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Abstract: The conventional modeling method of the marine steam turbine rotational speed control
system (MSTRSCS) is based on Newton’s second law, constructing the mechanical equations between
the rotational acceleration and the resultant torque. The disadvantages of this are nonlinearity, a
complex structure and an infinite point of discontinuity in the rotational acceleration when the
rotational speed is close to 0. Taking the kinetic energy of MSTRSCS as the output variable by using
the kinetic energy theorem in this paper, we convert the complex nonlinear model of MSTRSCS
into a linear one, since kinetic energy and rotational speed are homeomorphic. Model predictive
control (MPC) adopts a discrete-time model, whereas the real system is time-continuous. Hence,
poor performance is obtained in the real system when the time-discrete control law is applied to
the MSTRSCS through the actuator. In case of high requirements for system accuracy and control
performance, conventional MPC (CMPC) cannot meet the engineering requirements. In order to
lessen the impact of this phenomenon, this paper proposes a novel MPC with actuator dynamic
compensation (ADCMPC), in which the dynamics of the actuator are quantified and the system
performance is improved. Compared with other control techniques such as CMPC, the performance
of the ADCMPC strategy in MSTRSCS is successfully validated.

Keywords: actuator dynamic compensation; dynamic performance; model predictive control; steam
turbine rotational speed control; energy dynamic model

1. Introduction

The pressurized marine steam power plant is the key to ensuring the completion of shipping and
navigation tasks [1]. MSTRSCS is the main form of marine power equipment. It has the advantages of
a high single power supply, high reliability, economy, a light weight, small volume and convenient
maintenance [2]. In order to ensure the stability, rapidity and correctness of the ship’s navigation, the
pressurized marine power control system needs a further intelligent level, which can be realized by
applying high-performance control strategies to the MSTRSCS [3].

At present, the literature on the steam turbine control has the following characteristics: (1) most of
the available reports on steam turbine control concentrate on the power station steam turbine [4], and
there are few studies on marine steam turbine control problems. The control task of the power station
steam turbine is to ensure output power at the desired value. Therefore, steady-state characteristics of
the power station steam turbine are more thoroughly investigated [5]. However, the control task of
the marine steam turbine is to guarantee its rotational speed at the desired value [6]. Furthermore,
compared with the power station steam turbine, much attention is paid not only to the steady-state
characteristics but also to its dynamic characteristics [7]; (2) there are few reports that only study the
steam turbine control problems [4], and most of the current studies are about steam power plants, and
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the steam turbine is mentioned in the literature as a part of the steam power system [8–10]; (3) there is
a modeling problem for the steam turbine [11]: due to the existence of heat transfer and conversion of
steam internal energy during the operation of the steam turbine system, not only the structure but
also the operating principles of the steam turbine are extremely complex, which adds difficulty in
mathematical modeling and controller design [12,13]. In the course of navigation, the conditions of the
ship as well as the parameters of the turbine will change frequently [14]. For example, when the ship is
sailing at sea, it will be disturbed by waves and currents [15]. Meanwhile, the navigation speed of the
ship will change frequently according to the actual situation; sometimes it is necessary to sail at full
speed, and sometimes at low speed or even with reverse navigation [16]. Whether a ship can complete
its task in time and accurately depends to a great extent on the performance of the steam turbine control
system. Therefore, MSTRSCS needs to have strong robustness and good dynamic characteristics, and
it is very important to research the rotational speed control strategy of marine steam turbines [2].

In the past 40 years, MPC has been widely used in the field of industrial process control and
has achieved great success [17]. MPCs are mainly divided into two categories. The first is classical
MPC, based on a linear mathematical model. Richalet et al. proposed model predictive heuristic
control (MPHC) and model algorithmic control (MAC) in 1978 [18,19]. Then, in 1980, Culter et al.
proposed dynamic matrix control (DMC) [20]. Garica’s theory enables people to analyze predictive
control systems from the perspective of structure and understand the operational mechanisms of model
predictive control [21]. In 1986, Kuntze et al. proposed predictive functional control (PFC) [22]. In 1987,
Clarke et al. proposed generalized predictive control (GPC) based on the controlled autoregressive
integral average sliding model (CARIMA). These methods have low requirements as system models,
and the algorithms are simple and easy to implement, showing good control performance in actual
industrial control [23,24]. The other category of MPCs is nonlinear model predictive control (NMPC)
based on the nonlinear model; this kind of control strategy is more complex, and the popular
control algorithms are as follows: model predictive control terminal zero constraints [25–27], model
predictive control with terminal state set constraints [28,29], model predictive control with terminal
cost function [30–32], and model predictive control with both terminal state set constraints and terminal
cost function [33–44]. Although NMPC has been developed in academia for many years, it still requires
development in practical engineering.

Nowadays, linear MPC [45] has been widely used in practical engineering, but the problem is that
most MPCs adopt a discrete-time mathematical model, which can reduce the amount of calculation,
the computational complexity and computational difficulty, but inevitably affects the response time of
the actual system, resulting in the system’s dynamic characteristics being overly conservative. For a
practical system, settling time usually takes several sampling periods (mTs) before reaching a steady
state. In order to reduce the computational complexity, the MPC algorithm tries to make the value
of the sampling period Ts as close as possible to the upper limit of the Shannon sampling theorem;
that is, the time mTs required for the system to reach a steady state will be very large, resulting in a
large settling/response time for the actual system, and this cannot enable the system to have a fast
response characteristic. If we simply reduce the sampling period Ts—for example, by taking the
sampling period value as close as to the dynamic time constant of the actuator—the control accuracy
will be affected by the dynamic characteristics of the actuator, which will be explained in detail in
Section 2. The purpose of this paper is not only to make the marine steam turbine run steadily, but also
to make the marine steam turbine have faster dynamic response characteristics. Of course, there are
also predictive control theories based on the continuous-time model. In 2000, Gawthrop P.J. proposed
a model predictive control scheme based on the continuous-time model: predictive pole-placement
(PPP) control [46–48]. In 2018, Mehdi Hosseinzadeh and Emanuele Garone [49–51] introduced a
novel Explicit Reference Governor for continuous-time systems, which constrained in-between MPCs
and anti-windup control schemes. Additionally, there is also a great deal of attention paid in [52] to
introducing the continuous-time model predictive control theory.
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The rest of the paper is organized as follows: Section 2.1 briefly introduces the marine steam
turbine and the modeling method used in the paper, Section 2.2 outlines the shortcomings of the
conventional MPC with actuator dynamics, Section 2.3 is the mathematical analysis of conventional
model predictive control, and Section 2.4 designs a novel model predictive controller with actuator
dynamic compensation. In Section 3, the simulation settings and results are summarized, and the
effectiveness of the proposed method is verified. Then, in Section 4, future work is summarized.

2. Materials and Methods

2.1. Marine Steam Turbine Rotational Control Modeling

The steam turbine is one of the most important power conversion devices in the marine power
plant [1]. It is a rotary prime mover that converts the thermal energy of the steam into mechanical
energy. Compared with reciprocating steam engines and diesel engines, it has the advantages of high
power, high speed, smooth operation, small size, small weight and high efficiency [2]. Therefore, it has
been widely used in the marine transportation industry [53].

The accelerated motion model of ship can be obtained by Newton’s second law [54]:

dV
dt

=
(Fprop1 + Fprop2 + . . .+ Fpropn)(1− td) − Fdrag

m ·ma

where V denotes the ship navigation speed, m/s; Fpropi is the ith propeller thrust, N; td is the dimensionless
thrust deduction coefficient; Fdrag is the backward drafting force of a ship when it is sailing; m is the
quality of the ship, kg; and ma is the dimensionless additional mass coefficient of the ship.

According to the accelerated motion model of the ship, we know that the ship is navigated by the
propeller thrust, and the thrust required at different navigation speeds is different [55]. The propeller
is driven by a marine steam turbine, and the propeller thrust is closely related to the rotational speed
of the steam turbine [56]. Therefore, the control performance of MSTRSCS is extremely important.

A marine steam turbine consists of two cylinders: a high-pressure cylinder and a low-pressure
cylinder [7]. The two cylinders are placed in parallel and connected through a connecting pipe, as
shown in Figure 1. After working in the high-pressure cylinder, the steam is sent into the low-pressure
cylinder to continue the expansion work; there is also a reversing steam turbine which is controlled by
a special reverse control valve, as shown in Figure 1.
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The marine steam turbine is a kind of condensing steam turbine which changes the steam mass
flow by controlling the opening of the fast governing steam valve [7] and then realizes the adjustment
of the marine steam turbine rotation speed. The rotational speed of the power station steam turbine is
usually constant [57], while the rotational speed of the marine steam turbine varies with the ship’s
navigational speed; that is, the dynamic process of MSTRSCS will occur frequently in the operation [58].
Therefore, the control strategy of the marine steam turbine rotational speed should not only ensure the
steady characteristics of the system but also consider the dynamic characteristics of the turbine.

Therefore, according to the kinetic energy theorem, we can determine that the derivative of the
kinetic energy of MSTRSCS is equal to the sum of all of the powers at that moment:

dEk(t)/dt =
∑

P = PT(t) − PP(t) (1a)

where Ek(t) denotes the rotational kinetic energy of MSTRSCS, dEk(t)/dt is derivative the of Ek(t),
PT(t) is the steam expansion work power in the marine steam turbine, and PP(t) is the load power of
the propeller.

Denoting the whole rotary inertia of MSTRSCS as J∑, the rotational speed of MSTRSCS as nt(t)
and the mass flow of the steam intake to the turbine as u(t), it is assumed that the resistance that the
propeller receives during rotation is proportional to the rotational speed nt(t).

The mathematical model of MSTRSCS can be obtained as follows:

Ek(t) = J∑n2
t(t)/2

PT(s) = KTu(t)
(1b)

According to [56], the load torque of propeller can be expressed as follows:

TP = KQρD5n2
t(t) (1c)

According to the definition of power in physics, the load power of propeller can be obtained as
follows:

PP = TPnt(t) = KQD5n3
t(t) (1d)

where KQ is the dimensionless torque coefficient; ρ denotes the sea water density; nt is the rotational
speed of the propeller; and D is the diameter of the propeller. The maximum rotational speed nmax of
the system is a known constant value. Taking κ = KQnmaxD5, the difference ∆κ = KQ(nmax − nt(t)) can
be added to the model as interference in the simulation. Thus,

PP(t) = κn2
t(t) (1e)

where KT denotes the total work done by the expansion of the unit mass steam in the marine steam
turbine; TT is the time constant of the expansion work process in the marine steam turbine; and κ is the
drag coefficient of the propeller. Substituting the above equations, we obtain the overall mathematical
model of the system:

J∑
2

d(n2
t (t))
dt

= PT(t) − κn2
t (t) (2)

The MSTRSCS represented by the above formula is a nonlinear model. To simplify the model,
take n2

t(t) as a variable and let y(t) = n2
t(t):

J∑
2

dy(t)
dt

= KTu(t) − κy(t) (3)

The Laplace transform of the above equation is used to obtain the transfer function of MSTRSCS:

J∑
2

sY(s) = KTU(s) − κY(s) (4)
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Finally, the model of MSTRSCS can be obtained as follows:

Y(s)
U(s)

=
KT

J∑
2 s + κ

(5)

2.2. Formulation of the Control Problem

For the time-discrete mathematical model, the system state, output and control input are considered
to be invariable within a sampling period. However, the actual system is time-continuous: the state,
output, and control input of the system are time-varying. Therefore, the time-discrete model calculates
and predicts system parameters more slowly than the actual system and with less information.

According to Figure 2, in one sampling period, the control signal generated by the MPC controller
is a step signal, and the control signals in different sampling periods constitute a stair-stepping signal.
However, the dynamic of the actuator is time-continuous. The control signal v(t) generated by the
controller does not directly act on the plant, but acts on the actuator; i.e., the control signal v(t) acts as
the actuator’s input signal. The actuator will produce an output effect u(t) as the response to v(t), and
u(t) is not a stair-stepping signal, as shown in Figures 3 and 4. If the sampling period Ts and the actuator
time constant T0 are much too close, the dynamic performance of the system will be deteriorated.
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Figure 4. The actuator response to step signal.

According to engineering experience [52], the actuator can be treated as a first-order damp element;
that is, the mathematical model of the actuator is

u(s)
v(s)

= G1(s) =
1

T0s + 1
(6)

where the T0 is the time constant of the actuator.
For the actuator, assuming that the initial value is v0, then the actuator’s response curve to the step

signal r(t) = u∞ is shown in Figure 4; u(t) is the output of the actuator and acts directly on the plant.

u(t) = e
t

T0 u0 + u∞(1− e
t

T0 ) (7)

As shown in Figure 4, when the time tends towards infinity, the actuator output u(t) is infinitely
close to the value of the step signal r(t), or it can be said that the output u(t) of the actuator is close to
the step signal r(t) when the time is large enough, which can be expressed as

lim
t→∞

u(t) = u∞ (8)

However, when the time is very small, the output u(t) of the actuator is far less than that of the
step signal r(t), while in the MPC, the sampling period Ts is unlikely to be much too large due to the
Shannon sampling theorem. This will lead to a large deviation between u(t) and v(t) in the beginning
of a sampling period, as shown in Figure 5. In Figure 5, the time constant of the actuator T0 = 1 s, and
the sampling periods Ts are 20 s, 10 s, 5 s, and 3 s, respectively. The control signal uses a set of positive
random step values. As the sampling period Ts decreases, the deviation between u(t) and v(t) increases,
which in turn affects the performance of the controller. For example, the output of the control system
will be greatly overshot; the dynamic characteristics of the entire control system can become very poor,
which can lead to instability of the system.
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In the time period [(k − 1)Ts ~ kTs] corresponding to the kth sampling period, the output u(t) of
the actuator can be calculated by

u(t) = u(k− 1) + (v(k) − u(k− 1))l−1( K
T0s+1 )

= u(k− 1) + (v(k) − u(k− 1))(1− e−
t−(k−1)Ts

T0 )

= v(k) − (v(k) − u(k− 1))e−
t−(k−1)Ts

T0

(9)

The CMPC exhibits good steady-state characteristics when applied to the marine steam turbine.
However, the CMPC fails to achieve a marine steam turbine with excellent dynamic performance.
According to the previous analysis of the dynamic characteristics of the actuator, it can be determined
that the sampling period Ts regarding the MPC cannot be too small or u(t) greatly deviates from v(t),
and the stability of the whole system is thereby affected. However, if the sampling period of the
system takes a large value, the response time of the system will be too long to result in good dynamic
characteristics for the marine steam turbine. Therefore, the CMPC is not suitable for marine steam
turbines, which needs to be improved.

2.3. CMPC Algorithm

Based on the previous analysis, the current popular control algorithms all have good static
characteristics. The difference between them is that the dynamic characteristics are highly different.
The purpose of the actuator dynamic compensated model predictive control algorithm is to improve
the dynamic characteristics of the CMPC. In practical engineering applications, many systems are built
before their specific dynamic and static characteristics are analyzed. Then, the controller is designed
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according to the actual engineering requirements. In CMPC design, the actual system actuator dynamic
response characteristics will not be considered, which has a negative impact on the control performance.
In order to achieve control performance with excellent dynamic response characteristics, we must
obtain the analytical expression of the dynamic characteristics of the actuator, from which can we
quantify the influence of the dynamic characteristics of the actuator on the system output, not only
improving marine steam turbine control performance, but also obtaining better dynamic characteristics.

In the CMPC algorithm [52], the dynamic process of the actuator’s response to the control signal
v(t) is not considered, and the actuator of the plant is treated as a proportion component, in which the
actuator is ignored. In order to facilitate the following description, the following provisions are made:
v(k), y(k) and u(k) refer to the controller signal, the system output and the actuator output at the end of
the sampling period, respectively. Let K = KT/κ, T = J∑/2κ, according to Equation (5):

G(s) =
Y(s)
U(s)

=
KT

J∑
2 s + κ

=
K

Ts + 1
(10)

y(t) = l−1(G(s)U(s))
= l−1( KT

J∑
2 s+κ

) ∗ l−1(U(s)e−τ1s) (11)

According to the convolution theorem, the convolution calculation formula can be expressed as
follows:

f (t) ∗ g(t) =
∫ t

0
f (x) ∗ g(t− x)dx (12)

according to the inverse Laplace transform of G(s) and U(s), respectively. Substituting Formula (12)
into Equation (11), y(t) can be further outlined:

l
−1(

K
Ts + 1

) =
K
T

e−
t
T , l−1(U(s)e−τ1s) = u(t− τ1)

y(t) =

t∫
0

g(t− τ)u(τ)dτ =
K
T

e−
t
T

t∫
0

e
τ
T u(τ− τ1)dτ (13)

In the discretization of y(t), the sampling period is Ts. The system output y(kTs) at the moment of kTs is
denoted as y(k) [17,52]. Meanwhile, in the discrete model, y(k) also represents the system output in the
kth sampling period [(k − 1)Ts ~ kTs]. According to Formula (13), y(k) and y(k + 1) in the kth and (k +

1)th sampling period can be expressed as:

y(k) = y(kTs) =
K
T

e−
kTs
T

kTs∫
0

e
τ
T u(τ− τ1)dτ (14)

y(k + 1) = y(Ts + kTs) =
K
T

e−
Ts+kTs

T

Ts+kTs∫
0

e
τ
T u(τ− τ1)dτ (15)

Substituting (14) into (15), we acquire the relationship between y(k) and y(k + 1), which is shown
as follows:

y(k + 1) =
K
T

e−
Ts+kTs

T (

kTs∫
0

e
τ
T u(τ− τ1)dτ+

Ts+kTs∫
kTs

e
τ
T u(τ− τ1)dτ)
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y(k + 1) = e−
Ts
T

K
T

e−
kTs
T

kTs∫
0

e
τ
T u(τ− τ1)dτ+

K
T

e−
Ts+kTs

T

Ts+kTs∫
kTs

e
τ
T u(τ− τ1)dτ

y(k + 1) = e−
Ts
T y(k) +

K
T

e−
Ts+kTs

T

Ts+kTs∫
kTs

e
τ
T u(τ− τ1)dτ (16)

In Equation (16), both e−(Ts/T) and K/T are known as constants; y(k) is also determined during the
(k + 1)th sampling period. Only the definite integration term is unknown and needs to be calculated.
As indicated above, in the MPC algorithm, the signal u(k) of the controller in each sampling period is
a step signal. That is, u(τ − τ1) in the definite integral term of Equation (16) is a time-independent
constant value in the (k + 1)th sampling period, which can be seen in Figure 2. Additionally, u(τ − τ1)
can transpose to the outside of the definite integral term:

Ts+kTs∫
kTs

e
τ
T u(τ− τ1)dτ = e

Ts+kTs
T − e

kTs
T (17)

By substituting Equation (17) into Equation (16), we can obtain the time-discrete mathematical
model of MSTRSCS. For convenience of description, the control action u(kTs − τ1) is simplified as
follows:

u(kTs − τ1) = u(k−
τ1

Ts
)

y(k + 1) = e−
Ts
T y(k) + u(kTs − τ1)Ke−

Ts+kTs
T (e

Ts+kTs
T − e

kTs
T )

= e−
Ts
T y(k) + u(kTs − τ1)K(1− e−

Ts
T )

= e−
Ts
T y(k) + K(1− e−

Ts
T )u(k− τ1

Ts
)

(18)

The relevant parameters in (18) can be denoted as follows: E = −F = e−(Ts/T), H = (1 − e−(Ts/T)) and
S = τ1/Ts. The discrete-time model of the marine steam turbine speed control system is finally obtained
as follows:

y(k + 1) + Ey(k) = Hu(k− S) (19)

Sometimes, in order to increase the stability of the system, the increment operator (∆ = 1 − z−1)
is introduced to both sides of Equation (19) [17,52]; then, the incremental model ∆y(k) is obtained by
increasing quantization, in which an integral component is introduced to MSTRSCS to enhance the
stability and improve the steady-state characteristics of the whole system.

Take the incremental model ∆y(k + 1) of MSTRSCS as an example:

∆y(k + 1) = (1 − z−1) y(k + 1) = y(k + 1) − y(k) (20)

Therefore, the incremental form of Equation (19) can be obtained:

∆y(k + 1) + E∆y(k) = H∆u(k− S)

∆y(k + 1) = F∆y(k) + H∆u(k− S) (21)

2.4. Actuator Compensation Predictive Control Algorithm

In the derivation process of the CMPC algorithm, the dynamic process of the actuator’s response
to the control signal v(t) is not considered, and the actuator of the system is treated as a proportion link
so that the output of the actuator is u(t) = v(t); otherwise, the actuator is ignored and it is considered
that the controller signal v(k) acts directly on the actual system. In addition, in the process of calculating
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the definite integral of Equation (16), u(τ − τ1) is considered as a time-independent constant value.
However, in Section 2.2, we determined that the rapid response characteristics of MSTRSCS have a
very large relationship with the actuator. Since the actuator is a first-order inertia component, the
controller signal v(t) is a step signal when the controller signal v(t) is sent into the actuator, and the
actuator generates output u(t), which is directly sent to the marine turbine, making it rotate or change
speed. However, u(t) obtained by v(t) has a large deviation from v(t), and the deviation value increases
as the sampling period decreases, as shown in Figure 6. According to Equation (10), in the time period
[(k − 1)Ts ~ kTs] corresponding to the kth sampling period, u(t) is expressed as follows:

u(t) = (1− e−
t−(k−1)Ts

T0 )v(k) + e−
t−(k−1)Ts

T0 u(k− 1) (22)
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The difference between the u(t) of the actuator and the control signal v(t) can be outlined as
follows:

u(t) − v(t) = (1− e−
t−(k−1)Ts

T0 )v(k) + e−
t−(k−1)Ts

T0 u(k− 1) − v(k)

= e−
t−(k−1)Ts

T0 (u(k− 1) − v(k))
(23)

where, in the kth sampling period, v(t) is a step signal, a time-independent constant; that is, v(t) = v(k).
On the other hand, u(k − 1), as the output of the actuator during the previous sampling period, which
is a known constant at this time. Equation (23) indicates that during the kth sampling period, the
difference between the control action u(t) of the actuator and the control signal v(k) becomes smaller
and smaller, exponentially decaying. This shows that the sampling period Ts is critical; if the value
of Ts is relatively large, the difference between the control action u(t) and the control signal v(k) has
little effect on MSTRSCS. On the other hand, if Ts is small, the difference between the control action
u(t) and the control signal v(k) has a great influence on MSTRSCS, and even affects the steady-state
characteristics of the system. Therefore, in order to enable MSTRSCS to have good dynamic response
characteristics, the dynamic characteristics of the actuator must be compensated. For this reason, a
novel MPC algorithm with actuator dynamic compensation is proposed.



Processes 2019, 7, 423 11 of 21

According to Formula (16), y(k + 1) in the (k + 1)th sampling period can be expressed as

y(k + 1) = e−
Ts
T y(k) +

K
T

e−
Ts+kTs

T

Ts+kTs∫
kTs

e
τ
T u(τ− τ1)dτ (24)

where the parameters e−(Ts/T) and K/T are known constant values, and y(k) is a known constant in
the (k + 1)th sampling period. The definite integral term in Equation (24) needs to be calculated.
Equation (22) is substituted into Equation (24) to obtain y(k + 1):

According to Figure 6, the red dotted line is the control signal of the controller, and in the CMPC,
the control signal is directly transmitted to the plant; the black dotted line is the output of the actuator
(driving effects/control action).

y(k + 1) = e−
Ts
T y(k) + K

T e−
Ts+kTs

T

Ts+kTs∫
kTs

e
τ
T u(τ− τ1)dτ

= e−
Ts
T y(k) + K

T e−
Ts+kTs

T

Ts+kTs∫
kTs

e
τ
T

[
v(k) − (v(k) − u(k))e−

t−kTs
T0

]
dτ

= e−
Ts
T y(k) + K(1− e−

Ts
T )v(k) −K T0

T−T0
e−

Ts
T (1− e

Ts
T −

Ts
T0 )(v(k) − u(k))

(25)

In order to facilitate calculation, let

a = e−
Ts
T

H = K(1− e−
Ts
T )

G = −K T0
T−T0

e−
Ts
T (1− e

Ts
T −

Ts
T0 )

G + H = b
c = −G

(26a)

Equation (25) is simplified as follows:

y(k + 1) = Fy(k) + (H + G)v(k) −Gu(k)
= ay(k) + bv(k) + cu(k)

(26b)

The difference between Equations (26b) and (19) is that Equation (26b) incorporates the dynamic
characteristic term of the actuator. Therefore, Equation (26b) has a higher prediction accuracy for the
marine steam turbine rotational speed. According to Equations (19) and (26b), the corresponding
control laws of the MPC algorithms can be respectively designed. In the design of MPC, the following
parameters need to be set: the prediction horizon Ny, the control horizon Nu, the weighting qj(j = 1, 2,...,
Ny) on the output tracking error and weighting rj(j = 1, 2, . . . , Nu) on the control signal. The prediction
horizon Ny and the control horizon Nu not only take positive integer values, but also need to satisfy the
condition 0 < Nu ≤ Ny; the weighting qj(j = 1, 2, . . . , Ny) on the output tracking error and weighting
rj(j = 1, 2, . . . , Nu) on the control signal are non-negative. Suppose that the prediction horizon Ny and
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the control horizon Nu are N, namely Ny = Nu = N. Suppose the current sampling time is k, according to
Equation (26b), values of y(t) in the sampling period k + 1, k + 2, . . . , k + N are predicted, respectively:


y(k + 1|k )
y(k + 2|k )

...
y(k + N|k )

 =


a
a2

...
aN

y(k) +



b 0 0 · · · 0

ab b 0
. . . 0

a2b ab b
. . . 0

...
... · · ·

. . .
...

aN−1b aN−2b · · · ab b





v(k|k )
v(k + 1|k )
v(k + 2|k )

...
v(k + N − 1|k )



+



c 0 0 · · · 0

ac c 0
. . . 0

a2c ac c
. . . 0

...
...

. . . . . .
...

aN−1c aN−2c · · · ac c





u(k)
u(k + 1|k )
u(k + 2|k )

...
u(k + N − 1|k )



(27)

Equation (27) is a very complex matrix equation composed by a series of algebraic equations.
To facilitate writing, the matrix and column vectors on the left and right sides of Equation (27) are
replaced with symbols:

Φ1 = [a a2 . . . aN]T;

Y(k) = [y(k + 1|k) y(k + 2|k) . . . y(k + N|k)]T;

U(k) = [u(k|k) u(k + 1|k) u(k + 2|k) . . . u(k + N − 1|k)]T;V(k) = [v(k|k) v(k + 1|k) v(k + 2|k) . . . v(k + N − 1|k)]T;

Γ1 =



b 0 0 · · · 0

ab b 0
. . . 0

a2b ab b
. . . 0

...
... · · ·

. . .
...

aN−1b aN−2b · · · ab b


N×N

; Γ2 =



c 0 0 · · · 0

ac c 0
. . . 0

a2c ac c
. . . 0

...
...

. . . . . .
...

aN−1c aN−2c · · · ac c


N×N

;

Substituting all of the symbols above into Equation (27), Equation (27) can be reduced to

Y(k) = Φ1y(k) + Γ1V(k) + Γ2U(k) (28)

where V(k) and U(k) are the control signal generated by the predictive controller and output generated
by the actuator, respectively. However, according to the principle of the MPC algorithm, the predictive
controller can only generate the control signal V(k), so it is necessary to transform U(k) into algebraic
equations or matrix equations with V(k) and known parameters. According to Equations (10) and (22),
u(k) and v(k) have the following relationship:

u(k) = (1− e−
Ts
T0 )v(k) + e−

Ts
T0 u(k− 1) (29)
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where u(k) is the output value of the actuator at time t = kTs. Let ad = e−(Ts/T0), bd = 1 − e−(Ts/T0);
according to Equation (29), U(k) has the following relation with V(k):



u(k)
u(k + 1)
u(k + 2)

...
u(k + N − 1)


=



ad
a2

d
a3

d
...

aN
d


u(k− 1) +



bd 0 0 · · · 0

adbd bd 0
. . . 0

a2
dbd adbd bd

... 0
...

...
...

. . .
...

aN−1
d bd aN−2

d bd aN−3
d bd · · · bd





v(k|k )
v(k + 1|k )
v(k + 2|k )

...
v(k + N − 1|k )


(30)

Let Φ2 =
[

ad a2
d a3

d · · · aN
d

]T
; Γ3 =



bd 0 0 · · · 0

adbd bd 0
. . . 0

a2
dbd adbd bd

... 0
...

...
...

. . .
...

aN−1
d bd aN−2

d bd aN−3
d bd · · · bd


N×N

;

Then, Equation (30) can be writing in the following formulation:

U(k) = Φ2u(k − 1) + Γ3V(k) (31)

Finally, substituting Equation (31) into Equation (28), we obtain

Y(k) = Φ1y(k) + Γ1V(k) + Γ2Φ2u(k− 1) + Γ2Γ3V(k)

=
[

Φ1 Γ2Φ2
][ y(k)

u(k− 1)

]
+ (Γ1 + Γ2Γ3)V(k)

(32)

Let Φ = [Φ1 Γ2Φ2], Γ = Γ1 + Γ2Γ3; we obtain

Y(k) = Φ
[

y(k) u(k− 1)
]T

+ ΓV(k) (33)

where the matrix Φ and Γ are N × 2 and N × N, respectively.
Then, we construct the cost function of the ADCMPC; the cost function of ADCMPC is very

important, and from this we can calculate the control law of the novel MPC algorithm with actuator
dynamic compensation. Substituting Equation (33) into the cost function, we obtain

minJ = 1
2

Ny∑
i=1

qi‖yr(k + i) − y(k + ik)‖
2

+ 1
2

Nu∑
j=1

r j‖v(k + j− 1|k )‖
2

= 1
2 (Yr(k) −Y(k))TQ(Yr −Y(k)) + 1

2 UT(k)RU(k)

(34)

where yr(k) is the desired value corresponding to y(k) during the kth sampling period. Let Yr(k) = [yr(k
+ 1) yr(k + 2) . . . yr(k + N)]T; Q is a Ny-dimensional positive definite diagonal matrix, and the elements
on the diagonal are the output tracking error weights qj(j = 1, 2,..., Ny); R is a Nu-dimensional positive
definite diagonal matrix, and the elements on the diagonal are rj(j = 1, 2,..., Nu).

Q = diag(q1 q2 . . . qNy), R = diag(r1 r2 . . . rNu) (35)
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Substituting Equation (33) into Equation (34), we obtain

J = 1
2 (Yr −Y(k))TQ(Yr −Y(k)) + 1

2 UTRU

= 1
2 UT(ΓTQΓ + R)U − 1

2 (U
TΓTQY + YT

r QΓU) + 1
2 (U

TΓTQΦ
[

y(k)
u(k− 1)

]
+

[
y(k) u(k− 1)

]
ΦTQΓU) + 1

2 (Y
T
r QYr −YT

r QΦ
[

y(k)
u(k− 1)

]
−

[
y(k) u(k− 1)

]
ΦTQYr

+
[

y(k) u(k− 1)
]
ΦTQΦ

[
y(k)

u(k− 1)

]
)

According to the CMPC [17,52], the non-sufficient but necessary condition for the cost function
(34) with the minimum value is ∂J/∂V = 0; thus, the control signal is obtained as follows:

∂J
∂V

=
1
2
(ΓTQΓ + R)V(k) −

1
2

ΓQ(Yr −Φ
[

y(k) u(k− 1)
]T
) = 0

V(k) = (ΓTQΓ + R)
−1

ΓQ(Yr −Φ
[

y(k) u(k− 1)
]T
) (36)

Equation (36) is the result of the controller control signal V(k), where only v(k|k) is generated by
the prediction controller at the kth moment and the control signal is transmitted to the actuator.

v(k|k ) =
[

1 0 · · · 0
]
(ΓTQΓ + R)

−1
ΓQ(Yr −Φ

[
y(k) u(k− 1)

]T
) (37)

Equation (37) is the control law of ADCMPC proposed in this paper. In the same way, the control
law of CMPC algorithm can be calculated.

3. Results

The acquisition of model parameters of MSTRSCS is according to the operating data of a certain
type of marine steam turbine and Equations (5) and (6). The parameters of MSTRSCS and the actuator
model are shown in Table 1.

Table 1. Model parameters of the marine steam turbine.

Symbol Value SI-Unit

K 22
T 300 s
T0 10 s
τ 120 s

Regarding the selection of the sampling period Ts [17,52,59], firstly, the period Ts should follow
the selection principle of general discrete control and must satisfy the Shannon sampling theorem.
Secondly, the sampling period should not be too small, which will increase the amount of calculation.

Regarding the selection of the prediction horizon Ny [17,52], the prediction horizon Ny has a
large impact on the stability and rapidity of the system. In order to make the dynamic optimization
meaningful, the prediction horizon Ny needs to contain the information of the main dynamic changes
of the system. Therefore, the prediction horizon Ny must cover the main portion of the dynamic
response. If the rapidity is weak, the prediction horizon Ny can be appropriately reduced, and if the
stability is poor, the prediction horizon Ny can be increased.

Regarding the selection of the control horizon Nu [17,52], first of all, Nu ≤Ny. Then, in the case that
the prediction horizon Ny has been determined, the smaller the control horizon Nu, the more difficult
it is to guarantee the output closely tracks the desired value, and it will have poor maneuverability.
The larger the control horizon Nu, the stronger the control maneuverability, and the dynamic response
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is improved. However, the stability and robustness of the control system is deteriorated as with the
sensitivity of the control system.

Regarding the selection of the weighting matrix R on the control signal [17,52], the role of the
weighting matrix R is to moderately limit the drastic change of the cost function, which is added to the
cost function as a soft constraint. The elements in the weighting matrix R often take the same value.
If the control system is stable and the control signal changes too much, R can be increased slightly.

The simulation duration is 8000 s. Regarding the reference trajectory setting, the expected value
of the marine turbine speed in the first 1500 s of the simulation is 70 r/s; then, the expected value in
5000 s is 36 r/s. Finally, the desired speed is 50 r/s. The sampling period is selected as 5 s, 10 s, 20 s, 30 s,
40 s, 50 s, 100 s; the rotational speed and control signal are compared in the following figures.

From Figures 7–13, the following conclusions can be drawn:

Processes 2019, 7, x FOR PEER REVIEW 17 of 22 

 

Generally speaking, the ADCMPC algorithm proposed in this paper is correct. The dynamic 
response characteristics of the system are improved, as well as achieving better steady-state 
characteristics, which prove its excellent engineering value. 

  
(a) (b) 

Figure 7. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the novel MPC with 
actuator dynamic compensation (ADCMPC) and conventional MPC (CMPC) with Ts = 5 s. 

  
(a) (b) 

Figure 8. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 10 s. 

  
(a) (b) 

Figure 9. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 20 s. 

Figure 7. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the novel MPC with
actuator dynamic compensation (ADCMPC) and conventional MPC (CMPC) with Ts = 5 s.

Processes 2019, 7, x FOR PEER REVIEW 17 of 22 

 

Generally speaking, the ADCMPC algorithm proposed in this paper is correct. The dynamic 
response characteristics of the system are improved, as well as achieving better steady-state 
characteristics, which prove its excellent engineering value. 

  
(a) (b) 

Figure 7. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the novel MPC with 
actuator dynamic compensation (ADCMPC) and conventional MPC (CMPC) with Ts = 5 s. 

  
(a) (b) 

Figure 8. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 10 s. 

  
(a) (b) 

Figure 9. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 20 s. 

Figure 8. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and CMPC
with Ts = 10 s.



Processes 2019, 7, 423 16 of 21

Processes 2019, 7, x FOR PEER REVIEW 17 of 22 

 

Generally speaking, the ADCMPC algorithm proposed in this paper is correct. The dynamic 
response characteristics of the system are improved, as well as achieving better steady-state 
characteristics, which prove its excellent engineering value. 

  
(a) (b) 

Figure 7. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the novel MPC with 
actuator dynamic compensation (ADCMPC) and conventional MPC (CMPC) with Ts = 5 s. 

  
(a) (b) 

Figure 8. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 10 s. 

  
(a) (b) 

Figure 9. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 20 s. 
Figure 9. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and CMPC
with Ts = 20 s.Processes 2019, 7, x FOR PEER REVIEW 18 of 22 

 

  
(a) (b) 

Figure 10. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 30 s. 

(a) (b) 

Figure 11. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 40 s. 

  
(a) (b) 

Figure 12. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 50 s. 

Figure 10. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and
CMPC with Ts = 30 s.

Processes 2019, 7, x FOR PEER REVIEW 18 of 22 

 

  
(a) (b) 

Figure 10. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 30 s. 

(a) (b) 

Figure 11. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 40 s. 

  
(a) (b) 

Figure 12. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 50 s. 

Figure 11. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and
CMPC with Ts = 40 s.



Processes 2019, 7, 423 17 of 21

Processes 2019, 7, x FOR PEER REVIEW 18 of 22 

 

  
(a) (b) 

Figure 10. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 30 s. 

(a) (b) 

Figure 11. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 40 s. 

  
(a) (b) 

Figure 12. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 50 s. 
Figure 12. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and
CMPC with Ts = 50 s.

Processes 2019, 7, x FOR PEER REVIEW 19 of 23 

 

  
(a) (b) 

 

Figure 13. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and 
CMPC with Ts = 100 s. 

4. Conclusions 

This paper studies the rotational speed control problem of the marine steam turbine. To solve 
this problem, a novel ADCMPC algorithm is proposed which solves the shortcomings of the CMPC 
algorithm. A time-discrete mathematical model with actuator dynamic compensation is established 
to improve the accuracy of MSTRSCS. According to the novel time-discrete mathematical model, the 
difference between the control action u(t) and the control signal v(t) can be calculated accurately, so 
that the marine steam turbine can rapidly reach the desired rotational speed and reduce the amount 
of overshoot. The simulation results show that the ADCMPC algorithm is efficient and feasible. The 
ADCMPC algorithm reduces the dynamic response time of MSTRSCS and greatly improves the 
dynamic characteristics of the system. Future work should include increasing the complexity of the 
MSTRSCS mathematical model, making it closer to the real marine steam turbine; investigating the 
relevant parameters of the ADCMPC algorithm, such as the prediction horizon, the control horizon, 
output tracking error weighting and control input weighting, improving its optimization space. 
There is a coupling effect between the marine steam turbine rotational speed control loop and the 
marine boiler’s main steam pressure control loop [1]. The main steam pressure of the marine boiler is 
time-varying. The discrete-time model ignores the coupling effect of the rotational speed loop 
caused by the dynamic change of the main steam pressure loop during a sampling period. If the 
sampling period is relatively large, the coupling effect will be large and cannot be ignored. 
Therefore, future work will focus on the dynamic compensation predictive control of the marine 
steam turbine rotational speed control based on a time-continuous model. The study will be 
conducted based on the ideas of Gawthrop [46–48] and Mehdi Hosseinzadeh and Emanuele Garone 
[49–51]. 

Figure 13. Comparison of (a)-the rotational speed and (b)-control signal v(t) of the ADCMPC and
CMPC with Ts = 100 s.

1. From the perspective of dynamic characteristics, when the sampling period is small
(Figures 7–11), the ADCMPC algorithm can quickly converge to the expected rotational speed of marine
steam turbines. Compared with CMPC, the ADCMPC indeed has better dynamic characteristics.

2. With the increase of sampling period, the gap between ADCMPC and the CMPC algorithms
decreases. This is because as the sampling period increases, the difference between the actuator
output u(t) and the control signal v(t) decreases. The specific performance of the simulation results
is that the dynamic characteristics of the two control algorithms are not much different, and the
control signal values are also very close. Especially when the sampling period reaches Ts = 100 s, the
ADCMPC algorithm and CMPC algorithm are almost the same in terms of their rotational speed and
control signal.

3. When the sampling period of the system becomes larger, the settling time of MSTRSCS increases
gradually. This proves that the longer the sampling period, the longer the response time of the system
and the longer the stability time of the system, and the worse the dynamic characteristics of the system.

4. The system sampling period cannot be taken as too small; when the sampling period Ts is
less than 5 s, not only the ADCMPC algorithm but also the CMPC algorithm cannot achieve control
performance, as some parameters in the model will be too small to calculate.

Generally speaking, the ADCMPC algorithm proposed in this paper is correct. The dynamic
response characteristics of the system are improved, as well as achieving better steady-state
characteristics, which prove its excellent engineering value.
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4. Conclusions

This paper studies the rotational speed control problem of the marine steam turbine. To solve
this problem, a novel ADCMPC algorithm is proposed which solves the shortcomings of the CMPC
algorithm. A time-discrete mathematical model with actuator dynamic compensation is established to
improve the accuracy of MSTRSCS. According to the novel time-discrete mathematical model, the
difference between the control action u(t) and the control signal v(t) can be calculated accurately, so
that the marine steam turbine can rapidly reach the desired rotational speed and reduce the amount
of overshoot. The simulation results show that the ADCMPC algorithm is efficient and feasible.
The ADCMPC algorithm reduces the dynamic response time of MSTRSCS and greatly improves the
dynamic characteristics of the system. Future work should include increasing the complexity of the
MSTRSCS mathematical model, making it closer to the real marine steam turbine; investigating the
relevant parameters of the ADCMPC algorithm, such as the prediction horizon, the control horizon,
output tracking error weighting and control input weighting, improving its optimization space.
There is a coupling effect between the marine steam turbine rotational speed control loop and the
marine boiler’s main steam pressure control loop [1]. The main steam pressure of the marine boiler is
time-varying. The discrete-time model ignores the coupling effect of the rotational speed loop caused
by the dynamic change of the main steam pressure loop during a sampling period. If the sampling
period is relatively large, the coupling effect will be large and cannot be ignored. Therefore, future
work will focus on the dynamic compensation predictive control of the marine steam turbine rotational
speed control based on a time-continuous model. The study will be conducted based on the ideas of
Gawthrop [46–48] and Mehdi Hosseinzadeh and Emanuele Garone [49–51].
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Nomenclature

Ts Sampling period
V The ship navigation speed
Fpropi Thrust of the ith propeller
td The dimensionless thrust deduction coefficient
Fdrag The backward drafting force of a ship when it is sailing
m The quality of the ship
ma The dimensionless additional mass coefficient of the ship
Ek(t) The rotational kinetic energy of MSTRSCS
PT(t) The steam expansion work power in the marine steam turbine
PP(t) The load power of the propeller
J∑ The whole rotary inertia of MSTRSCS
KT The total work done by the expansion of the unit mass steam in the marine steam turbine
nt(t) The rotational speed of MSTRSCS
u(t) The mass flow of the steam intake to the turbine
TP The load torque of propeller
KQ The dimensionless torque coefficient
ρ The sea water density
D The diameter of the propeller
κ The drag coefficient of propeller
nmax The maximum rotational speed
∆κ Symbol of KQ(nmax − nt(t))
y(t) Symbol of n2

t(t)
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y(t) Symbol of n2
t(t)

Y(s) Laplace transform of y(t)
U(s) Laplace transform of u(t)
v(t) The control signal generated by the controller
T0 The time constant of the actuator
K Symbol of KT/κ

Nu The control horizon
Ny The prediction horizon
Q Ny-dimensional positive definite diagonal matrix
R Nu-dimensional positive definite diagonal matrix
J Cost function of MPC
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