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Abstract: Determining the degree of irregularity of a certain molecular structure or a network has been a
key source of interest for molecular topologists, but it is also important as it provides an insight into the
key features used to guess properties of the structures. In this article, we are interested in formulating
closed forms of irregularity measures of some popular benzenoid systems, such as hourglass H (m, n),
jagged-rectangular J (m, n), and triangular benzenoid T (m, n) systems. We also compared our results
graphically and concluded which benzenoid system among the above listed is more irregular than
the others.

Keywords: benzenoid systems; irregularity measures; complexity of structure; hourglass
benzenoid system

1. Introduction

Benzenoid hydrocarbons have consistently attracted the attention of both chemists and pure
mathematicians because of the complexities of the underlying molecular graphs, combinatorically
and topologically. Research in benzenoid hydrocarbons is currently expanding due to innovative
developments. Benzenoid systems are molecular structures that have nice geometrical properties.
These systems are connected, infinite chains of concatenated benzenes with the property of two adjacent
benzenes having a single common edge. These are constructed with a definite rule from a benzene
molecule, which happens to be its fundamental building block. A benzenoid system is defined to be
a connected planar simple graph obtained by regular hexagons, with two such hexagons sharing a
common edge or disjoint. All benzenoid systems partition the plane into one non-compact external
region and many internal compact regular hexagonal regions. Let h be the number of hexagons in a
benzenoid system, then, for h = 1, we have a single, non-isomorphic benzenoid system as the single
benzene molecule. For h = 2, 3, and 4, we obtain the number following non-isomorphic benzenoid
systems in Figure 1 ([1] pp. 11–15).
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Figure 1. Non-isomorphic benzenoid structures for h = 2, 3, 4. 

For h = 1 we have a single hexagonal cycle and, for h = 2, we have a unique, non-isomorphic 
structure. Mathematical chemistry can be useful to predict the properties of chemical compounds 
without the help of quantum mechanics. Key tools used to carry such information are polynomials 
and numbers, which collectively gather information relating to the pattern and topology of the 
molecular graph. The co-relation of various physical properties like standard enthalpy of 
vaporization, boiling point, entropy and heat of vaporization, as well as reactivity and biological 
mechanics, are theoretically based on these tools. Some connections of the physical properties of 
molecules with topological indices have been given in [2–4]. Estrada established a connection 
between the atom bond connectivity index and energies of the branched alkanes in [5]. Applications 
of some indices in pharmacology have been given in [6] and in structure–activity analysis in [7,8]. 

The subject matter of the present article is some well-known benzenoid systems. These are 
molecular graphs comprising of the arrangements of carbon atoms with depleted hydrogen. It has 
been keenly observed that the geometry and pattern of benzene in the system characterize its physical 
aspects [1,5,6]. These graphs consist of one infinite (outer) region and a number of finite (inner) 
regions. All internal regions must be regular hexagons. The vertex of a hexagonal system belongs to, 
at most, three hexagons. A vertex shared by three hexagons is called an internal vertex. Benzenoid 
systems are of great importance in theoretical chemistry and, as so, are recently well-studied [9–11]. 
Kwun et al. computed M-polynomials for triangular, hourglass, and jagged rectangle benzenoid 
systems, and from these M-polynomials, they recovered nine degree-based topological indices in [9]. 
In [10–12], the authors computed some degree-based indices and polynomials of benzenoid systems. 
For computational aspects and analysis of different degree-based indices of some famous tubes and 
nanomaterials, see [12–15]. 

In this article, we are interested in the characteristic study of irregularity determinants of some 
famous benzenoid systems, namely, triangular, hourglass, and jagged-rectangular benzenoid 
systems. 

2. Preliminaries and Notations 

Figure 1. Non-isomorphic benzenoid structures for h = 2, 3, 4.

For h = 1 we have a single hexagonal cycle and, for h = 2, we have a unique, non-isomorphic
structure. Mathematical chemistry can be useful to predict the properties of chemical compounds
without the help of quantum mechanics. Key tools used to carry such information are polynomials and
numbers, which collectively gather information relating to the pattern and topology of the molecular
graph. The co-relation of various physical properties like standard enthalpy of vaporization, boiling
point, entropy and heat of vaporization, as well as reactivity and biological mechanics, are theoretically
based on these tools. Some connections of the physical properties of molecules with topological indices
have been given in [2–4]. Estrada established a connection between the atom bond connectivity index
and energies of the branched alkanes in [5]. Applications of some indices in pharmacology have been
given in [6] and in structure–activity analysis in [7,8].

The subject matter of the present article is some well-known benzenoid systems. These are molecular
graphs comprising of the arrangements of carbon atoms with depleted hydrogen. It has been keenly
observed that the geometry and pattern of benzene in the system characterize its physical aspects [1,5,6].
These graphs consist of one infinite (outer) region and a number of finite (inner) regions. All internal
regions must be regular hexagons. The vertex of a hexagonal system belongs to, at most, three hexagons.
A vertex shared by three hexagons is called an internal vertex. Benzenoid systems are of great importance
in theoretical chemistry and, as so, are recently well-studied [9–11]. Kwun et al. computed M-polynomials
for triangular, hourglass, and jagged rectangle benzenoid systems, and from these M-polynomials,
they recovered nine degree-based topological indices in [9]. In [10–12], the authors computed some
degree-based indices and polynomials of benzenoid systems. For computational aspects and analysis of
different degree-based indices of some famous tubes and nanomaterials, see [12–15].

In this article, we are interested in the characteristic study of irregularity determinants of some
famous benzenoid systems, namely, triangular, hourglass, and jagged-rectangular benzenoid systems.

2. Preliminaries and Notations

Let G be a simple connected graph with vertex V, edge set E, du and dv the degree of vertices u and v.
A topological invariant is an isomorphism of the graph that preserves the topology of the graph. A graph
is said to be regular if every vertex of the graph has the same degree. A topological invariant is called
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an irregularity index if this index vanishes for a regular graph, and is non-zero for a non-regular graph.
Regular graphs have been extensively investigated, particularly in mathematics. Their applications in
chemical graph theory came to be known after the discovery of nanotubes and fullerenes. Paul Erdos
emphasized this in the study of irregular graphs for the first time in history in [16]. In the Second Krakow
Conference on Graph Theory (1994), Erdos officially posed it as an open problem, ‘’The determination
of extreme size of highly irregular graphs of given order”, [17]. Since then, irregular graphs and the
degree of irregularity have become one of the core open problems of graph theory. A graph in which
each vertex has a different degree then the other vertices is known as a perfect graph. The authors
of [18] demonstrated that no graph is perfect. The graphs lying in between are called quasi-perfect
graphs, in which all except two vertices have different degrees [17]. Simplified ways of expressing
the irregularities are irregularity indices. These irregularity indices have been studied recently in a
novel way [19,20]. The first such irregularity index was introduced in [21]. Most of these indices used
the concept of the imbalance of an edge defined as imballuv = |du− dv|, [22,23]. The Albertson index,
AL(G), was defined by Alberston in [23] as AL(G) =

∑
UV∈E|du − dv|. In this index, the imbalance

of edges are computed. The irregularity index IRL(G) and IRLU(G) is introduced by Vukicevic
and Gasparov, [24] as IRL(G) =

∑
UV∈E|lndu − lndv|, and IRLU(G) =

∑
UV∈E

|du−dv |
min(du,dv)

. Recently,
Abdoo et al. introduced the new term “total irregularity measure of a graph G”, which is defined
as [25–27] IRRt(G) = 1

2
∑

UV∈E|du − dv|. Recently, Gutman et al. introduced the IRF(G) irregularity
index of the graph G, which is described as IRF(G) =

∑
UV∈E(du − dv)

2 in [28]. The Randic index

itself is directly related to an irregularity measure, which is described as IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2

in [29]. Further irregularity indices of similar nature can be traced in [29] in detail. These indices are

given as IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣, IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

, LA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

, IRD1 =∑
UV∈E ln{1 + |dv − dv|}, IRGA(G) =

∑
UV∈E ln du+dv

2
√
(dudv)

, and IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
. Further details

can be given in [29–40]. Recently, Zahid et al. computed the irregularity indices of a nanotube [41].
Gao et al. recently computed irregularity measures of some dendrimer structures in [42] and molecular
structures in [43]. These structures are used as long infinite chain macromolecules in chemistry and
related areas.

In the current article, we are interested in finding the degree of irregularity of the triangular,
hourglass, and jagged-rectangle benzenoid systems. Figures 2–4 represent molecular graphs of these
three systems. The main motivation comes from the fact that graphs of the irregularity indices show
close accurate results about properties like entropy, standard enthalpy, vaporization, and acentric factors
of octane isomers [29]. The molecular pattern and topology of these three benzenoid systems are shown
in these figures. In Figure 2, benzenes increase by one, like a pyramid in Tm. In hourglass benzenoid
systems, one central benzene exists and the number of benzenes increases by one in both upward and
downward directions in Figure 3, whereas jagged-rectangular benzenoid systems are shown in Figure 4.
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Figure 2. Triangular benzenoid system Tm.

Figure 3. Hourglass benzenoid system Hm.

The horizontal line at the center is drawn just to indicate the line of symmetry of Hm.
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Figure 4. Jagged-rectangle benzenoid system Jm,n.

3. Main Results

In this section, we present our main theoretical results.

Theorem 1. Let Tm be the triangular benzenoid system, then the irregularity indices of Tm are:

1. IRDIF(Tm) = 3m− 3
2. AL(Tm) = 6m− 6
3. IRL(Tm) = 2.4329m− 2.43279
4. IRLU(Tm) = 3m− 3

5. IRLU(Tm) =
√

6m−
√

6
6. IRF(Tm) = 6m− 6
7. IRLA(Tm) =

12
5 m− 12

5
8. IRD1 = 4.15888m− 4.15888308

9. IRA(Tm) = 5− 2
√

6m− 5− 2
√

6
10. IRGA(Tm) = 0.1225m− 0.122465

11. IRB(Tm) = 30− 12
√

6m− 30− 12
√

6
12. IRRt(Tm) = 3(m− 1)

Proof. In order to prove the above theorem, we have to consider Figure 2. Here, m is the number
of hexagons in the last row of the triangular benzenoid system, and

∣∣∣V(Tm)
∣∣∣ = 1 + m2 + 4m and∣∣∣E(Tm)

∣∣∣ = 3
2 m(m + 3). We can see that the edges of Tm admit the following partition in Table 1. �

Table 1. Edge partition of triangular benzenoid system.

Number of Edges (du, dv) Number of Indices

(2, 2) 6
(2, 3) 6(m− 1)
(3, 3) 3

2 m(m− 1)

Now using Table 1 and the above definitions, we have:
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1. IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣
IRDIF(Tm) = 6

∣∣∣ 2
2 −

2
2

∣∣∣+ 6(m− 1)
∣∣∣ 3
2 −

2
3

∣∣∣+ 3
2 m(m− 1)

∣∣∣ 3
3 −

3
3

∣∣∣
= 3(m− 1).

2. AL(G) =
∑

UV∈E|du − dv|

AL(Tm) = 6|2− 2|+ 6(m− 1)|3− 2|+ 3
2 m(m− 1)|3− 3|

= 6(m− 1).

3. IRL(G) =
∑

UV∈E|lndu − lndv|

IRL(Tm) = 6|ln2− ln2|+ 6(m− 1)|ln3− ln2|+ 3
2 m(m− 1)|ln3− ln3|

= 6(m− 1)
∣∣∣ln 3

2

∣∣∣.
4. IRLU(G) =

∑
UV∈E

|du−dv |
min(dudv)

IRLU(Tm) = 6 |2−2|
2 + 6(m− 1) |3−2|

2 + 3
2 m(m− 1) |3−3|

2
= 3(m− 1).

5. IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

IRLF(Tm) = 6 |2−2|
√
(4)

+ 6(m− 1) |3−2|
√
(6)

+ 3
2 m(m− 1) |3−3|

√
9

= 6(m− 1) 1√
(6)

.

6. IRF(G) =
∑

UV∈E(du − dv)
2

IRF(Tm) = 6(2− 2)2 + 6(m− 1)(3− 2)2 + 3
2 m(m− 1)(3− 3)2

= 6(m− 1).

7. IRLA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

IRLA(Tm) = 2
[
6 |2−2|

(4) + 6(m− 1) |3−2|
(5) + 3

2 m(m− 1) |3−3|
(5)

]
= 12(m− 1) 1

(5) .

8. IRD1 =
∑

UV∈E ln{1 + |dv − dv|}

= 6ln{1 + |2− 2|}+ 6(m− 1)ln{1 + |3− 2|}+ 3
2 m(m− 1)ln{1 + |3− 3|}

= 6(m− 1)ln2.

9. IRA(G) =
∑

UV∈E

(
d− 1/2

u − d− 1/2
v

)2

IRA(Tm) = 6
(

1
√

2
−

1
√

2

)2
+ 6(m− 1)

(
1
√

3
−

1
√

2

)2
+ 3

2 m(m− 1)
(

1
√

3
−

1
√

3

)2

= 6(m− 1)
(

1
√

3
−

1
√

2

)2
.
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10. IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

IRGA(Tm) = 6ln 2+2
2
√
(4)

+ 6(m− 1)ln 3+2
2
√
(6)

+ 3
2 m(m− 1)ln 3+3

2
√
(9)

= 6(m− 1)ln 5
2
√
(6)

.

11. IRB(G) =
∑

UV∈E

(
d1/2

u − d1/2
v

)2

IRB(Tm) = 6
(√

2−
√

2
)2
+ 6(m− 1)

(√
3−
√

2
)2
+ 3

2 m(m− 1)
(√

3−
√

3
)2

= 6(m− 1)
(√

3−
√

2
)2

.

12. IRRt(G) = 1
2
∑

UV∈E|du − dv|

IRRt(Tm) = 1
2

[
6|2− 2|+ 6(m− 1)|3− 2|+ 3

2 m(m− 1)|3− 3|
]

= 3(m− 1).

Table 2. shows the values of these irregularity indices for some test values of parameter m.

Table 2. Irregularity indices for triangular benzenoid system Tm.

Irregularity Indices m = 1 m = 2 m = 3 m = 4 m = 5

IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣ 0 3 6 9 12

AL(G) =
∑

UV∈E|du − dv| 0 6 12 18 24

IRL(G) =
∑

UV∈E|lndu − lndv| 0 2.4329 4.8658 7.2987 9.7316

IRLU(G) =
∑

UV∈E
|du−dv |

min(du,dv)
0 3 6 9 12

IRLU(G) =
∑

UV∈E
|du−dv |√
(dudv)

0 2.44949 4.89898 7.34847 9.79796

IRF(G) =
∑

UV∈E(du − dv)
2 0 6 12 18 24

IRLA(G) = 2
∑

UV∈E
|du−dv |

(du+dv)
0 2.40 4.80 7.20 9.60

IRD1 =
∑

UV∈E ln{1 + |dv − dv|} 0 4.15888 8.31776 12.47664 16.63552

IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2
0 0.101022 0.202044 0.303066 0.404088

IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

0 0.122465 0.244930 0.367395 0.489860

IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
0 0.60612 1.21224 1.81836 2.42448

IRRt(G) = 1
2
∑

UV∈E|du − dv| 0 3 6 9 12

Theorem 2. Let Hm be the hourglass benzenoid system, then the irregularity indices of Hm are:

1. IRDIF(Hm) = 6m− 8
2. AL(Hm) = 12m− 16
3. IRL(Hm) = 4.86559m− 6.48745
4. IRLU(Hm) = 6m− 8

5. IRLU(Hm) = 2
√

6m− 32
√

6
3

6. IRF(Hm) = 12m− 16
7. IRLA(Hm) =

24
5 m− 32

5
8. IRD1 = 8.31776m− 11.09035489
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9. IRA(Hm) = 10− 4
√

6m− 40−16
√

6
3

10. IRGA(Hm) = 0.245m− 0.32658

11. IRB(Hm) = 60− 24
√

6m− 80− 32
√

6
12. IRRt(Hm) = 2(3m− 4)

Proof. In order to prove the above theorem, we have to consider Figure 3. Here, Hm indicates
the hourglass benzenoid system which is acquired from the two duplicates of triangular benzenoid
system Tm by overlapping their exterior hexagons. Then, we have

∣∣∣V(Hm)
∣∣∣ = 2

(
m2 + 4m− 2

)
and∣∣∣E(Hm)

∣∣∣ = 3m2 + 9m− 4. We can see that the edges of Hm admit the following partition in Table 3. �

Table 3. Edge partition of hourglass benzenoid system.

Number of Edges (du, dv) Number of Indices

(2, 2) 8
(2, 3) 4(3m− 4)
(3, 3)

(
3m2
− 3m + 4

)
Now using above Table 3, and the above definitions, we have:

1. IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣
IRDIF(Hm) = 8

∣∣∣ 2
2 −

2
2

∣∣∣+ 4(3m− 4)
∣∣∣ 3
2 −

2
3

∣∣∣+ (
3m2
− 3m + 4

)∣∣∣ 3
3 −

3
3

∣∣∣
= 2(3m− 4).

2. AL(G) =
∑

UV∈E|du − dv|

AL(Hm) = 8|2− 2|+ 4(3m− 4)|3− 2|+
(
3m2
− 3m + 4

)
|3− 3|

= 4(3m− 4).

3. IRL(G) =
∑

UV∈E|lndu − lndv|

IRL(Hm) = 8|ln2− ln2|+ 4(3m− 4)|ln3− ln2|+
(
3m2
− 3m + 4

)
|ln3− ln3|

= 4(3m− 4)
∣∣∣ln 3

2

∣∣∣.
4. IRLU(G) =

∑
UV∈E

|du−dv |
min(dudv)

IRLU(Hm) = 8 |2−2|
2 + 4(3m− 4) |3−2|

2 +
(
3m2
− 3m + 4

)
|3−3|

2
= 2(3m− 4).

5. IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

IRLF(Hm) = 8 |2−2|
√
(4)

+ 4(3m− 4) |3−2|
√
(6)

+
(
3m2
− 3m + 4

)
|3−3|
√

9

= 4(3m− 4) 1√
(6)

.

6. IRF(G) =
∑

UV∈E(du − dv)
2

IRF(Hm) = 8(2− 2)2 + 4(3m− 4)(3− 2)2 +
(
3m2
− 3m + 4

)
(3− 3)2

= 4(3m− 4).
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7. IRLA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

IRLA(Hm) = 2
[
8 |2−2|

(4) + 4(3m− 4) |3−2|
(5) +

(
3m2
− 3m + 4

)
|3−3|
(5)

]
= 8(3m− 4) 1

(5) .

8. IRD1 =
∑

UV∈E ln{1 + |dv − dv|}

IRD1 = 8ln{1 + |2− 2|}+ 4(3m− 4)ln{1 + |3− 2|}+
(
3m2
− 3m + 4

)
ln{1 + |3− 3|}

= 4(3m− 4)ln2.

9. IRA(G) =
∑

UV∈E

(
d− 1/2

u − d− 1/2
v

)2

IRA(Hm) = 8
(

1
√

2
−

1
√

2

)2
+ 4(3m− 4)

(
1
√

3
−

1
√

2

)2
+

(
3m2
− 3m + 4

)(
1
√

3
−

1
√

3

)2

= 4(3m− 4)
(

1
√

3
−

1
√

2

)2
.

10. IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

IRGA(Hm) = 8ln 2+2
2
√
(4)

+ 4(3m− 4)ln 3+2
2
√
(6)

+
(
3m2
− 3m + 4

)
ln 3+3

2
√
(9)

= 4(3m− 4)ln 5
2
√
(6)

11. IRB(G) =
∑

UV∈E

(
d1/2

u − d1/2
v

)2

IRB(Hm) = 8
(√

2−
√

2
)2
+ 4(3m− 4)

(√
3−
√

2
)2
+

(
3m2
− 3P + 4

)(√
3−
√

3
)2

= 4(3P− 4)
(√

3−
√

2
)2

.

12. IRRt(G) = 1
2
∑

UV∈E|du − dv|

IRRt(Hm) = 1
2

[
8|2− 2|+ 4(3m− 4)|3− 2|+

(
3m2
− 3m + 4

)
|3− 3|

]
= 2(3m− 4).

Table 4 represents some values of the calculated irregularity indices of Hm for some test values of m.

Table 4. Irregularity indices for hourglass benzenoid system Hm.

Irregularity Indices m = 1 m = 2 m = 3 m = 4 m = 5

IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣ −2 4 10 16 22

AL(G) =
∑

UV∈E|du − dv| −4 8 20 32 44

IRL(G) =
∑

UV∈E|lndu − lndv| −1.62186 3.4373 8.10932 12.97491 17.84050

IRLU(G) =
∑

UV∈E
|du−dv |

min(du,dv)
−2 4 10 16 22

IRLU(G) =
∑

UV∈E
|du−dv |√
(dudv)

−1.62992 3.265984 8.164960 13.063936 16.962912

IRF(G) =
∑

UV∈E(du − dv)
2 −4 8 20 32 44

IRLA(G) = 2
∑

UV∈E
|du−dv |

(du+dv)
−1.6 3.2 8.0 12.8 17.6

IRD1 =
∑

UV∈E ln{1 + |dv − dv|} −2.772594 5.545165 13.862925 22.18068 30.498445
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Table 4. Cont.

Irregularity Indices m = 1 m = 2 m = 3 m = 4 m = 5

IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2
−0.067348 0.134696 0.336740 0.538784 0.740828

IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

−0.08158 0.16342 0.40842 0.65342 0.89842

IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
−0.40408 0.80816 2.02040 3.23264 4.44488

IRRt(G) = 1
2
∑

UV∈E|du − dv| −2 4 10 16 22

Theorem 3. Let Jm,n be the jagged-rectangular benzenoid system, then the irregularity indices of Jm,n are:

1. IRDIF(Jm,n) = 2m + 2n− 2
2. AL(Jm,n) = 4m + 4n− 4
3. IRL(Jm,n) = 1.621860432m + 1.621860432n− 1.621860432
4. IRLU(Jm,n) = 2m + 2n− 2

5. IRLU(Jm,n) =
2
√

6
3 m + 2

√
6

3 n− 2
√

6
3

6. IRF(Jm,n) = 4m + 4n− 4
7. IRLA(Jm,n) =

8
5 m + 8

5 n− 8
5

8. IRD1 = 1.386294361m + 1.386294361n− 1.386294361

9. IRA(Jm,n) =
10−4

√
6

3 m + 10−4
√

6
3 n− 10−4

√
6

3
10. IRGA(Jm,n) = 0.08164398904m + 0.08164398904n− 0.08164398904

11. IRB(Jm,n) = 20− 8
√

6m + 20− 8
√

6n− 20− 8
√

6
12. IRRt(Jm,n) = 2(m + n− 1)

Proof. In order to prove the above theorem, we have to consider the Figure 4. Values of m and n are
the number of benzenes in a row and in a column, respectively. A jagged-rectangle benzenoid system
Jm,n forms a rectangle. �

We can see that the edges of Jm,n admit the following partition in Table 5.

Table 5. Edge partition of jagged-rectangle benzenoid system.

Number of Edges (du,dv) Number of Indices

(2, 2) 2(m + 2)
(2, 3) 4(m + n− 1)
(3, 3) (6mn + m− 5n− 4)

Now, using above Table 5 and the above definitions, we have:

1. IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣
IRDIF(Jm,n) = 2(n + 2)

∣∣∣ 2
2 −

2
2

∣∣∣+ 4(m + n− 1)
∣∣∣ 3
2 −

2
3

∣∣∣+ (6mn + m− 5n− 4)
∣∣∣ 3
3 −

3
3

∣∣∣
= (m + n− 1).

2. AL(G) =
∑

UV∈E|du − dv|

AL(Jm,n) = 2(n + 2)|2− 2|+ 4(m + n− 1)|3− 2|+ (6mn + m− 5n− 4)|3− 3|
= 4(m + n− 1).
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3. IRL(G) =
∑

UV∈E|lndu − lndv|

IRL(Jm,n) = 2(n + 2)|ln2− ln2|+ 4(m + n− 1)|ln3− ln2|+ (6mn + m− 5n− 4)|ln3− ln3|
= 4(m + n− 1)

∣∣∣ln 3
2

∣∣∣.
4. IRLU(G) =

∑
UV∈E

|du−dv |
min(dudv)

IRLU(Jm,n) = 2(n + 2) |2−2|
2 + 4(m + n− 1) |3−2|

2 + (6mn + m− 5n− 4) |3−3|
2

= 2(m + n− 1) .

5. IRLF(G) =
∑

UV∈E
|du−dv |√
(dudv)

IRLF(Jm,n) = 2(n + 2) |2−2|
√
(4)

+ 4(m + n− 1) |3−2|
√
(6)

+ (6mn + m− 5n− 4) |3−3|
√

9

= 4(m + n− 1) 1√
(6)

.

6. IRF(G) =
∑

UV∈E(du − dv)
2

IRF(Jm,n) = 2(n + 2)(2− 2)2 + 4(m + n− 1)(3− 2)2 + (6mn + m− 5n− 4)(3− 3)2

= 4(m + n− 1).

7. IRLA(G) = 2
∑

UV∈E
|du−dv |
(du+dv)

IRLA(Jm,n) = 2
[
2(n + 2) |2−2|

(4) + 4(m + n− 1) |3−2|
(5) + (6mn + m− 5n− 4) |3−3|

(5)

]
= 8

5 (m + n− 1).

8. IRD1 =
∑

UV∈E ln{1 + |dv − dv|}

IRD1 = 2(m + 2)ln{1 + |2− 2|}+ 4(m + n− 1)ln{1 + |3− 2|}+ (6mn + m− 5n− 4)ln{1 + |3− 3|}
= 4(m + n− 1)ln2.

9. IRA(G) =
∑

UV∈E

(
d− 1/2

u − d− 1/2
v

)2

IRA(Jm,n) = 2(n + 2)
(

1
√

2
−

1
√

2

)2
+ 4(m + n− 1)

(
1
√

3
−

1
√

2

)2
+ (6mn + m− 5n− 4)

(
1
√

3
−

1
√

3

)2

= 4(m + n− 1)
(

1
√

3
−

1
√

2

)2
.

10. IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

IRGA(Jm,n) = 2(n + 2)ln 2+2
2
√

4
+ 4(m + n− 1)ln 2+3

2
√

6
+ (6mn + m− 5n− 4)ln 3+3

2
√

9
= 4(m + n− 1)ln 5

2
√

6

11. IRB(G) =
∑

UV∈E

(
d1/2

u − d1/2
v

)2

IRB(Jm,n) = 2(n + 2)
(√

2−
√

2
)2
+ 4(m + n− 1)

(√
3−
√

2
)2
+ (6mn + m− 5n− 4)

(√
3−
√

3
)2

= 4(m + n− 1)
(√

3−
√

2
)2
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12. IRRt(G) = 1
2
∑

UV∈E|du − dv|

IRRt(G) = 1
2 [2(n + 2)|2− 2|+ 4(m + n− 1)|3− 2|+ (6mn + m− 5n− 4)|3− 3|]

= 2(m + n− 1).

Table 6 represents some values of the calculated irregularity indices of Jm,n for some test values of m.

Table 6. Irregularity indices for jagged-rectangular benzenoid system Jm,n.

Irregularity Indices m = 1 n = 1 m = 2 n = 2 m = 3 n = 3 m = 4 n = 4 m = 5 n = 5

IRDIF(G) =
∑

UV∈E

∣∣∣∣ du
dv
−

dv
dv

∣∣∣∣ 2 6 10 14 18

AL(G) =
∑

UV∈E|du − dv| 4 12 20 28 36

IRL(G) =
∑

UV∈E|lndu − lndv| 1.6218043 4.865581 8.109302 11.353023 14.596743

IRLU(G) =
∑

UV∈E
|du−dv |

min(du,dv)
2 6 10 14 18

IRLU(G) =
∑

UV∈E
|du−dv |√
(dudv)

1.632993 4.898979 8.164965 11.43095 14.696937

IRF(G) =
∑

UV∈E(du − dv)
2 4 12 20 28 36

IRLA(G) = 2
∑

UV∈E
|du−dv |

(du+dv)
1.60 4.80 8 11.20 14.40

IRD1 =
∑

UV∈E ln{1 + |dv − dv|} 1.386294 4.15888 6.931471 9.704060 12.476649

IRA(G) =
∑

UV∈E

(
d
−1
2

u − d
−1
2

v

)2
0.067348 0.202044 0.336740 0.471436 0.606132

IRGA(G) =
∑

UV∈E ln du+dv

2
√
(dudv)

0.0816439 0.244931 0.408219 0.571507 0.734795

IRB(G) =
∑

UV∈E

(
d

1
2
u − d

1
2
v

)2
0.40408 1.21224 2.02040 2.82856 3.636772

IRRt(G) = 1
2
∑

UV∈E|du − dv| 2 6 10 14 18

4. Graphical Analysis, Discussions, and Conclusions

In this part, we will discuss our theoretical results and conclude which of the above described
benzenoid systems is more irregular than the other, with respect to a particular irregularity index.
Systems Tm, Hm depend on a single parameter m, and all closed relations of irregularity indices are
linear in m, so the graphs of these indices should be straight lines, whereas Jm,n depends on two
parameters, and the obtained graph is a planar surface. We plot Tm, Hm on a single graph and Jm,n as a
separate graph.

We see that all irregularity indices tend to increase with increases in the values of the parameters.
We gave graphical behaviors of some of these indices with respect to the change in the parameter of m.
In this graphical analysis, the purple color shows the graphical behavior of the triangular benzenoid
system, the orange color shows the graphical behavior of the hourglass benzenoid system, and the 3D
surface shows the graphical behavior of the jagged-rectangle benzenoid with respect to both variables
m and n for the range of parameters m = 0 . . . 30 and n = 0 . . . 30. We give the graph of irregularity in
IRDIF(G) in Figure 5. Comparative behavior of IRDIF(G) f or Tm and Hm is elaborated in this figure.
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Now we see the behavior of the irregularity index IRA(G) for the range of parameters m = 0 . . .
30 and n = 0 . . . 30. In the Figure 7, we give the irregularity index IRA(G) for Tm and Hm.
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Figure 8. 3D Graphical behavior of IRA f or Jm,n against both parameters m and n.

These graphs graphically depict that the values of all irregularity indices increase with an increase
in the variable of the structures. Figures 5 and 7 show that the molecular structure of benzenoid
hourglass H(m) is highly irregular, as compared to the triangular benzenoid system.

We foresee that our results could play an important role in determining the properties of these
benzenoid systems, such boiling point, heats of vaporization, enthalpy, and entropy. Similar work has
been done in [29], where authors discussed some properties of alkane isomers.
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