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Abstract: Bioenergy supply chains can offer social benefits. In most related research, the total number
of created jobs is used as the indicator of social benefits. Only a few of them quantify social benefits
considering the different impact of economic activities in different locations. In this paper, a new
method of measuring the social benefits of bioethanol supply chains is proposed that considers job
creation, biomass purchase, and the different impacts of economic activities in different locations.
A multi-objective mixed integer linear programming (MILP) model is developed to address the
optimal design of a bioethanol supply chain that maximizes both economic and social benefits.
The ε-constraint method is employed to solve the model and a set of Pareto-optimal solutions is
obtained that shows the relationship between the two objectives. The developed model is applied
to case studies in Liaoning Province in Northeast China. Actual data are collected as practical as
possible for the feasibility and effectiveness of the results. The results show that the bioethanol supply
chain can bring about both economic and social benefits in the given area and offers governments
a better and more efficient way to create social benefits. The effect of the government subsidy on
enterprises’ decisions about economic and social benefits is discussed.
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1. Introduction

With the high-speed of economic growth, China is facing a situation of energy shortage. In 2017,
China imported a total of 400 million tons of oil from all over the world, and the ratio of import
dependence of oil has grown from 49.0% in 2008 to 65.9% in 2017 [1]. The development of the bioenergy
industry will mitigate this situation to a certain extent. Besides the energy shortage, there is another
factor prompting China to develop the bioenergy industry: greenhouse gas (GHG) emissions. As the
largest producer of carbon emissions in the world, China promised to cut 40–50% GDP unit carbon
emissions by 2020 [2]. Bioenergy consumption is nearly carbon-neutral because no carbon from fossil
fuel is released into the air [3], which will help with achieving the emissions goal.

The bioenergy industry is also a helpful way to control air pollution. Air pollution is a serious
environmental problem in China. Farmers are used to burning agricultural residue (e.g., stover and
straw) in farmland after harvesting crops, which is much easier than removing it. Research has shown
that burning straw is one of the major causes of air pollution in China, so the substantial reduction of
open field straw burning would dramatically improve the air quality [4]. The development of bioenergy
industries turns farmers into biomass suppliers. In the bioenergy industry, straw and stover are not
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burned, but sold to biorefineries as raw materials. Selling biomass could serve as an addition income
to the farmers, which has been one of the main concerns of the Chinese government in past decades.

Given the above concerns, the Chinese government has proposed an ambitious plan for the
development of bioenergy. In the plan, the output of the bioenergy industry should be no less than the
equivalent of 58 million tons of coal by 2020, including 6.8 million tons of liquid fuel such as bioethanol
and biodiesel [5].

As for social benefits, it is planned that the development of the bioenergy industry by 2020
will provide four million jobs and increase farmers’ income by the billion U.S. dollars every year [5].
The social benefits of bioenergy supply chains have been researched in many studies. However, the
social benefits mean much more in China than in other developed countries. Despite decades of
rapid economic growth, China is still a developing country. Even in eastern provinces with relatively
developed economies, there are many people living in poverty. The development of the bioenergy
industry provides a way to reduce poverty and increase household income.

With different configurations of the bioenergy supply chain, the same increase in farmers’ income
may bring about different social benefits. The same purchase amount of biomass has different effects in
developed and impoverished regions and so does job creation. It may offer more social benefits if the
created jobs are allocated in impoverished regions or biomass is purchased from the farmers in these
regions. Therefore, the design of the bioenergy supply chain has a great impact not only on economic
benefits but also on social benefits.

Thus, a comprehensive and practical analysis of economic and social benefits is needed by
both enterprises and governments. In this paper, the optimal design of bioethanol supply chains is
formulated as a multi-objective mixed integer linear programming (MILP) model, which helps decision
makers to ensure the efficiency and effectiveness of biorefinery location, the selection of biomass
suppliers, and a transportation network of biomass and products. The objectives are to maximize the
economic and social benefits.

A new method of quantifying social benefits is proposed in this paper. In prior research, the main
indicator of social benefits was job creation. Based on job creation, more comprehensive measuring
models are used for quantifying social benefits in some research. You et al. [6] extended the scope of
social benefits beyond job creation and took into account other direct, indirect, and induced economic
activities of biofuel supply chains. Some research considered the different impacts of new jobs based
on their location [7], in which the social benefits were calculated as the weighted sum of the newly
created job and the weights were location-dependent.

In this paper, both the extended scope and the impact factors based on locations are considered.
Besides job creation, biomass purchase activities are also accounted for in social benefits. The social
benefits are calculated as the weighted sum of job creation and biomass purchase, where the weights are
assigned to regions according to their per capita incomes. The core idea of the method is to consider the
fact that the same job creation and purchase activity may bring greater social benefits to poorer regions.

A factor that cannot be ignored is uncertainty. The bioenergy industry needs biomass as raw
materials. The output of biomass is highly dependent on weather conditions. The biomass availability
obviously has a significant impact on biorefinery location, purchasing costs, and transportation costs.
Besides biomass availability, the fluctuations in price and demand also affect the benefits of bioethanol
supply chains [8]. The model based on the Monte Carlo technology is developed to incorporate
uncertainties, in which scenarios are used to reflect uncertainties. The software package CPLEX is
employed to solve the model.

The ε-constraint method is employed to solve the multi-objective model and a set of Pareto-optimal
solutions are obtained that show the tradeoff between the two objectives. With the Pareto-optimal
curve, the relationship between the gain of social benefits and the loss of economic benefits can be
observed. The role of government subsidies in decisions about the two objectives is discussed.
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The model is applied to case studies in Liaoning, a province in Northeast China. Liaoning has
a high level of development in both heavy industry and agriculture and has suitable conditions for
developing bioenergy industry.

The rest of this paper is organized as follows. The related literature is briefly reviewed in Section 2.
The problem is described in detail and formulated as a multi-objective MILP model in Section 3.
The case studies and a discussion are given in Section 4. Conclusions are presented in the last section.

2. Literature Review

In the late 1980s, with the gradual increase of energy prices and the development of bioenergy
conversion technologies, the bioenergy industry began to develop rapidly, which led to the development
of research into the bioenergy supply chain. Early research focused on the comparison and selection of
conversion technologies of biorefineries. Solantausta et al. [9] conducted the initial comparison of the
economics of conversion technologies for biorefineries based on different biomass. The production
and transportation costs were calculated with the given biomass prices and capital recovery factor.
Considering storage, scheduling, and transportation costs, Cundiff et al. [10] formulated an optimal
design problem of biomass delivery system as a linear programming model, in which uncertainty
was addressed. A decision support system was developed that assisted with the assessment of the
techno-economic feasibility of biomass to ethanol schemes in [11]. Various biomass, conversion
technologies, and generating cycles were considered in the research. Forsberg [12] used a life cycle
inventory as a method to investigate the environmental load of bioenergy transportation chains. In
their study, biomass for energy was transported from Sweden to Holland. The result showed that
CO2 emissions from long-range shipping were of minor importance compared to emissions from local
bioenergy systems and the long-range transportation did not affect the environmental benefits.

Numerous research studies have been conducted to support the development of the bioenergy
supply chain. According to the attributes of the given parameters, models can be categorized
into deterministic and stochastic categories. In deterministic models, all parameters are given
and deterministic. The optimal design and operation of bioenergy supply chains are formulated
deterministically as linear programming [13,14], mixed integer linear programming [15,16], and mixed
integer non-linear programming [17]. Deterministic models have been widely used for decades
but have limitations because they are too idealistic in that all parameters or constraints have to be
known and deterministic. Therefoee, stochastic models are employed to incorporate uncertainties into
studies. Awudu and Zhang [18] reviewed stochastic models and uncertainties in research on bioenergy
supply chains. Uncertainties are categorized into five groups, including biomass supply uncertainties,
transportation and logistics uncertainties, production and operation uncertainties, demand and price
uncertainties, and other uncertainties. The Monte Carlo simulation technique was considered an
effective means to solve uncertainties [19].

Some research formulates the bioenergy supply chain optimization as a single-objective model in
which only the economic benefits, maximization of profits, or minimization of total costs are considered.
Dunnett [20] developed a combined production and logistics model to investigate cost-optimal system
configurations for biomass supply and bioethanol distribution in which the spatially explicit technique
was employed. Kim et al. [21] developed a MILP to maximize the overall profit of the bioenergy supply
chain, which enabled the selection of fuel conversion technologies, capacities, biomass locations, and
the logistics of transportation.

In addition to economic benefits, the potentials in environmental and social benefits of bioenergy
supply chains have been noticed by researchers. McBride et al. [22] defined 19 environmental indicators
to support the assessment of the environmental sustainability of bioenergy systems. Numerous studies
integrated the environmental and economic objectives to analyze the impacts of bioenergy supply
chain, in which the environmental objective was formulated as the maximization of GHG emissions
savings [23] or the minimization of GHG emissions [24,25].
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Dale et al. [26] identified 16 indicators for assessing the socioeconomic sustainability of bioenergy
systems including job creation, an increase in household income, etc. You et al. [6] addressed the
optimal design and operations of cellulosic ethanol supply chains under economic, environmental,
and social criteria that were measured by the number of local jobs accrued. Job creation was also used
to measure the social benefits in [27–29]. Only a few studies considered different levels of impact
on jobs created in different locations. Mota et al. [30] proposed a multi-objective model in which the
created jobs were more favored in less-developed regions. Cambero and Sowlat [23] incorporated
social benefits in multi-objective optimization of bioenergy and biofuel supply chains. The social
benefits indicator was calculated based on the weighted sum of all the new jobs created across the
supply chain and the assigned weights are based on the preferability of creating each type of job in
each location.

Not only job creation, but also buying biomass from farmers contribute to social benefits, and the
same purchase account from different regions or the same wages paid to regions may offer different
levels of social benefits. To the authors’ knowledge, no bioenergy supply chain optimization study has
considered both the impact of economic activities other than job creation and the different impact of
economic activities on different locations.

3. Description and Model of the Problem

3.1. Problem Description

The problem addressed in this study can be described as follows. The area to be analyzed is
divided into regions according to the administrative divisions and each region is deemed as a node
that may have three roles in the problem. First, it is a potential biomass supplier with a supply capacity
related to the yield of corn and rice. The supply capacity is uncertain since it is significantly affected by
weather conditions. The biomass, such as stover and straw, needs to be collected, dried, and stored
before being transported to biorefineries. Therefore, if a node is selected to be a biomass supplier, a
collection station has to be built. The fixed cost of the facility construction and the variable cost of
collecting unit biomass are known. Collection stations bring social benefits to regions by purchasing
biomass and job creation.

A node is also a customer that represents bioethanol demand. The demand and price are affected
by population, development levels, and macroeconomic situations. Thus, the demand and the price of
nodes are both considered uncertain.

Lastly, a node is a candidate location of biorefineries. The biorefinery location is the most important
decision in the optimal design, influencing all the other decisions. The biorefinery location affects the
social benefits caused by the created jobs since the weight is decided by biorefinery locations. This is
also true for supplier selection and collection station location. The weights are related to regional per
capita income and how to decide the weights is described in Section 4.

Besides the facility location, the conversion technology and scale of each biorefinery are to be
determined as well. The number of created jobs, the conversion rate, and the unit production cost are
all influenced by the selection of conversion technologies and scales.

The bioethanol supply chain addressed in this paper is shown in Figure 1, which has three levels:
collection stations, biorefineries, and customers. Biomass and bioethanol are transported among levels
of the supply chain by road freight. Due to density, risk, and other factors, biomass and bioethanol
have different unit freight rates. The model has two objectives to maximize: the economic and social
benefits. The former is measured by calculating the difference between the revenue and the total
cost. The revenue comes from the price times the fulfilled demand and the total cost consists of
six components, including (1) the annualized cost for facility constructions; (2) the purchase cost
of biomass; (3) the loading and transportation cost of biomass; (4) the cost of collecting biomass in
collection stations; (5) the production cost in biorefineries; and (6) the transportation costs of bioethanol.
The definitions of the average total cost and its components are given by Equations (3)–(10). The social
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benefits are measured by the weighted sum of the purchase expenditure and the salary expenditure in
collection stations and biorefineries.

Prior studies usually use the total number of created jobs, the weighted sum of job hours in [7],
or the number of equivalent jobs of all economic activities in [6] as one of the indicators of social
benefits. All these indicators are not used in this study; instead, the total wages are used because
the total social benefits also involve the purchase of biomass. If the number of created jobs or job
hours is used as one of two indicators of the social benefits and the purchase of biomass is the other
indicator, weights are needed to integrate the two indicators to measure the total amount of the social
benefits because their units are inconsistent. Compared to setting weights for the integration of the
indicators with different units, it is easier and more feasible to use the sum of expenditures of salary
and purchase of biomass as the indicator of the social benefits because they are all calculated in terms
of money. Although weights are not needed to unify indicators of different units, the weights are used
to differentiate the impacts of the same economic activities on social benefits to different regions.

With the objectives, the decisions to be made include (1) biorefinery location, (2) selection of
conversion technologies, (3) selection of scales of biorefinery, (4) selection of biomass suppliers, (5)
production of bioethanol, and (6) transportation among nodes.

Processes 2019, 7, x FOR PEER REVIEW 5 of 16 

 

benefits. All these indicators are not used in this study; instead, the total wages are used because the 
total social benefits also involve the purchase of biomass. If the number of created jobs or job hours 
is used as one of two indicators of the social benefits and the purchase of biomass is the other 
indicator, weights are needed to integrate the two indicators to measure the total amount of the social 
benefits because their units are inconsistent. Compared to setting weights for the integration of the 
indicators with different units, it is easier and more feasible to use the sum of expenditures of salary 
and purchase of biomass as the indicator of the social benefits because they are all calculated in terms 
of money. Although weights are not needed to unify indicators of different units, the weights are 
used to differentiate the impacts of the same economic activities on social benefits to different regions. 

With the objectives, the decisions to be made include (1) biorefinery location, (2) selection of 
conversion technologies, (3) selection of scales of biorefinery, (4) selection of biomass suppliers, (5) 
production of bioethanol, and (6) transportation among nodes. 

 
Figure 1. General framework of bioenergy supply chain. 

3.2. Model of the Problem 

Parameters will be introduced when used. Indices, sets, and decision variables are given as 
follows. 

Indices/sets 𝑁 set of nodes 𝑖 index of candidate locations for biomass suppliers, 𝑖 ∈ 𝑁  𝑗 index of candidate locations for biorefineries, 𝑗 ∈ 𝑁 𝑚 index of demand zones, 𝑚 ∈ 𝑁 𝑅 set of biomass type, indexed by 𝑟 ∈ 𝑅 
L set of scales of biorefineries, indexed by 𝑙 ∈ 𝐿 
T set of conversion technologies, indexed by 𝑡 ∈ 𝑇 𝑆 set of scenarios, indexed by 𝑠 ∈ 𝑆 

Decision variables 𝐵   the amount of biomass r purchased from supplier i in scenario s 𝑇𝑄  the amount of biomass r transported from i to j in scenario s 𝑇𝑄  the amount of bioethanol transported from j to m in scenario s 

Figure 1. General framework of bioenergy supply chain.

3.2. Model of the Problem

Parameters will be introduced when used. Indices, sets, and decision variables are given as follows.

Indices/sets

N set of nodes
i index of candidate locations for biomass suppliers, i ∈ N
j index of candidate locations for biorefineries, j ∈ N
m index of demand zones, m ∈ N
R set of biomass type, indexed by r ∈ R
L set of scales of biorefineries, indexed by l ∈ L
T set of conversion technologies, indexed by t ∈ T
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S set of scenarios, indexed by s ∈ S

Decision variables

Birs the amount of biomass r purchased from supplier i in scenario s
TQBM

ijrs the amount of biomass r transported from i to j in scenario s
TQBF

jms the amount of bioethanol transported from j to m in scenario s
W jrlts the amount of biomass r converted in biorefinery j with scale l and technology t in scenario s
V js the amount of bioethanol output in biorefinery j in scenario s
ZCi binary: 1, if a collection station is to be built at i; 0, otherwise
ZR jlt binary: 1, if a biorefinery with scale l and technology t is to be built at j; 0, otherwise

3.3. Economic Objective: Maximizing Annualized Profit

maxAverageRevenue−AverageCost (1)

where
AverageRevenue =

1
|S|

∑
jms

Pms·TQBF
jms (2)

AverageCost = CAnnualizedFix + CPurBM + CTranBM + CCS + CProd + CTranBF (3)

The economic objective is to maximize the total net profit in Equation (1). The revenue is earned
by fulfilling the demand of customers. The average revenue is calculated as the sum of revenues in
all scenarios divided by the number of scenarios as shown in Equation (2), where Pms is the price
of bioethanol of demand zone m in scenario s. The average total cost and its components are given
in Equation (3). The average total cost is the sum of annualized fixed costs for the constructions
of biorefineries and collection stations CAnnualizedFix, the average cost of purchasing biomass for all
scenarios CPurBM, the average cost of transporting biomass from collection stations to biorefineries
CTranBM and bioethanol from biorefineries to customers CTranBF, the average operation cost of collection
stations CCS, and the average cost of converting biomass into bioethanol CProd.

The annualized fix cost for constructions is given in Equation (4):

CAnnualizedFix =
IR

1− 1
(1+IR)P

·FC, (4)

where IR is the discount rate, P is the project lifetime in terms of years and FC is the total cost for facility
constructions and calculated in Equation (5).

FC =
∑

i
ici·ZCi +

∑
jtl

ic jlt·ZR jlt, (5)

where ici is the construction cost of building a collection station in i, and icjlt is the construction cost of
building a biorefinery in j with scale l and conversion technology t.

CPurBM =
1
|S|

∑
irs

cBM
ir ·Birs, (6)

where cBM
ir is the cost of purchasing unit biomass r in supplier i.

CTranBM =
1
|S|

∑
i jrs

(cLoad
ir + cTran

ijr )·TQBM
ijrs , (7)

where cLoad
ir is the cost of loading unit biomass r in supplier i and cTran

ijr is the cost of transporting unit
biomass r from supplier i to biorefinery j.
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CCS =
1
|S|

∑
i jrs

cCol
ir ·TQBM

ijrs , (8)

where cCol
ir is the operation cost of collecting unit biomass r in supplier i.

CProd =
1
|S|

∑
jrlts

cProd
jrlt ·W jrlts, (9)

where cProd
jrlt is the production cost of converting biomass r with conversion technology t and scale l in

biorefinery j.

CTranBF =
1
|S|

∑
jms

cTran
jm ·TQBF

jms, (10)

where cTran
jm is the cost of transporting unit bioethanol from biorefinery j to customer m.

3.4. Social Objective: Maximizing the Social Benefits Measured by the Weighted Sum of Wages of Jobs Created
and Expenditure of Purchasing Biomass

maxSocialBene f itsTotalWages + SocialBene f itsPurBM, (11)

where
SocialBene f itsTotalWages =

1
|S|

(∑
irs
βi·bWCol

ir ·Birs +
∑

jrlts
β j·bWConv

jtl ·W jrlts

)
(12)

SocialBene f itsPurBM =
1
|S|

(∑
irs
βi·cBM

ir ·Birs
)
, (13)

bWCol
ir is the salary expenditure of collecting unit biomass r in station I and bWConv

jtl is the salary
expenditure of converting unit biomass in a biorefinery with scale l and technology t in j. βi and β j are
the weights of node i or j for the impact of economic activities on social benefits. The value of βi and
β j are related to regional per capita income. The regions with lower per capita income have larger
weights. βi = β j, when i = j.

3.5. Constraints

Birs ≤ ydirs, ∀i, r, s (14)

Birs ≤M·ZCi, ∀i, r, s (15)∑
j
TQBM

ijrs ≤ Birs, ∀i, r, s (16)∑
jr

TQBM
ijrs ≤ capCol, ∀i, s (17)

ydirs is the available amount of biomass r in supplier i in scenario s. Equation (14) assures the
purchase amount of biomass is no more than its available amount. M is a sufficiently large number
and Equation (15) indicates that biomass cannot be purchased where no collection station is built.
Equation (16) assures the total amount of biomass r transported to all biorefineries does not exceed the
purchase amount. Equation (17) assures that the amount of transportation from collection stations
does not exceed the capacity limitation of stations.

W jrtls ≤M·ZR jtl ∀ j, r, t, l, s (18)

W jrlts ≤
∑

i
TQBM

ijrs ∀ j, r, t, l, s (19)

V js ≤
∑

r
µConv

rlt ·W jrtls ∀ j, r, t, l, s (20)
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V js ≤
∑

l
capR f

l ·ZR jtl ∀ j, t, l, s (21)

V js ≥
∑

l
θl·capR f

l ·ZR jtl ∀ j, t, l, s (22)

Equation (18) indicates that a biorefinery can only produce with the designated scale and
technology. Of course, no production is allowed if no biorefinery is built. Equation (19) is the mass
balance constraint in biorefineries. The right-hand is the sum of the amount of biomass r transported
to biorefinery j from all suppliers in scenario s. The left-hand is the amount of biomass r to be used in
biorefinery j with scale l and technology t in scenario s. Equation (20) is the mass balance constraint
in production, where µConv

rlt is the conversion factor from biomass r to bioethanol with the selected
scale and technology. Equations (21) and (22) define the maximum and minimum annual production
capacity, where capR f

l is the production capacity of biorefineries with scale l and θl is the minimum
production amount as a percentage of capacity.∑

m
TQBF

jms ≤ V js, ∀ j, s (23)∑
j
TQBF

jms ≤ dms, ∀m, s (24)

Equation (23) assures the amount of bioethanol transported to customers from biorefinery j in
scenario s does not exceed the output of the biorefinery. Equation (24) ensures the amount of the
bioethanol transported to customers does not exceed customers’ demand.∑

tl
ZR jtl ≤ 1, ∀ j (25)

Equation (25) indicates that at most one configuration of scale and technology can be selected for
a biorefinery.

4. Case Study and Discussion

The developed multi-objective model is applied to case studies in Liaoning Province, located in
Northeastern China. The province has a high energy demand and its agriculture is quite developed.
The chief agricultural products in this area are corn and rice. The good accessibility of biomass provides
the foundation for developing the bioenergy industry. As a developed province, Liaoning Province
has a good transportation infrastructure.

The model is coded in CPLEX Studio 12.6.1 and solved by the same optimization software package.
All the computational studies were performed on a Lenovo L440 laptop with Intel i7-4712MQ CPU
and 8 GB RAM.

4.1. Input Data

Sources of parameters can be categorized into three types. The first type is parameters that
can be found precisely in references such as availabilities of local biomass, distances among nodes,
etc. The second type of parameter is obtained through conducting investigations into, e.g., the
transportation costs of biomass and bioethanol from local transportation companies. The rest of the
parameters are approximated from various literature sources.

As described above, the case studies are conducted for Liaoning Province which comprises
14 cities. Each city is considered a node. A map of Liaoning is presented in Figure 2.

The distance between each pair of adjacent cities is obtained from the Liaoning Province Atlas [31]
and the distance between each pair of any two cities is calculated using the shortest path method.
The unit transportation costs of biomass and bioethanol are obtained from the weekly report of road
freight index issued by China Federation of Logistics and Purchasing [32] and the investigation to local
transportation companies. The parameters of transportation costs are presented in Table 1, including
the unit transportation cost of biomass from collection stations to biorefineries, the unit loading cost
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of biomass in collection stations, and the unit transportation cost of bioethanol from biorefineries
to customers.
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The Monte Carlo technology is employed to incorporate uncertainties in the optimization of the
bioethanol supply chain, in which 100 scenarios are generated and used to reflect the fluctuations of
uncertain parameters, such as the available amount of biomass, the demand of customers, and the
price of bioethanol. With statistical yearbooks [33], the annual gasoline consumption of each city in
the past 10 years can be obtained. In 2017, an implementation plan of promoting the mandatory use
of bioethanol gasoline for vehicles was issued by the National Energy Administration of China [34],
in which gasoline with 10% bioethanol content will be used nationwide by 2020. With this ratio, the
bioethanol consumption of the past 10 years can be calculated. Based on the historical data, bioethanol
demands of each city are generated for scenarios, assuming the demand follows the normal distribution.
The bioethanol demands of each city are presented in Figure 3a.

Table 1. Parameters of transportation costs.

Parameters Value ($)

Biomass transportation cost 0.15 ton−1
·km−1

Biomass loading cost 4.38 ton−1

Bioethanol transportation cost 0.29 ton−1
·km−1

The price of bioethanol in China is not determined by the energy market but set to 0.911 times the
price of petrol (92 RON) which is adjusted by the Chinese government regularly [35]. The prices of
bioethanol in the case studies are generated based on the historical prices.
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Both the prices and the available amount of biomass belong to the first type of parameters. The yield
of corn and rice can be obtained from Liaoning Province Yearbook of Statistical [33]. The available
amount of stover and straw can be calculated by the ratio between corn/rice and stover/straw. The price
of biomass can be found in the authors’ previous work [36]. The total amounts of stover and straw
available in the regions are presented in Figure 3b.

There is only one size for collection stations. The fixed construction cost and variable cost for
collecting unit biomass are obtained from an investigation to a bioethanol producer. The construction
cost of collection stations is $120,000, and the collecting cost for stover and straw is $12.9 per ton.

The conversion technology used in the existing bioenergy industry in China is mainly a
first-generation technology that converts corns into bioethanol. Because first-generation conversion
technology consumes a large amount of food, it has been limited by the Chinese government which
decided to promote the development of cellulose bioenergy. Third-generation technology is able to
convert cellulose and woody biomass into bioethanol. Given that Liaoning is a developed area in
agriculture and does not have many forests, technologies suitable for woody biomass are excluded from
consideration and simultaneous saccharification and fermentation conversion is the only technology
considered in the case studies. The techonomic parameters of biorefinery of two scales, 45 million
gallons per year (MGY) and 80 MGY, are obtained from You et al. [6] and the Aspen Plus process model.

The wages for producing unit bioethanol are obtained by administering questionnaires to the
bioethanol producer and investigating the annual reports of listed companies. The wage for collecting
unit biomass is obtained from questionnaires as well. The wage for collecting unit biomass is different
from the costs of collecting and loading biomass which include labor costs, equipment costs, and other
material costs. The gathered data are averaged and adjusted, considering income differences among
provinces. The wages for producing unit bioethanol are $17.42 per ton in a large-scale biorefinery and
$18.32 in a small one. The wage for collecting unit biomass is $7.3 per ton.

The social benefit weights are related to regional per capita income, PCi, which can be obtained
from the yearbooks [33]. Let PC denote the value of the lowest per capita income. The weight of
the region i is calculated as βi = PC/PCi. The values of regional per capita income are presented in
Figure 3c.
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Figure 3. Data of regions: (a) the demand for bioethanol (thousands of tons); (b) the available amount
of biomass (thousands of tons); (c) per capita income ($).

4.2. Case Studies

In this subsection, two case studies considering only economic benefits are conducted. Both case
studies pursue profit maximization. The difference is that the supply chain does not have to meet all
the demand in the first one and all demand must be met in the second.

4.2.1. Case Study 1: Bioethanol Supply Does Not Have to Meet all the Demand

In such conditions, the model with the economic objective in Equation (1) and meeting constraints
(14)–(25) is solved. The optimal net profit is found to be $36,355,293. The total revenue and cost
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are $347,355,880 and $311,000,586, respectively, where the profit margin is 10.47%. The percentages
of components in the total cost are shown in Figure 4. The production cost accounts for the largest
proportion of the total cost, 42%. The rest (58%) consists of the annualized construction cost (11%), the
total transportation cost (14%), the total cost of purchasing biomass (21%), and the cost of collection
stations (12%).
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Figure 4. Comparison of cost breakdown between the two case studies.

The biorefineries’ locations and the supply of biomass and bioethanol are shown in Figure 5.
A large-scale biorefinery and a small one are located in Shenyang and Jinzhou, respectively. The average
demand of all scenarios is 368,200 tons and the minimum and maximum total demand in all scenarios
are 352,000 and 389,100 tons, respectively. The sum of the production capacity of large-and small-scale
biorefineries is 373,300 tons. In most scenarios, all demand is met, but in a few scenarios, not all
demand is met because of the fluctuation in demand. Dalian, a city at the end of a peninsula and far
away from other cities, had its demand fulfilled in 79 scenarios, and not fulfilled in 21 scenarios. Since
it is not required to meet all demand in all scenarios, the decision of the biorefineries is acceptable.
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Figure 5. Bioethanol supply chain in Case Study 1. (a) Selected biomass supplier; (b) customer regions
supplied by biorefineries.

Shenyang is the economic and geographical center of Liaoning, has the most bioethanol demand,
and is the second-largest grain producer, behind Tieling. It is quite reasonable to locate a large-scale
biorefinery in Shenyang. Jinzhou has the fifth-greatest demand for bioethanol and is the third-largest
grain producer in Liaoning. Jinzhou is also in a relatively central position and borders on six other cities.
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Two biorefineries and their biomass suppliers can be seen in Figure 5a, and the customers supplied by
the biorefineries can be seen in Figure 5b, where the region in the third color is the bioethanol supplied
by both biorefineries simultaneously.

4.2.2. Case Study 2: Demand of all Nodes Needs to be Fully Met

China has launched a series of bioenergy development plans, one of which is to promote the
mandatory use of bioethanol gasoline in future. With this prospect, a case study is conducted with a
new constraint, Equation (26) taking place of Equation (24), which means in all scenarios the demand
of all nodes needs to be fully met. ∑

j
TQBF

jms = dms ∀m, s (26)

Solving the updated model with the economic objective function and constraints (14)–(23), (25)–(26),
in the optimal solution, three small-scale biorefineries are to be constructed, in Anshan, Jinzhou, and
Tieling, as shown in Figure 6a. The supply regions of three biorefineries are presented in Figure 6b.
The regions in the fourth color are the bioethanol supplied by two biorefineries simultaneously.

Since it is required to meet all demand in all scenarios and large-and small-scale biorefineries are
not able to supply enough bioethanol, two large-scale or three small-scale biorefineries are needed.
Both options can meet the bioethanol demand. The first option has a lower unit production cost but
needs more total investment than the second. Adding a biorefinery can make biorefineries closer to
the biomass suppliers and customers, thereby reducing the total transportation costs. Given these
parameters, the second option has the lower total cost.

The optimal net profit is found to be $35,979,126 and the total revenue and total cost are $348,307,766
and $312,328,640, respectively, where the profit margin is 10.33%. The percentages of components in
the total cost and the comparison with Case Study 1 are shown in Figure 4.Processes 2019, 7, x FOR PEER REVIEW 12 of 16 
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supplied by biorefineries.

4.3. Discussion of the Relationship between Economic and Social Benefits

Both economic and social benefits are considered in the discussion. The ε-constraint method is
employed to obtain a set of Pareto-optimal solutions to show the tradeoff between two objectives,
as has been used in prior studies [6,7,37]. The procedure of the method is presented as follows.

Step 1. Solve the model with objective Equation (27) and constraint (14)–(25), find the value of the
social benefits and let the value be the minimum value of the social benefits.
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max (AverageRevenue−AverageCost) + λ
(
SocialBene f itsTotalWages + SocialBene f itsPurBM

)
, (27)

where λ is a very small number (on the order of 10−6).
Step 2. Solve the model with the social objective Equation (11), constraints (14)–(25) and (28):

AverageRevenue−AverageCost ≥ 0, (28)

which requires the revenue to be greater than the total cost. Let the value of the social benefits be the
maximum value of the social benefits.

Step 3. Let Interval = (MaximumValue−MinimumValue)/20 and p = 1.
Step 4. Let ε = MinimumValue + Interval·p, and solve the model with the objective function (27),

constraints (14)–(25) and constraint (29):

SocialBene f itsTotalWages + SocialBene f itsPurBM
≥ ε, (29)

Step 5. If p < 19, p = p + 1, repeat Step 4; otherwise the method ends.
With the method, a set of Pareto-optimal solutions is obtained and the corresponding curve is

shown in Figure 7. All solutions are arranged in increasing order of social benefits. The slope sq (2 ≤ q
≤ 20) between adjacent solutions is calculated by:

sq =
(
Economicq−1 − Economicq

)
/
(
Socialq − Socialq−1

)
, (30)

where Socialq and Economicq denote the social and economic benefits of solution q in the Pareto set. sq

means the ratio between the decrement of economic benefits and the increment of social benefits of
adjacent solutions. The accumulative slope asq between solution q and solution 1 is calculated as:

asq =
(
Economic1 − Economicq

)
/
(
Socialq − Social1

)
, (31)

where asq (2≤ q≤ 20) represents the ratio between the decrement of economic benefits and the increment
of social benefits of solution q compared to solution 1. For decision makers, asq shows the ratio between
the loss of economic profits and the gain of social benefits of different supply chains compared to the
supply chain with the maximum economic benefits. Both sq and asq are shown in Figure 7. It can be
seen that asq is smaller than 0.5 in a wide range.

There are nine different configurations of biorefineries and collection stations corresponding to the
Pareto-optimal solutions, which are presented in Table 2 in increasing order of social benefits. It can be
observed that with the social benefits increasing, facilities tend to be located in less-developed regions
that have greater weights. Because less-developed regions are relatively far away from regions with
greater demand, the total transportation cost increases with the increase in the social benefits. More
facilities bring higher annualized construction costs.

As shown in Figure 7, at the left end of the social-economic curve, the slope is rather small, which
means that the bioethanol supply chain could bring about social benefits with a small loss in profit.

The curves are also helpful for governments. In China, the government spends lots of money
on guaranteeing basic living conditions for poor people and developing poor regions every year.
The development of the bioethanol industry offers a better way to spend the money. Subsidizing
bioenergy enterprises may bring about more social benefits than the subsidy spent. If a decision
maker from an enterprise is unwilling to lose any profit to gain social benefits, it may be an option
for governments to subsidize the enterprise to compensate for its economic loss so that the enterprise
offers several times more social benefits than the subsidy through the bioethanol supply chain.
The curve of asq helps governments decide how much the subsidy should be to arrive at an appropriate
input-output ratio.
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Figure 7. Pareto-optimal curve between economic and social benefits.

In our case, the value of s2 is 0.09, which means social benefits equating to more than 10 times the
subsidy can be offered through the bioethanol supply chain.

Table 2. Configurations of Pareto solutions.

Configuration Biorefinery Collection Station

1 Shenyang (1), Jinzhou (7) Shenyang (1), Fushun (8), Jinzhou (7), Liaoyang (9),
Panjin (3), Tieling (14), Huludao (10)

2 Shenyang (1), Jinzhou (7) Shenyang (1), Fushun (8), Jinzhou (7), Panjin (3), Tieling
(14), Huludao (10)

3 Shenyang (1), Jinzhou (7) Shenyang (1), Jinzhou (7), Panjin (3), Tieling (14),
Huludao (10)

4 Shenyang (1), Jinzhou (7) Shenyang (1), Jinzhou (7), Chaoyang (13), Tieling (14),
Huludao (10),

5 Anshan (5), Jinzhou (7),
Tieling (14)

Anshan (5), Jinzhou (7), Tieling (14), Yingkou (4),
Liaoyang (9), Huludao (10)

6 Anshan (5), Chaoyang (13),
Tieling (14)

Anshan (5), Benxi (6), Jinzhou (7), Yingkou (4), Liaoyang
(9), Huludao (10), Tieling (14)

7 Jinzhou (7), Tieling (14) Panjin (3), Tieling (14), Chaoyang (13), Huludao (10)

8 Fuxin (12), Tieling (14),
Chaoyang (13)

Jinzhou (7), Fuxin (12), Tieling (14), Chaoyang (13),
Huludao (10)

9 Jinzhou (7), Tieling (14),
Fuxin (12)

Jinzhou (7), Fuxin (12), Tieling (14), Chaoyang (13),
Huludao (10)

Note: The number following the city name is the ranking of the city’s per capita income in Liaoning Province.

5. Conclusions

Energy shortages, GHG emissions, and air pollution have been prompting the government to
develop the bioethanol industry in China. It is necessary to research the optimal design of a bioethanol
supply chain to assist enterprises and government with making decisions. China has a large number
of people living in poverty. The bioethanol supply chain can offer many social benefits, which is a
good opportunity for China to reduce poverty and increase the incomes of poor people. The main
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motivation for this study was to analyze the potential economic and social benefits of the bioethanol
supply chain in Northeast China and determine the relationship between the two objectives.

A multi-objective MILP model was built to formulate the problem. A new method of measuring
the social benefits was proposed. Two case studies in Liaoning Province analyzed the economic
potentials of the bioethanol supply chain. In both cases, the bioethanol supply chain was proven to be
profitable, with profit margins of 10.47% and 10.33%, respectively. The ε-constraint method was used
to obtain the Pareto-optimal curve between economic and social benefits. The curve showed that the
bioethanol supply chain could bring about many more social benefits with a relatively small loss of
profit. In our case, the ratio between the loss in economic benefits and the gain of social benefits could
be as small as 0.09. It was implied that governments may play an important role through subsiding
enterprises so that enterprises can offer social benefits without economic losses.
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