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Abstract: The unique situation of utility power curtailment unveils opportunities in the fields of
energy management and digital resource management. During utility load shedding events, campuses
are typically driven as Photo Voltaic (PV)-diesel generator hybrid systems, of which the main fossil
resource driver is diesel. With the appropriate Supervisory Control and Data Acquisition (SCADA)
systems, discrete departmental energy policies along with control, forecasting and Internet of Things
(IoT) infrastructure, the campus hybrid system could be optimized on a short timescale during the
shedding event. In this paper the optimization methodology, required technology infrastructure,
possible forecasting algorithms and potential implementation will be discussed.
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1. Introduction

The scenario of power loss from the grid, whether for short or long periods, places a unique
operational constraint on the electric network of a campus [1]. Typically, this mode of operation is
governed by a hybrid PV-diesel generator system, that allows ample room for optimization of its main
resource metric, namely fossil fuel [2]. Campus curtailment and demand side management programs
could benefit from this scheme, especially when energy managers engage in campus disconnect from
utility. The choice of hybrid Photo Voltaic (PV)-diesel generator system for optimization in this paper
is based on local utilization trends and that diesel generators are considered an underutilized asset.
The optimization framework of modern hybrid systems is fed by several elements that culminate in the
field of digital resource management, such as energy Internet (EI) [3], energy Internet of Things (EIoT),
energy forecasting techniques (EFT) [4], intelligent electrical control systems [5], the ability to digitally
manage the consumer’s energy purchasing strategy [5] and coherent energy data formats generated
by both loads and generators. However, few high-resolution digital energy management strategies
exist that make use of energy forecasting (with forecasting uncertainties) to optimize fuel usage, while
simultaneously increasing PV penetration of the electrified campus grid on a small time-step basis.

Hybrid generation systems on campuses mimic the setup of micro-grids, in islanded operational
mode (loss of utility power), where loads and generators interact in an intelligent mode to generate
savings and possibly other avenues of revenue for campuses [6], without feeding back into the
powerless grid (for situations where feedback is not allowed). As part of such a campus micro grid of
the future, it is assumed that the hypothetical campus presented in this paper, is interwoven with IoT
sensors (multi-faceted) and equally capable communication networks [7]. The EloT infrastructure on
campus injects unique data streams into the energy management (EM) local/cloud server that could be
leveraged for the purposes of enhancement of decision-making structures regarding energy usage,
dispatch and forecasting on campus. For example, the EIoT network could feed departmental energy
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managers with information about campus dynamics that would, in turn, influence their scheduling of
lecture halls (or partial use) and the utilization of research lab equipment. The same argument holds
for Heating, Ventilation and Air-conditioning (HVAC) scheduling of lecture halls based on the local
weather. The campus EloT network therefore would be able to supply rich layers of information that
could feed decision support systems used by departmental energy managers (DEMs) and lead campus
energy managers (LCEMs). An EloT network on campus also feeds the concept of the energy Internet,
whereby all consumers and generators are connected by some efficient communication network (such
as Zigbee) and allows for full control, high resolution data acquisition, energy data analysis, energy
management and departmental energy policy monitoring (all while communicating in an energy
efficient manner) [7].

Real-time and optimized energy management of smart campuses relies on the full control of the
campus energy system, real-time energy data acquisition and demand/generation horizon forecasting.
This type of energy generation/demand forecasting is driven by several state-of-the-art machine learning
techniques that leverage the EI [8]. The forecasting techniques rely on historical data with different
training set lengths (depending on the forecasting method) in order to forecast energy usage/generation
with uncertainty based on a plethora of different training metrics and unique data streams. A typical
example of such a forecasting strategy is that of solar irradiance based on the underlying metrics
of humidity, temperature and cloud cover as can be found in Reference [9]. Complex connections
exist between different metrics that can only be recovered using machine learning techniques that
learn from experience, given a typical large energy dataset. As a state-of-the-art example, consider
the scenario where LCEMs strategize a particular renewable dispatch strategy based on historic data
and half-hourly newly acquired data. The LCEMs train models on historic data and uses the newly
acquired data to firm up on the energy dispatch system. It remains inefficient to retrain the entire model
on the historic data and newly added data, thus the LCEMs use online forecasting methods (such
as online Gaussian Process (GP) forecasting methods that are based on multi in—-multi out systems)
to retrain only on the new acquired data. In this manner, LCEMs can firm up their energy dispatch
system, whilst remaining computationally efficient with quick response strategies [10].

The nervous system of a smart campus will typically by governed by an electrical control system
(Building Automated/Management System), to ensure that a high resolution of control is achieved
when imposing energy management strategies and critical control. This nervous system interconnects
the largest consumers such as HVAC, hot water supply (part of HVAC) and research labs [11].
High-resolution low-level departmental control becomes more expensive due to either non-existing
control circuits or mandatory control retrofits, thus in many cases a control retrofit is needed [12].
However, building automated systems (BASs) will be able to perform macro control of the largest
energy consumers.

A critical concept in digital resource management of smart campuses is that of coherent energy
data structures and exchange formats. As an example, the campus building control systems typically
generate data that aids decision support systems in shifting or eliminating certain electrical loads
during critical periods. Separate from the building control systems, the PV generation data is shared
on a separate platform and so is the distributed diesel generators (both control and electrical output).
However, when dealing with such large energy ecosystems such as campuses, the energy management
strategies become largely data driven and depend on coherent multi-faceted data streams culminated
on a single platform. The energy data analysis backend is hosted on the same platform, allowing for
easy debugging and amendment [13].

Smart trading of resources feature in several markets and will be equally beneficial as part of the
smart campus scenario (one smart campus selling to a neighboring smart campus). A smart campus
with the necessary digital infrastructure (EIoT, EI, EM etc.) will easily overcome the requirements to
manage its own resources and interact with other receiving clients [5]. In order to trade resources
in real-time, a campus needs to be able to control and forecast resource usage and generation with
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certainty. Added to this requirement, the LCEMs need to utilize the EloT data influx in a real-time
manner that adapts to market responses and predictions [14].

This paper proposes an umbrella scheme/concept that utilizes smart campus elements in order to
optimize fossil fuel usage associated with PV-diesel generator hybrid systems, from the perspective of
energy forecasting techniques, energy campus IoT and the necessary control systems. Special focus
was given towards the critical role-players and data flow within the proposed scheme. The emphasis
of this paper is therefore on the formulation and discussion of the umbrella optimization scheme (not
to determine the equation of energy utilization) and attempt to include all the possible elements that
are considered role-players within the final optimization. Future work will include the process of
finding the function of energy utilization based on real campus data that will be conditioned to feed the
hypothetical scheme. The mathematical framework (or data driven methodology) will follow future
testing of the scheme on real campus data.

2. Holistic Optimization Framework

The opportunity generated by emergency utility curtailment for a scheduled period realizes in
the interplay of the two main non-utility contributing sources of energy on campus, namely that of
PV generation and fossil fuel generators, or PV-diesel hybrid systems. Battery storage is omitted
from this proposed framework, due to non-favorable economic feasibility when considering large PV
plants. Assuming that the diesel generators are of high enough quality to allow synchronicity with
that of the renewable generator, and that the fossil fuel generators are distributed in such a manner to
allow connection to any load collection on campus; typically, a characteristic of future smart campuses
from the perspective of resources. Campus electrical networks can be classified as centralized PV with
decentralized diesel generators islands or centralized PV with centralized diesel generators, however,
the technical influence of the configuration on the proposed optimization framework is not part of the
scope of the paper. The following scenario is proposed for the optimization of fuel usage, the reader is
referred to Figures 1-3 for a visual summary of each step of the global optimization scheme.

The entire network (generation and load) is optimized in discrete time-steps (that could become
real-time in future) based on an influx of data from the PV plant, diesel generators, load banks and
the campus EloT in which the elements are embedded. The main aims of the optimization scheme
will be to determine the fixed critical load bank and fixed serving diesel generator bank, after which
the remaining variable banks (both load and generator) could be optimized based on a list of critical
metrics harvested from the PV plant and campus IoT network. The main energy savings metric in this
proposed scenario is driven by the savings of fuel (diesel) and possibly the energy saved by comparing
to “normal operations” if the utility curtailment event did not occur. The optimization scheme of the
load/generation banks is driven from the viewpoint of the diesel generators with the added benefit of
critical heat/electric generation from hydrogen plants on campus.

The optimization of the load banks is done on an energy manager server that utilizes building
automated systems (BAS), building control systems (BCS), EloT data influx (departmental and campus
wide), renewable power generation and departmental energy policies, all of which are embedded
on a local or cloud framework that holds enough resources and memory capacity to perform the
optimization process (typically a server located on campus or cloud driven services). The local EM
server (if this is the case) will also be restricted to a campus EM policy to perform computations during
the appropriate tariff times (as not to be power intrusive itself). It is assumed that the PV plant is
connected to the direct current (DC) bus and both the loads and diesel generators are connected to
the alternating current (AC) bus. Converters reside between the AC and DC bus. Furthermore, it is
assumed that generator-load pairs are not islanded and that every component in the network is linked.
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Figure 1. Optimization scheme for the determination of the available PV power output for a 0.5 h
horizon. The PV scheme feeds both load and diesel generator schemes.
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Figure 2. Optimization scheme to determine the variable/locked load banks to be fed to the diesel
generator optimization scheme. This scheme depends on low-level departmental control and energy

management policies.
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Figure 3. Optimization scheme for diesel generator—load interactions based two classes, namely
variable and locked banks.

The PV optimization scheme (see Figure 1) uses actual environmental data together with generation
forecasting to produce an estimated available PV energy over a 0.5 h horizon. The estimated available
energy is complimented with a known uncertainty and will classify the possible PV output as either
a risky cycle or a safe cycle (depending on the chosen critical uncertainty). The PV optimization
scheme uses several streams of unique data, including historic weather and generation data, IoT sensor
network data associated with the PV plant, facilities management software (maintenance programs)
and weather forecasts spanning the prediction horizon. The PV optimization scheme must be the first
step to be completed as part of the holistic optimization scheme, since the chosen dispatch strategy
primarily manages the remaining demand.

Prior to the utility curtailment event, all curtailment schedules and priorities are checked and the
necessary data is gathered in order to initialize the forecasting module. The forecasting module is based
on either a hybrid scheme that initializes neural nets (if no kernel can be constructed) or a Gaussian
process when data conditions are favorable for kernel construction. The forecasting module is trained
to achieve a 0.5 h horizon with forecasting uncertainty. Depending on the length of the training data set
and regression resolution, forecasting algorithms can become computationally expensive and should
be included as part of a dedicated EM server with enough computational capacity for quick response
times on forecasting requirements. The output of the forecasted module will be the total renewable
energy that can be dispatched to the campus electrical network with associated uncertainty (based on
the classification of safe or risky cycle). The PV module (see Figure 1) acts as the first step to initialize
the energy dispatch strategy within the horizon of 0.5 h. The optimization scheme will critically act
on maintenance conditions that are flagged and if the utility curtailment process seized. Transient
weather events will increase the uncertainty of the cycle and could lead to the determination of the
optimization cycle.
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The load bank optimizer (see Figure 2) initiates at departmental level by checking the current state
of each department’s digital EM strategy. Departmental EM strategies are typically schedule driven
(lecture halls, research labs and offices), thus each departmental EM strategy could deliver a load bank
comprising of variable and locked banks as preconditioned by the departmental EM champion or
framework. A typical response from the departmental EM framework can be seen in Tables 1 and 2
(color coding corresponds to safe or risky cycle in optimization schemes).

Table 1. Simplistic response of a departmental energy policy framework over a 0.5 h time-step (without
campus loT intervention).

Load Type Locked/Variable Energy Estimation of Load (kWh)

Lecture Fall A | S 18 kWh

Offices 1-5 1.25 kWh
Research Lab /[N 10 kWh
Research Lab 5 [F NG (oo S ok

Table 2. Simplistic response of a departmental energy policy framework over a 0.5 h time-step (with

campus loT intervention).

Locked/Variable Energy Estimation of Load (kWh)

Lecture Flal A | 18 KWh

Offices 5-10 1.25 kWh
Research Lab A 10 kWh
Research Lab B 10 kWh

The lead EM framework accounts for all departmental locked/variable load banks, as well as the
relative sizes of the loads. It is assumed that the departmental EM framework can account for the
size, type of load, power factor and associated schedules of each load in the department (elements
that future smart campuses will have). The final load bank that will partake in the 0.5 h cycle of
energy optimization is finalized into a compatible data structure that awaits input from the fossil fuel
generator optimization scheme (see Figure 3).

The fossil fuel optimization scheme is based on the assumption that all fossil fuel generators are
equipped with two-way communication and control. Furthermore, any load could be connected to any
generator on campus (dismissing any practical considerations). The fossil fuel IoT network of sensors
captures data associated with the generators such as fuel levels, operating conditions and location.
The lead EM server supplies additional information such as maintenance and refueling schedules to
the global optimizer based on fuel price forecasting and diesel levels.

At this point global energy accounting can be performed (matching supply with load) and
critical energy generation via hydrogen plants could be initiated to supply critical loads. A bank of
variable/locked fossil fuel generators can now be generated and passed on to the final optimization
phase. The optimizer then proceeds to match the locked/variable loads with the fossil fuel generators
based on power factor and load size. Once the locked loads are matched with the locked fossil fuel
generators, the algorithm proceeds to match the variable banks over the horizon of 0.5 h. This process
repeats every 0.5 h with the aim of reducing fuel consumption for the span of the utility power loss.

3. Extremities of Optimization Framework

The following two scenarios are presented: (1) the remaining load (after PV quenching) is
distributed among generators irrespectively of fuel levels, load type or fuel forecasts, (2) optimizer
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algorithm (see Figures 2 and 3) suggests two types of generators linked with two types of load
collections (from either the locked or variable banks), calculated every 0.5 h over a 3 h horizon.

Two extreme poles/classes of option (2) are a generator with a low fuel level that is scheduled
for refueling and a generator with high fuel levels. If the optimizer algorithm predicts favorable fuel,
it will suggest that the low fuel level generator to be utilized at 50% and the high fuel level generator
at the difference between maximum capacity and the spinning reserve. The aim here is to maximize
fuel savings at the end of the three-hour utility curtailment cycle. Due to the efficiency curves of
both typical generators described as extremities, fixed parameter loads are required to be served by
both generators (having different fuel levels). The 50% utilized generator can serve loads from the
variable bank (non-stringent constraints on power factor and load size requirements) and the fully
utilized generator can serve loads from the locked bank (due to stringent power factor and load type
requirements). The locked load bank can be assigned with certainty and all load sizes, types and Power
Factor (PFs) are known.

Total savings generated by the optimization scheme is decomposed into the savings generated
by refueling at a better tariff rate and actual fuel savings due to more efficient generator utilizations.
Over the three-hour utility power loss event, the optimizer performs six optimization steps (0.5 h
apart). The PV plant energy output could change over this horizon, thus changing the dynamics of the
optimization. The spinning reserve of each generator is dependent on the uncertainty of the PV power
output (risky or safe cycles, see Figure 1) divided among all the available generators. As an example,
if the available PV power output contains large uncertainty, the spinning reserve for each generator
will increase and vice versa. The spinning reserve of each generator is re-calculated after every cycle
and determines the maximum utilization of the generators.

It is further assumed that the collection of generators are of variable type (constant frequency, but
variable kW input). The typical variable generator is specified by a rating (e.g., 250 kVA, 0.8 PE, 200 kW
and 150 kVAR) and will be connected to a collection of loads specified by type, size and PFE. Specified
by the generator’s efficiency/PF curve, as the utilization of the generator increases, both the efficiency
and PF requirements increases. Generators with a high forced utilization factor (determined by the
optimization algorithm, see Figures 1-3), must be connected to cleaner collection of loads (from the
perspective of PF) to safeguard possible breaching of the generator’s kVAR rating. Thus, low fuel level
generators could be utilized at e.g., 50% and will serve load collections with low power factors safely
(vice versa for high fuel generators).

4. Conclusions

The holistic optimization framework exhibits potential of typical campus hybrid PV—fossil fuel
generator systems generating fuel savings under powerless utility scenarios when optimized in discrete
time steps using campus IoT, EM and generation/consumption forecasting techniques, e.g., forecasting
of renewable power output (PV, wind and hydrogen) and campus load characteristics. This is an
improved savings scheme as opposed to running the generators at fixed speed without any type of
data/optimization feedback. The novelty of the scheme lies in the PV power output estimation with
uncertainty. The known uncertainty associated with the available PV energy could classify the output
as risky or safe. This will allow improved load distribution to generators that are sensitive to fuel price
forecasts and refueling maintenance, as well as improved predictive maintenance schedules associated
with the generators. The main aim of the optimization scheme is to maximize fuel savings during the
utility power loss. Technical recommendations for a full-scale scenario, consisting of an EM server
platform hosting all the forecasting algorithms, campus IoT and policy data will be discussed and
commissioned in future.

The full-scale scenario will initially be commissioned using a campus department that utilizes
decentralized renewable resources, together with fossil fuel generation and energy policies. The EM
server that hosts all the tiers of the optimization scheme will be located in the department itself.
Following the initial commissioning test, the platform will be rolled out to the entire campus network.
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This full-scale scenario will require full integration of controls, metering installation/retrofit, IoT campus
integration, SCADA system implementation, energy policy reviews, energy policy integration and
decentralization/centralization of required generators. All of the last-mentioned elements will have to
be interwoven on an EM server that contains the optimization scheme in algorithmic form, as well as
the necessary maintenance and energy policy framework. Since all the discrete optimization steps will
have associated uncertainty, the final savings will be able to be verified with ease. The optimization
scheme presented in this paper is an example of generating savings in the absence of grid power.

Future work will be based on data produced by actual smart campus elements, sensors, generators
and loads. From there a study and framework will be formulated regarding the system time
dependencies. However, emphasis must be placed on the practicality in the hypothetical scheme,
especially since the sampling time, signal changes and signal delays found in the forecasting techniques,
campus loT network and internal data transport play a critical role in the success of this proposed
global scheme. The process of illustrating the improvement of the campus power supply will be based
on a PV penetration metric, that needs to be evaluated in conjunction with the scheme.
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