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Abstract: Predictive analytics is usually cited as one of the most important pillars of the digital
transformation. For the oil industry, specifically, it is a common belief that issues like integrity
and maintenance could benefit from predictive analytics. This paper presents the development
and the application of a process-monitoring tool in a real process facility. The PMA (Predictive
Maintenance Application) system is a data-driven application that uses a multivariate analysis in
order to predict the system behavior. Results show that the use of a multivariate approach for process
monitoring could not only detect an early failure at a metering system days before the operation crew,
but could also successfully identify, among hundreds of variables, the root cause of the abnormal
situation. By applying such an approach, a better performance of the monitored equipment is
expected, decreasing its downtime.

Keywords: fault diagnosis; conditional-based maintenance; canonical variate analysis; fiscal meters;
real oil and gas processing facility

1. Introduction

During the last few decades, the chemical industry has been constantly challenged to improve
production efficiency with increasing demand for energy savings, environmental protections,
minimization of product rejection, and efficient use of sources involved in the production processes.
To satisfy higher standards, modern processes are including sophisticated and more accurate
monitoring technologies in order to detect abnormalities at the early stages. These technologies
allow for the identification and mitigation of harmful conditions, making industrial processes safer.

A large variety of process monitoring approaches has been developed. Russell et al. [1] classified
them into data-driven, analytic, and knowledge-based methods. Data-driven methods are derived
directly from collected process operation data and fault detection and diagnosis. While data-driven
methods do not use first principle models, analytic approaches apply methodologies that employ
first principle models developed from physical-chemical principles involved during the process
operation [2–5].

Knowledge-based approaches are more used in systems that are poorly instrumented and hardly
represented by phenomenological first principle models. The main purpose of these methods is to
reconstruct the cause-effect relation [6–9], pattern recognition [10], and capture human diagnostic
associations that are not easily represented by first principle models [11–15].
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First principle models suffer several drawbacks. First, the complexity of modern industrial
processes makes the development of highly-reliable first principle models harder. Thus, the
advancement in data collection technologies reinforces the implementation of monitoring systems
based on data-driven methods. Many works and research related to Fault Detection and Diagnosis
(FDD) have used data-driven approaches during the past three decades. Many of them were
summarized and reviewed by [4,16–25].

In addition, some studies of fault detection, diagnosis, and prognosis monitoring systems
applied in real case scenarios were presented by Wong et al. [26], where a real-time fault diagnosis
procedure was proposed for a gas turbine generator system. Namburu et al. [27] applied data-driven
techniques based on pattern recognition and support vector machines for an automotive engine
case. Patan and Parisini [28] used a neural network system to detect and isolate faults applied
in a sugar evaporation process. Hu and Tse [29] used Relevant Vector Machines (RVM) for fault
prognostics in oil sand pumps. Other works with real cases containing fault detection and diagnosis
implementation were presented in [30–32]. Furthermore, some representative simulated cases were
presented in [33–40].

The monitoring, detection, and diagnosis of faults in highly-capital-intensive industries such
as oil and gas plants should be operated with high reliability and high levels of availability since
the faults have a significant influence on the manufacturing activity and the safety condition of the
operation. As the complexity of offshore plants has increased, considerable costs and numerous efforts
are required in the operation and maintenance phase of these plants. Natarajan and Srinivasan [39]
showed the statistics of economic losses in the major accidents of offshore oil and gas platforms. Some
of the most common process-related incidents on offshore platforms are due to leaks and blockage
in flow lines, sudden changes in temperature and pressure, and failures in safety valves and the
controller. Hwang et al. [41] also discussed the economic impact of operation and maintenance cost on
offshore platforms.

However, in the last few decades, offshore plants have used conservative maintenance
methods derived from time-based preventive maintenance and breakdown maintenance strategies.
Nevertheless, the growing incorporation of Industry 4.0 paradigms has led to an intensive
modernization and adoption of intelligent monitoring techniques with data fusion strategies. Thus,
more proactive and sophisticated methodologies such as conditional-based monitoring (CBM)
methods have been more frequently implemented in the petrochemical industry. Recent advances in
Condition-Based Maintenance and Prognostics and Health Management (CBM/PHM) have prompted
the development of new and innovative algorithms for fault, or incipient failure, diagnosis, and failure
prognosis aimed at improving the performance of critical systems. Hwang et al. [42] summarized
the results of some CBM implemented systems related to the oil and gas industry. In the offshore
application field, there were some studies reviewed in [43–45]. In addition, Cibulka et al. [46] described
some approaches for Conditional-Based Maintenance (CBM) of induction machines and drive trains in
offshore applications. A few works showing the economic impact of CBM strategies’ implementation
on real industries have been developed. Gowid et al. [47] presented a profitability study of CBM
strategies in LNG platforms.

Despite that, the development and performance of CBM strategies, fault detection-diagnosis,
and monitoring methods applied to a real plant environment are still a challenging area to
researchers. Detailed implementations and architecture systems of CBM strategies were presented in a
few works [14,42,43].

Therefore, this work presents a monitoring and fault prognosis strategy applied to a Petrobras
facility aiming at the detection of abnormalities along the operation. We present the system architecture,
the main components of the strategy, and the theoretical techniques employed. This work is organized
as follows: Section 2 consists of a description of the monitoring strategy, the system architecture,
and the main components. Furthermore, a theoretical background of the principles used by the
method are summarized. Section 3 describes the oil-gas fiscal metering station where the monitoring
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strategy was implemented. Furthermore, the process diagram, measured variables description,
and fault description are also presented. Section 4 introduces the subjects to be considered when
implementing the monitoring system. Finally, this study is concluded with a summary and discussion
of its contributions.

2. PMA: A System for Process Monitoring

The proposed CBM system for fiscal meter monitoring, named PMA (Predictive Maintenance
Application), is defined by (a) gathering the measure’s status data and detecting the abnormalities,
(b) diagnosing the sensor status, (c) establishing with high precision the failure time, and (d) performing
the appropriate procedures for fiscal meter maintenance. In this section are summarized the main
features of the PMA system.

The PMA system is a web application operating on a server, and it is built on the management and
prognostic framework. The overall structure is illustrated in Figure 1 where it is possible to identify
its five main components: data acquisition unit, denoted as SCADA (Supervisory Control and Data
Acquisition), communication unit, engine system, database, and client system.

Client SystemEngine System
Application software 

for real-time data 
management

Database Server

SCADA

Data collected 
from process

Communication Unit

PMA Server

Figure 1. Description diagram of the PMA system.

2.1. Online PMA System and Remote PMA System

The flow of information can be described as follows. Initially, the SCADA unit collects online data
from the process using peripheral devices such as Programmable Logic Controllers (PLCs) and Remote
Terminal Units (RTUs), which interfaces with the plant actuators and sensors. Then, the process data
are managed by the communication unit, which is implemented in the PMA server, and it is the
central hub of the entire system. The communication unit is responsible for storing, gathering, and
transmitting data among each component. It stores and manages information and scheduled activities
registered by the user, serves the engine system with data, triggers the execution of activities by the
engine system, as well as stores all the results calculated by the engine system. Subsequently, the
ordered data are processed by the engine system, which does the calculations registered by the user,
and it is also implemented in the PMA server, being capable of doing online process monitoring and
online warning, fault diagnosis, and fault prediction. The engine system is also designed to conduct
various offline and complex functions, such as offline modeling for fault-detection, process assessment,
prognostic assessment, advisory generation, and operation management supporting by a variety of
databases, including the sensor data database, simulation database, fault history database, online
test database, and operation and maintenance database. Finally, the results can be visualized and
accessed by means of the client system, which gives an interface to create models, schedule analyses,
register online monitoring activities, manage permissions, etc.



Processes 2019, 7, 436 4 of 14

2.2. Theoretical Background

Several multivariate methods for fault detection in multivariate systems have been developed
along the last few decades. Reis and Gins [48] reviewed and provided a historical evolution analysis of
these methods in the industrial process monitoring and emphasized the new challenges framed in the
Big Data/Industry 4.0 era. Particularly, the so-called the dimensionality reduction techniques such as
Principal Component Analysis (PCA) [49], Dynamical Principal Component Analysis (DPCA) [50,51],
Partial Least Squares (PLS) [52], and Canonical Variate Analysis (CVA) [1] are highly interesting
for a monitoring process of high dimensionality due to their capacity to abstract structures from
data, characterizing normal operating conditions and detecting abnormal situations in the process
dynamics. The most commonly-used statistical technique for process monitoring is PCA [53], which is
a multivariate technique that generates a non-causal process model. PCA is more appropriate to apply
in a plant-wide manner, when there are integrated processes acting as a huge complex industrial plant
to be monitored. On the other hand, CVA is more appropriate to apply in a single process, when it is
clear what are the input variables and the output variables. In addition, CVA is able to increase the
detectability of a specific fault, if the choice of process variables to be modeled is suitable.

The technique CVA was chosen due to the following reasons: (i) it is a well-known, simple, and
easy to understand multivariate technique [54]; (ii) it is based on Singular-Value Decomposition (SVD),
which is a very robust numerical method and presents fast calculations; (iii) it permits the development
of a mathematical model in an input-output form, i.e., a group of independent predictor variables
causes an effect in another group of dependent predictant variables; and (iv) it reveals the underlying
latent structure of the process data, which may be important for fundamental analysis and to gain
knowledge about the correlations between process variables.

The purpose of the CVA is to extract, from the input and output datasets, X and Y, respectively,
pairs of latent variables that have maximum correlation in each pair and no correlation to another
pair. Such latent variables are obtained by a linear transformation of the correlated input or output
data. Equation (1a) shows the input latent variables, TX, whilst Equation (1b) shows the output
latent variables, TY. Equation (1c) presents the correlation coefficients, r1, ..., rN , among these N
latent variables.

Tx = XP (1a)

Ty = YQ (1b)

R = TT
x TY =

 r1 · · · 0
...

. . .
...

0 · · · rN

 (1c)

For example, in a storage tank, input variables such as the feed flow and valve opening can
be described as a unique latent variable, feed. Likewise, output variables like the level and bottom
pressure can be described as another latent variable, storage. Feed and storage have a very high
correlation among each other. CVA can recognize this structure automatically within historical data,
which is the training task, and can evaluate if this structure is still present in the current data, which
is the monitoring task. More specifically, matrices P and Q are obtained through the SVD algorithm
applied to a combination of covariance matrices of input and output data, in order to identify a
subspace model. Then, new data points can be used in this model to check if the data correlation has
changed (due to an abnormal event) or not.

CVA is also used to model the dynamic behavior of the process [55]. Since the argument for the input
dataset is generic in terms of variables, it can encompass time-lagged variables, which deal with time
delay between variables and/or great retained volumes that act as filters. This is particularly important to
model large industrial processes, due to the strong influence of the dynamics on the process data. In this
configuration, CVA ends up with two meta-parameters, the number of principal component pairs
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and the number of time-lagged variables, which are the ones that need tuning. Besides these, there
are those obtained automatically, pondering the original variables to generate the latent variables.
Despite the presence of lag variables or not, the inference for the original output variables can be made
according to Equation (2) for both the static and dynamic cases.

ŷ = PRQTx (2)

Equation (2) is very important for the condition monitoring task, since it enables the residual
calculation, presented in Equation (3a), the Square Prediction Error (SPE), presented in Equation (3b),
which is the fault detection index used in control charts for hypothesis tests (normal or abnormal
process condition), and finally, the fault contribution index (PDC), which is a proposal to measure the
involvement of each input variable with the detected fault. PDC stands for Partial Decomposition
Contribution, according to the definitions presented in [56].

e = y− ŷ (3a)

SPE = eTe (3b)

PDCi = ∑
∣∣∣eTxi

∣∣∣ (3c)

CVA has great advantages, but also some disadvantages. For instance, it is well known that
some chemical process variables have a non-linear relationship and a linear model, such as the ones
generated by CVA, yielding a poor result. Likewise, process dynamics are much more complex than
the time-lagged structure, due to the retained volumes in vessel tanks, which may produce a filter
with more or less information about the past, ruining the constant time-lagged structure. Nevertheless,
despite such flaws, CVA is still a good technique to start generating a process model for process
monitoring. We believe that the process operators have to gain experience and sensibility with a simple
technique first in order to move on to more complex techniques.

2.3. Alarm System

In the context of the modeling described above, the detection indices were defined for the
prediction error e, for the variable y, and for the selected independent variables x. These detection
indices were included in the monitoring with the objective of improving assertiveness in the
distinction between events that alter the state of the process (outliers) and random fluctuations
present in the system.

Outlier Alarm

This index aims to identify if the signal is very different from the average observed in the dataset
used in the model construction, i.e., to evaluate if the process signals correspond to the normal dataset.
The index is calculated at each sampling instant k, being defined as:

• Index for prediction error: a measure of model prediction accuracy.

Io,e =| e |< co,e (4)

• Index for the y variable: a measure of the relevance of the response variable versus the model
construction data.

Io,y =| y− ȳ |< co,y (5)

• Index for the x variable: a measure of the relevance of the selected input variables versus the
model construction data.

Io,x =| xi − x̄i |< co,x (6)
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where ȳ is the average of outputs in the training set and x̄i is the average of outputs of the selected
variable in the training set. Control limits co,e, co,y, and co,x are the confidence limits for each index,
generally determined by the statistical properties of the historical data used in the model construction,
for example co,x = ±3σx.

The alarms described above were implemented in the PMA system and were inspired by the
process control methods first published in [57] and adapted in [58].

3. Real Case Application

3.1. Oil and Gas Fiscal Metering Station

The metering station used in this work is located in an onshore field of Petrobras and is composed
by four satellite stations distributed along the field. The metering station receives the gas and oil from
these satellite stations.

The process is described in Figure 2, where three fiscal metering stations (two gas metering
stations and an oil metering station) are constantly working. Both gas meters monitored are orifice
plate device, whereas the oil meter is based on the Coriolis principle.

Figure 2. Oil and gas metering station PFD.

Online measures are taken constantly and the data are collected and stored in the PI system.
Since PMA allows input-output relationships, it is possible to establish a correlation between the
variables of interest and other process measurements. In the present work, a total of 112 measured
variables were used during the monitoring period, as presented in Table 1.
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Table 1. Variable types measured in the gas-oil metering station.

Variable Type Number of Variables Units

Flow rate 40 m3/h
Temperature 11 ◦C

Controller output 2 %
Pressure differential 8 kPa

Pressures 21 kPa
Levels 2 m

Relative density 9 -
Basic Sediment and water 6 %

Electric current 9 mA
Valve aperture 4 %

3.2. Fault Description

In the context of a process plant, fiscal meters are one of the most crucial pieces of equipment,
since it is on them that the values related to royalties, allocation, and custody transfer depend. For
that reason, flow measurements are constantly supervised by a governmental regulatory agency,
in order to ensure the accurate value of these royalty-bearing volumes. The regulatory agency’s
policies concerning faults in the fiscal metering system provide procedures and protocols that must be
followed in order to notify about abnormalities such as incorrect or the absence of measurement and
configuration errors, among others.

Once the fault is identified, an official notification must be sent to the regulatory agency within
a 72-h period, and the problem fixed in a 240-h limit. After that, according to the regulatory agency
regulations [59], the fiscal meter could be put out of operation. It is important to note the impact of
this in terms of production. For instance, if an ultrasonic meter that measures the amount of gas sent
to flare surpasses the ten-day limit, the whole unit, in this particular case, would have to be shutdown.

Besides that, since the detection of a fault usually does not match its true beginning (taking into
consideration that the majority of units do not have expert systems such as PMA to provide early
detections), past values of production that were, somehow, affected by the fault presence must be
corrected. The regulatory agency establishes a methodology, as shown in Figure 3, to perform these
estimations based on the fault event duration.

Figure 3. Measure estimation methodology used by the regulatory agency.

As can be seen, the longer the fault takes to be detected, the higher are the probabilities that
the production and, therefore, the royalties’ costs are overestimated. For this reason, the time
interval between the fault event and its detection can also be considered as a measurement of the
monitoring system efficiency. A fast and robust detection associated with the capacity to perform
high-multivariable time series monitoring is an important requirement to be achieved by the fault
diagnosis system, in order to reduce the detection response time, avoiding, therefore, faults with
periods longer than the ones allowed by the regulatory agency.
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4. Results

This section presents the main results of the PMA system obtained during the monitoring of the
process described above. For validation purposes, a time range with a higher presence of reported
faults was selected. These events included periods with the absence of measurement and others with
incorrect values of flow.

Figure 4 presents the temperature and pressure differential behavior during a period of time with
the presence of fault. The construction of this control chart used the sliding window methodology with
the window size fixed at 100 points, and the statistical limits were computed along the time window
as X̄± 3σ. Here, it is possible to observe that the univariate approach is insufficient to detect faults in
systems like this, where the high presence of coupling effects between the variables is present.

Figure 4. Control chart using a univariate monitoring approach.

4.1. Monitoring and Fault Diagnosis Results

The fault diagnosis was performed using a multivariate SPE statistics and employing the methods
explained in Section 2. The alarm system is described in Section 2.3 and considered the outlier as
an alarm.

Figure 5 shows the results of PMA applied to the dataset of the test. The SPE index plot shows an
oscillating behavior during the first half of the time, and the control limit was exceeded several times,
being consecutive in some cases. In such cases, the alarm indicated an abnormal situation, which was
corroborated by the fault reported by the operation. A smaller number of control limit violations were
exhibited during the second half of the time studied; also, the SPE index behavior presented a more
constant behavior. Since the model generated by CVA describes the relations of inputs-outputs, it is
possible to not only detect the failure itself, but also to identify the main inputs associated with this
event. This can be done by quantifying the contribution of each one of the N variables in X (used to
explain the variable Y) to the final value of SPE.

It is interesting to note that the SPE contribution associated with the gas fiscal temperature
time series presented sudden peaks in dates close to the fault events, when its contribution was the
highest among all the other variables. This is particularly important since the main cause for this fault,
as reported by the operation team, was a malfunction of the temperature sensor associated with the
orifice plate meter.
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The broken sensor was then replaced, but only 25 days after the occurrence, when the main cause
of the problem was detected. It becomes clear that the use of a system such as PMA could anticipate
this event, indicating the most probable variable to cause it.

In this case, the alarm was activated five times, before the fault event reported by the operation.
This shows a slight predictive capacity of the implemented monitoring system, which can be confirmed
by observing the trend presented by the gas temperature contribution in Figure 6. While the value for
contributions reached peaks as high as 15% during the fault propagation, it did not get higher than
5% after the proper identification and sensor replacement. The longer sequence of points violating
the control limit triggered the most prolonged alarm, constituting a strong indication of a fault in
progress. Additionally, the emergence of this alarm matched with the second fault event notified. The
SPE contribution to the behavior of the gas temperature time series exhibited sudden changes during
the fault events, gaining more participation in the SPE index, while during periods without faults, this
behavior tended to be constant and its participation was less relevant. In fact, during periods of normal
operating conditions, the contribution values for all variables tended to show fairly even values.

In this way, the methodology of the regulatory agency responds successfully to the process
monitoring requirements, reducing the fault detection times, achieving a robust analysis along
with a multivariable set and with an appropriate computation performance according to the
application demand.

Figure 5. SPE statistic for sensor fault in Fiscal Metering Station II during eight months. In red,
the dynamic behavior of the gas fiscal temperature contribution to SPE. Dots represent fault alarm
activation. The orange dashed line is the detection limit.
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Figure 6. SPE statistic for the sensor fault in Fiscal Metering Station II during one month. In red,
the dynamic behavior of the gas fiscal temperature contribution to SPE. Black dots represent fault alarm
activation. The orange dashed line is the detection limit.

4.2. Current Status

Finally, after the offline validation stage, the PMA system was prepared to run online and in real
time, monitoring four different meters in the station and generating multivariate indexes that can
support decisions and analysis by the operating team.

The PMA implemented system had other methodologies that allowed it to expand the monitoring
analysis to other equipment like pumps and compressors. Important remarks are the stability and
robustness of this monitoring system, which can keep performing the computation of metrics with an
intensive multivariable process.

4.3. Economic Analysis Remarks

In the period of test studied, the fault event was a typical case of sensor malfunctioning leading to
erroneous measurements. As discussed above, the regulatory agency states that the longer this period
in fault, the larger is the base period in order to correct the production. Figure 7 shows the daily mean
of production in the period of the fault.

As can be seen, in the first case (detection time up to 48 h), there was no significant increase in oil
production, or consequently, in royalty costs, assuming that the latter is directly proportional to the
former, due to the small base period. On the other hand, for the second and third cases, the increases
were around 70% and 100%, respectively. In other words, the calibration of fiscal metering can
compromise a great amount of extra money of the company. Besides that, there are other economic
impacts of the fault for the company, such as fines and, in the extreme case, the shutdown of the
process section. These factors impose very accurate sensors in the fiscal metering area and a continuous
surveillance, which can be achieved by the proposed process condition monitoring system, PMA.
In terms of costs and benefits, a similar system can be made in a couple of months with a small team of
programmers and engineers. On the other hand, the order of magnitude of the economic impact of a
single fault can easily exceed these costs, depending on the production size of the platform.
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Figure 7. Three scenarios for the calculation of the royalty-bearings. The black point is the maximum
daily mean of production in each hatched period.

5. Conclusions

In this paper, a data-driven system for monitoring was developed and implemented in a real oil
process plant. The system, called PMA, used the CVA method to generate data-driven models and
control charts to statistically monitor the condition of the process. PMA was applied to fiscal metering
in order to improve the reliability of the related operations. The results showed that the system could
not only correctly detect the anomaly at the moments of its occurrence, but also identify its main
cause, among several other pieces of equipment operating at the facility. This fast response, associated
with the large amount of oil and gas constantly being measured by these meters, shows the economic
impact that a system such as PMA can provide to the oil and gas industry.
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SPE Square Prediction Error
PDC Partial Decomposition Contribution
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