 0, Ci,t = 0 (a)

at z = H, ∂2Ci,t
∂z2 = 0 (b)

at r = 0, ∂Ci,t
∂r = 0 (c)

at r = r1, Ci,t = mi Ci,m (d)

(4)

where mi is the dimensionless physical solubility of CO2 and NO2 in solvent, 0.82, 0.17, respectively.
The values of the dimensionless physical solubility of CO2 and NO2 were calculated from Henry’s
constant (H): 0.034 kmol/m3 atm, 0.007 kmol/m3 atm [23], respectively, using the relation mi = RTxH.
The liquid phase reactions between NO2 and NaOH took several steps. First, NO2 dissolved in
the aqueous NaOH was reacted with H2O, then neutralized with sodium hydroxide [41]. The controlling
liquid phase reactions are as follows:

2NO2 + H2O→ HNO2 + HNO3 (5)

HNO2 + NaOH→ NaNO2 + H2O (6)
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HNO3 + NaOH→ NaNO3 + H2O (7)

The overall reaction is designated, as per Equation (8), as follows:

2NO2 + 2NaOH→ NaNO2 + NaNO3 + H2O (8)

The general reaction rate is expressed in Equation (9), as follows:

rNO2−NaOH = kr,1[NO2][NaOH] (9)

The reaction is the second order with a rate constant, kr,1
(
m3 mol−1s−1

)
= 1.0× 105, [1]

The overall reaction of CO2 and NaOH is represented by the following reaction [42].

CO2 + 2NaOH→ Na2CO3 + H2O (10)

The rate of the reaction is determined, as per Equation (11), as follows:

rCO2−NaOH = kr,2[CO2][NaOH] (11)

The reaction rate constant (in Equation (11)) is kr,2 = 8.37 (m3 mol−1s−1) [23].

2.2. Membrane Side

The transport of the solute gas (CO2 and NO2) components in the membrane section confined
between r1 and r2 can be described by the steady state material balance equation (Equation (12)),
where diffusion is the only transport mechanism in the membrane phase [34], as follows:

Di,m
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r
(
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+

Di, m
scale2
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The proper boundary settings are specified, as per Equation (13), as follows:

at z = 0, ∂Ci,m
∂z = 0 (a)

at z = H, ∂Ci,m
∂z = 0 (b)

at r = r1, Di,m
∂Ci,m
∂r = Di,t

∂Ci,t
∂r (c)

at r = r2 Ci,m = Ci,s (d)

(13)

2.3. Shell Side

The steady state mass transport of solute gas (CO2 and NO2) components in the shell side
(no chemical reaction occurs in the module shell zone) is expressed in Equation (14), as follows:
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The velocity profile in the shell side is described by Happel’s free surface [40] and can be calculated
as per Equation (15), as follows:

vz,s = vz,max
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The applicable boundary conditions are specified as follows:

at z = H, Ci,s = Ci,0 (a)

at z = 0, ∂2Ci,s
∂z2 = 0 (b)

at r = r2, Di,s
∂Ci,s
∂r = Di,m

∂Ci,m
∂r (c)

at r = r3, ∂Ci,s
∂r = 0 (d)

(16)

The radius of the free surface (r3) can be determined as per Equation (17), as follows:

r3 = r2

(
1

1−ϕ

)0.5

(17)

The void fraction of the membrane module (ϕ) is calculated as per Equation (18):

ϕ =
R2
− n r2

2

R2 (18)

where R is the module inner radius, n is the number of fibers r1, and r2 is the fiber outside radius.
The parameters used in the model are shown in Table 2.

Table 2. Physical properties used in the model.

Physical Property Value Reference

Diffusivity of CO2 in shell, DCO2,s 1.855 × 10−5 m2/s [9]
Diffusivity of CO2 in tube, DCO2,t 1.92 × 10−9 m2/s [19]

Diffusivity of CO2 in membrane, DCO2,m DCO2,s × ε/τ [37]
Diffusivity of NO2 in shell, DNO2,s 1.54 × 10−5 m2/s [43]
Diffusivity of NO2 in tube, DNO2,t 1.4 × 10−9 m2/s [43]
Diffusivity of solvent in tube, Ds,t 0.5 × DCO2,t Estimated

Diffusivity of NO2 in membrane, DNO2,m DNO2,s × ε/τ [37]
Porosity, ε 0.52 [23]

Tortuosity, τ (2−ε)2/ε [9]

3. Numerical Solution

The model governing the partial differential and algebraic equations was solved simultaneously using
COMSOL software version 5.4. The software uses a finite element method to solve the model equations.

4. Results and Discussion

The accuracy of the mathematical model was checked prior to using the model for studying
the effect of the various operating parameters on the percent deletion of CO2 and NO2 from the imitated
flue gas. The model was authenticated with experimental data for the simultaneous absorption of
an NO2 and CO2 from gas mixture in a PTFE polymeric gas–liquid hollow fiber membrane [23].
The percent removal of CO2 and NO2 was calculated as per Equation (19), as follows:

%Removal =
Fg,in Ci,in − Fg,out Ci,out

Fg,in Ci,in
× 100 (19)

where Fg,in, Fg,out, Ci,in, and Ci,out are the inlet gas flow rate, outlet gas flow rate, inlet gas concentration
of component i, and outlet gas concentration of component i, respectively. The 2D surface plot
of the CO2 and NO2 concentration profile throughout the model domains are shown in Figure 2.
The figure reveals that, even though the solubility of CO2 (0.75) is higher than NO2 (0.17) in the aqueous
NaOH solution, the removal rate of nitrogen dioxide is much higher than that of carbon dioxide, which
is attributed to the high reaction rate of NO2-NaOH.
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Figure 2. The 2D surface plot for the concentration profile of CO2 (left) and NO2 (right) at other fixed
parameters (velocity of gas: 1.05 m/s; liquid rate: 0.02 m/s; 2% CO2; 300 ppm NO2; the balance is N2,
initial concentration of CO2 and NO2, 0.832 mol/m3, 0.0125 mol/m3, respectively).

Figure 3. illustrates the association of this model’s predictions relative to the experimental results
for the effect cross-flow velocity of the feed gas on the simultaneous percent removal of CO2 and NO2

with fixed other parameters. A comparison of the percent removal of NO2 and the experimental data
obtained from the literature was in good agreement; by contrast, there is a slight variance in the case
of CO2. The removal flux decreased with the increased inlet gas velocity, attributable to the low
residence time.
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Figure 3. A comparison of this model’s predictions and experimental data [23] for the influence of
the inlet gas velocity on the simultaneous percent removal of CO2 and NO2 (velocity of liquid: 0.05 m/s;
solvent concentration: 0.5 M NaOH; inlet gas composition: 2% CO2; 300 ppm NO2; the balance is N2).

The predicted results were also authenticated with the experimental investigations for the case of
the effects of the variable liquid velocities on the percent removal of NO2 and CO2 (Figure 4) at a fixed
gas cross-flow velocity of 2.11 m/s, 0.5 M NaOH, 2% CO2, 300 ppm NO2, and the balance was nitrogen.
The simulation results matched the experimental data, to a certain extent [23]. The results revealed
that the increase in solvent velocity increased the percent removal of CO2 and NO2 sharply at low
liquid velocities (below 0.05 m/s); as the liquid velocity increased further, there was a slight increase in
the percent simultaneous removal of CO2 and NO2 from the gas mixture. The insignificant increase in
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liquid velocity higher than 0.05 m/s was attributed to a decrease in the residence time. The removal
flux was calculated as per Equation (20):

Ji =
(yi,inQin − yi,outQout) × 273.15× 1000

22.4× Tg ×A
(20)

where Ji is the removal molar flux of component i (mol/m2
·s), yi,in, yi,out are the inlet and outlet molar

fraction of component i in the gas phase, Qin, Qout are the inlet and outlet gas volumetric flow rate
(m3/s), respectively, in gas molar volume (liter/mol) at standard conditions (1 atm and 0 ◦C) is 22.4; A is
the membrane surface area (m2); 1000 is the conversion factor (liter/m3); Tg is the gas temperature in K.
The 273.15 is the temperature at 0 ◦C (273.15 K).
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The influence of the speed of the gas on the molar flux of CO2 and NO2 is illustrated in Figure 5.
The figure reveals that there was noticeable increase in the removal flux of CO2 with the gas velocity;
by contrast, the removal flux of NO2 was insignificant because of its lower inlet concentration in the gas
stream (300 ppm), compared with the CO2 inlet concentration (2%). When the velocity of gas was
increased from 1.05 m/s to 2.11 m/s, the removal flux increased from 0.003 to 0.0038 mol/m2

·s; at a high
gas velocity, the increase was insignificant, from example, with the increase in gas velocity from 4.21
to 6.32 m/s, the increase in molar flux was very small. This was attributed to a decrease in residence
time, as well as the insufficient amount of solvent available for the excess amount of CO2 and NO2

components associated with the increase in gas stream volumetric feed rate.
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Figure 7 explains the effect of change in the inlet NO2 mole fraction in the feed gas stream at
a fixed concentration of CO2 (2%) on the removal flux of CO2 and NO2. The predicted results are in
the range of the experimental data [23] under the same conditions. The effect of change in the inlet
mole fraction of NO2 on the CO2 removal flux was insignificant, the CO2 removal flux was kept around
0.004 mol/m2

·s and was not influenced by the change of the NO2 inlet mole fraction. By contrast,
there was a slight increase in the removal flux of NO2 which caused an increase form 3 × 10−5 to
15 × 10−5 mol/m2

·s. This was attributed to the low inlet concentration of NO2 (in ppm) compared with
the CO2 inlet concentration (2%), and consequently, the amount absorbed from CO2 and NO2 did not
change significantly.
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100 to 500 ppm NO2; 2% CO2; the balance is N2).

5. Conclusions

Model equations based on material balance were utilized to describe and study the simultaneous
detention of NO2 and CO2 with aqueous NaOH solution in a membrane module. The hollow fiber
membranes were fabricated from PTFE polymer. The model equations were solved, and the model
predicted results were compared with data from experimental investigation available in literature.
The model was found to be in good agreement with the experimental findings. The mathematical
model was then employed to study the influence of the inlet flow rate of gas and liquid, concentration
of CO2 and NO2 in the feed stream on their percent removal and molar flux. The results revealed that
the increase in CO2 inlet mole fraction and gas cross-flow velocity shows a strong impact on the molar
flux. By contrast, the change in the NO2 inlet concentration showed insignificant influence on the CO2

removal flux.
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