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Abstract: The current study introduces a new technique for the analysis of uncertain systems and
uncertain processes in geothermics/earth sciences. The method is the second synthetic grey relational
analysis (SSGRA) model, which incorporated the advantages of both Deng’s GRA model and the
bidirectional absolute GRA model. The SSGRA model has been earlier successfully applied in
project management and healthcare systems. The current study is a pioneer in demonstrating the
feasibility of the SSGRA model in a geothermal environment. In the current study, the model was
used to determine the associations between thermal conductivity and petrophysical parameters in an
Algerian reservoir. The results revealed that thermal conductivity is most strongly associated with
porosity followed by density and permeability. Their relationships are also discussed. The study
concludes with valuable insights about the model and its application in engineering and natural
sciences especially when the system contains uncertainty, which may arise either due to insufficient
data or uncertain relationships among the parameters associated with the system or its processes.

Keywords: grey relational analysis; absolute GRA; second synthetic GRA; thermal conductivity;
petrophysical parameters

1. Introduction

Uncertainty is an everyday word in the industry as it surrounds all processes within industrial
systems. Irrespective of the nature of a system, whether biological, chemical, geothermal, engineering
or even socio-economical, the processes make the system contain uncertainty due to different reasons.
Uncertainty in the process parameters and designs prompts the uncertainty in the system. However,
managing the systems containing uncertainty is never a simple task for the system/processes analysts.
Traditional approaches to handling such issues involve statistical techniques where processes are dealt
with as stochastic processes, and larger sample data are encouraged. For example, process design and
simulation seriously count on property data, which is subject to varying uncertainties [1]. Further,
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uncertainty may prevent process designs, supposed to be optimal, from successful attainment of
specific process design objectives and making them unfeasible in the presence of unexpected and
sudden changes in the system [2]. Unlike traditional approaches, “grey system theory looks at each
stochastic variable as a grey quantity that varies within a fixed region and within a certain time
frame, and each stochastic process as a grey process” [3] (p. 45). Further, its feasibility on small
samples is well recognized in the literature [4,5]. In grey system theory, the concept of ‘grey’ has
been borrowed from the engineering concept of grey-box, a partially structured box within black-box
and white-box [6]. In this paradigm, greyness implies incompleteness, thus a grey quantity or grey
parameter is a parameter that is between two extreme parameters and the grey process is a process
associated with these grey parameters.

Like fuzzy theory, grey system theory (GST) is a feasible mathematical approach for systems
analysis described by imperfect information [7] (p. 103). In engineering and technical literature, Deng’s
grey relational analysis (GRA) model is a popular technique for multi-objective optimization and
evaluation of process parameters. Hussain et al. [8] used the GRA model coupled with the Taguchi
method for the optimization of powder metallurgy processing parameters of the Al2O3/Cu composite.
Maniyar and Ingole [9] used Taguchi-based GRA method for the multi-response optimization of
electrical discharge machining process parameters for aluminum hybrid composites. Chauhan et al. [10]
used the GRA model coupled with the Taguchi method for the optimization of the micromachining
process parameters. Gandhi and Rahul [11] used the GRA model coupled with the Taguchi method
for the optimization of process parameters. Umamaheswarrao et al. [12] used GRA coupled with
principle component analysis (PCA) multi-objective optimization of process parameters for the hard
turning of AISI 52100 steel. Aslantas et al. [13] used a Taguchi-based GRA method for the optimization
of process parameters for micro-milling of Ti-6Al-4V alloy. Luo et al. [14] used AHP integrated GRA
model to analyze the integrated cascade utilization system of waste geothermal water. Liu et al. [15]
used the GRA model to study the relationships between some parameters and to study the degree of
the relative importance of the influencing factors about fractal dimensions of superfine pulverized coal
particles. These are just a few cases from a pool of studies involving GRA model or its variants. One of
the characteristics that distinguish GRA from conventional statistical techniques is that this method
enables evaluation of quantitative and qualitative relationships between parameters characterized by a
comparatively insufficient amount of data [16].

The first GRA model was proposed by Deng Julong, the founder of grey system theory (GST),
in the 1980s and it was followed by the development of other GRA models by different scholars.
Dong et al. [17] and Delcea et al. [18] highlighted several succeeding models. However, Deng’s
GRA model is still the most influential one among all GRA models [3] (p. 68). Initially, it was
popular in engineering fields, having seen its application in other fields during nearly 40 years of its
development as well [19]. Another popular GRA model was the one proposed by Sifeng Liu, and its
simplified version can be found in References [20,21]. It is known as the absolute GRA model, also
called the absolute degree grey incidence analysis (ADGIA) model. If Deng’s GRA model reveals
partial closeness/proximity, then absolute GRA reveals integral closeness/proximity between two data
sequences [17,22]. On the other hand, the second synthetic GRA aims to reveal a more comprehensive
closeness (inclusive proximity), while incorporating the advantages of both Deng’s GRA and absolute
GRA models [6,22]. The fundamental concept of GRA is to gauge the relational degree of data sequences
in line with the similarity between their geometric shapes of the curves of the data sequences [23]. In
other words, the basic idea of GRA models is to determine the proximity/closeness between two data
sequences representing two curves through different perspectives. These perspectives distinguish one
GRA model from the other.

In light of above the discussion, the current study attempted to investigate the relations between
thermal conductivity and three parameters; density, porosity and permeability associated with the
Hamra Quartzites reservoir of Algeria. The first study, which was a preliminary study on the case, was
done by Zerrouki et al. [24]. Preliminary studies are usually incomplete and provide a lot of grey areas
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for future researchers that need to be reinvestigated. The current study uses a novel method, which has
never been used in earth sciences or geothermic studies before, to better investigate the relationship
between the thermal conductivity of Hamra quartzites and three petrophysical parameters.

The rest of the study is organized in the following way. After the introduction, a literature
review of the important concepts is presented. These concepts are related to the four factors under
the study and the grey relational analysis models that the current study intends to use. Afterward,
the research methodology of the study is discussed. This is followed by the data analysis and results
while discussing and comparing the results obtained through novel approaches with the results earlier
obtained by Zerrouki et al. [24]. In the last part of the paper, conclusions and recommendations
are presented.

2. Literature Review

2.1. Grey Relational Analysis

Grey relational analysis (GRA), grey incidence analysis (GIA) and grey correlation analysis are
three names for the same phenomenon; first reported by Javed in 2018 [6,22,25,26]. Scholars from
engineering fields are more familiar with the term “GRA” [6] and this convention has been followed
throughout the current study. GRA methods constitute one of the core areas of grey system theory
(GST), which was proposed by Chinese scientist, Deng Julong, in 1982 to manage the uncertain systems
containing poor information. GST belongs to the family of uncertainty theories, where other family
members are fuzzy theory, interval theory, rough set theory, so on [27,28]. However, grey system theory,
guided by its own distinct approaches, deals with uncertainty unlike other uncertainty theories [29,30].
GST categorizes all systems of the world into three classes; black, white and grey [31]. A black system
implies a system for which no information is available and the white system is the system for which
the entire information is available. Thus, a grey system becomes a system with partially known and
partially unknown information [32]. The key strength of GST and its models is their predictions and
decision making using small sample size, poor data and incomplete information [33–36]. The GRA
models strive to understand the uncertain relations among the parameters associated with the grey
systems. GRA is not only an important part of GST, but also the cornerstone of the grey system
analysis, modeling, prediction, and decision making [37]. GRA models have been used for many years
to analyze the relationships between system factors [33]. The underlying notion of GRA is that the
closeness of a relationship between the system parameters is predicted based on the level of similarity
of the geometrical pattern of the data sequences representing those parameters [38]. This closeness is
also known as proximity in the literature [6,39]. Here, a misconception in the literature needs to be
addressed. Even though Zhang et al. [37] argued that GRA models (e.g., Deng’s GRA and absolute
GRA) “can only be applied to times series”, the influential work by Liu et al. [3] (p. 69) maintained
that a series of observations may or may not be over time. It can be observations, experiments, years,
indexes, etc. The work of Javed [6] supports this notion, so does the current study.

The concept of GRA was pioneered by Deng in the 1980s. The foundation of Deng’s GRA model
rests on the estimation of a degree of proximity, grey relational grade (GRG). According to Javed [6],
GRG is “a degree of partial proximity (or, partial closeness) between two curves and is estimated by
taking the average of the grey relational coefficients” at each point in a data sequence. Deng’s GRA
model measures the trend similarity of system factors according to the distance between corresponding
points of the sequences [39]. Later, in 1991, Liu Sifeng proposed another degree, absolute GRG, and
laid the foundation of the absolute degree grey incidence analysis model, also called the absolute GRA
model [39]. A detailed discussion on the absolute GRA model can be found in Liu et al. [3,20,21].
According to Javed [6], absolute GRG is “a degree of integral proximity between two curves represented
by two data sequences and is estimated by considering the integral perspective on the proximity
(closeness) between the two curves”.
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Deng’s GRG and absolute GRG are mutually exclusive thus they can produce different orders/ranks
for the parameters under study. However, this dilemma failed to seek the attention of scholars [6]. For
instance, according to Arce et al. [16], grey relational grade (GRG) indicates the “degree of correlation”
between the reference data sequence and the data sequences to be compared, which can also be
considered the “degree of influence” of the comparison sequence on the reference sequence. In a
statistical paradigm, correlation and influence have totally different meanings. Correlation simply
means two factors are correlated with no information about whether they are influencing each other or
not. Further, in the works of Tung and Lee [40] and Yu et al. [41], absolute GRG serves as a correlational
measure. Javed [6] discussed a number of studies that lead him to argue that the real purpose of
[Deng’s] GRG and absolute GRG is not clear in the literature. Meanwhile, Javed et al. [4] tried resolving
this dilemma by stating “in a nutshell, Deng’s GRA model gives the measure of influence that one
variable represented by a data sequence exerts on the other and absolute GRA model gives the measure
of association between them.” Here, the measure of association can be loosely translated as a measure
of correlation [6]. Considering the fact that the change in the order of sequences can affect the value of
GRG but not of absolute GRG, this proposal can be supported as it is hard to imagine, correlation can
vary if two variables switch their positions. Acknowledging this dilemma in the literature where two
different versions of GRG were being used for comparison purposes, Javed [6] proposed the “second
synthetic GRG” and demonstrated its feasibility through an application in a project management
environment. To date, the associated model, the second synthetic GRA (SSGRA) model, has been
successfully tested and applied in healthcare systems by Javed and colleagues [22,25], in construction
project management environment by Sheikh et al. [42] and in supply chain environment by Diba and
Xie [43].

Building upon the work of Liu et al. [3], Javed and Liu [22] argued that Deng’s GRA methodology
is driven by the grey relational coefficient (GRC) of particular points while the absolute GRA model
is governed by an integral (rather comprehensive) perspective. Thus, the closeness or proximity,
as reported by Deng’s GRG, can be referred to as “partial proximity” (or partial closeness) and the
closeness or proximity as reported by absolute GRG can be referred to as “integral proximity” (or
integral closeness) [6]. The work of Dong et al. [17] presents a theorem that proves “the absolute degree
of grey incidence satisfies the integral closeness of Deng’s grey incidence axiom, but does not satisfy the
partial closeness.” This theorem justified the understanding on which the second synthetic GRG was
proposed as a measure of “inclusive proximity” that synthesizes both partial proximity and integral
proximity of grey relation (grey incidence). The theorem and its proof have been reproduced below.

Theorem 1. The absolute GRG satisfies the integral proximity/closeness of Deng’s grey relational axiom but
does not satisfy the partial proximity/closeness [17].

Proof [17]. The partial proximity of Deng’s grey relational axiom pertains to the grey relational grade
(GRG) as estimated in line with the distance between the corresponding points of the data sequences
i.e., the smaller the distance between the reference sequence X0 and the comparison sequence Xi at
point k, the higher the grey relational coefficient (GRC) at point k. From the definition of Absolute
GRG, when

s0 − si =

∫ n

1

(
X0

0 −X0
i

)
dt =

∫ n

1
X0

0dt−
∫ n

1
X0

i dt = 0, |s0 − si| = 0, (1)

then ε0i = 1, where X0
0 and X0

i are the zero-starting images of the sequences X0 and Xi, respectively.
Due to the positive and negative offsets of the integral operation, as long as X0

i oscillates around X0
0 and

the area of the parts of X0
i located above X0

0 equals to that of the parts of X0
i located beneath X0

0, ε0i = 1
can be satisfied. In fact, the proximity of Deng’s grey relational axiom pertains to GRC between the
points of the data sequences, whereas the absolute GRG is based on the integral (rather comprehensive)
perspective. Thus, the absolute GRG, which predicts similarity based on proximity, is valid in the
situations where zero-starting point sequences do not cross each other or do not affect the degree of
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grey relation after the intersection. For further discussion on this theorem, the readers are directed to
Dong et al. [17]. �

2.2. Thermal Conductivity and Petrophysical Parameters

Thermal conductivity is an important physical property of rocks that describes how well, but not
how fast, heat is conducted through a material [44]. Thermal conductivity (TC) is a property that can
be determined by different measuring methods. It can be defined as the capability of a material to
transfer heat with respect to a temperature gradient. It is not only an essential criterion to evaluate
the heat transfer in rocks but also has applications in the geoscientific and geotechnical field [45].
Thermal conductivity results in the heat accumulation and determines where and how much heat
flows resulting from the temperature differences in rocks [46]. Conduction and convection are the
two fundamental phenomena that determine the heat transfer in the rock formation. According to
Fourier’s law, rocks with low-porous and high density possess higher conduction than convention.
However, in rocks such as porous sediments are dominated by convection heat transfer. Different
rocks have a different heterogeneous mineral composition, so it shows significant differences in the
thermal conductivity. Different groups of rocks show the variability of thermal conductivity in the
range of 2 to 4 Wm−1K−1 [47]. Two very important parameters associated with a material’s thermal
conductivity are porosity and density. The porosity describes the fraction of void space in the rock,
where the voids may contain some fluid (e.g., air, water etc.) [48]. The rock density is defined as the
quotient of the mass and the volume of the material [24] i.e., mass per unit volume. Permeability of a
material is another property that may not directly be associated to thermal conductivity but is closely
related to porosity as both permeability and porosity intrinsically depend on the microstructure of
pores in porous materials [49]. These properties frequently find their mention in the geothermic and
earth sciences literature.

The relationships between thermal conductivity (TC) and the influencing parameters/properties
have been studied by numerous scholars in the past. Somerton [50] is considered as one of the pioneers
to study the correlation of TC with petrophysical parameters. He found that variation in temperature
significantly affects the thermal diffusivity of rocks. In later years, several scholars [51–57] studied
the effect of density, rock texture, permeability, fluid saturation, mineral composition and porosity
of rocks on thermal conductivity. For instance, Barry-Macaulay et al. [54] reported the variation
in TC of soils and rocks with the variation in density. Duchkov et al. [55] revealed a stable linear
relationship between the thermal conductivity of the dry samples of Mesozoic sedimentary rocks
and, porosity and permeability. Haffen et al. [58] studied the correlation of TC and porosity maps for
granite and sandstone. Their study developed the porosity maps for air and water saturated conditions.
Asadi et al. [57] and Ouali [59] stressed the significant role of porosity in the thermal conductivity of
materials. Duchkov et al. [60] reported that TC of sedimentary rocks is determined by the composition
of the mineral skeleton, porosity and permeability of the rock, as well as the type of fluid that fills the
pores. Literature suggests that TC of rocks is influenced, directly or indirectly and with varying degree
of extents, by various kinds of petrophysical parameters, which are highlighted in Figure 1.
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Finding an association between two continuous variables is usually performed by a correlation
method. Finding a correlation is essential to reduce the range of uncertainty. It helps us to understand
the causal effects, economic benefits and helps us to screen the parameter. There is a dire need to find
an accurate correlation between TC and other parameters, especially relatively less explored quartzite.
The literature suggests thermal conductivity is inversely and significantly related to porosity [59–62].
Duchov et al. [60] reported this relationship to be linear while Ouali [59] reported a harmonic average
relationship. Since porosity and permeability are known to have a positive correlation [48,63–65] it
is very plausible to assume that thermal conductivity and permeability are likely to have inverse
relationship as well. This can be confirmed from Duchkov et al. [59] who reported inverse linear
relation between thermal conductivity and permeability. However, Mielke et al. [66] failed to identify a
consistent correlation between thermal conductivity and permeability. Also, since porosity and density
are known to be inversely related [46,48,60] it is very plausible to assume that thermal conductivity and
density are likely to be positively (directly) related. This can be confirmed from the studies [60,61,67]
that reported a positive correlation between thermal conductivity and density. To our surprise, among
all the literature reviewed by us, only Zerrouki et al. [24], through one of their figures, reported an
inverse relation between thermal conductivity and density. To confirm (or disconfirm) their results
through a different approach the current study provided a promising avenue where GRA models
were used to reevaluate the relationships. Based to the authentic literature, it can be emphasized that
thermal conductivity is a function of density, porosity and permeability while its relation to density is
positive and to porosity, and thus to permeability, is inverse. This can be represented as

λ = Function
(
D,

1
ϕ

,
1
K

)
(2)

or,

λ ∝ D λ ∝
1
ϕ
λ ∝

1
K

(3)

where, λ, D, ϕ and K represent thermal conductivity, density, porosity and permeability, respectively.
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3. Definitions

3.1. Definition I: Grey Data Sequence

Grey data sequence [6,31] is an array of data values (xi) available for grey data analysis. It is
generally represented as

Xi = (xi(1), xi(2), . . . , xi(n)) (4)

where “i” implies the number of sequences (i.e., i = 1, 2, . . . , k), “n” implies the total number of grey
numbers in the ith sequence, “xi” represent data values in the sequence Xi and “k” implies an index of
the last sequence.

3.2. Definition II: Mirror of Grey Data Sequence

If Xi = (xi(1), xi(2), . . . , xi(n)) represents a grey data sequence then its mirror is given by [6,31]

X̆i = (xi(n), xi(n− 1), . . . , xi(1)). (5)

where X̆i represents the mirror sequence of Xi.

3.3. Definition-III: Grey Relation

Grey relations refer to the uncertain relations among things, among elements of a system, or
among behaviors [7] (p. 104). In other words, it defines the relationships among the parameters of a
grey system. It can also be referred to as a proximity or closeness between the grey data sequences
representing different variables/factors/parameters associated with a system [6,31].

3.4. Definition-IV: Grey Relational Grade

Grey relational grade (GRG: γ0i) [6], or Deng’s degree of grey incidence, is a degree of partial
proximity between two curves and is estimated by taking the average of the grey relational coefficients
(γ0i(k)) at each point k. GRG is the measure of closeness of geometrical distance between two curves [17].
It has also been reported as a measure of influence that the comparison sequence exerts on the reference
sequence [4].

3.5. Definition-V: Absolute Grey Relational Grade

Absolute GRG [6], or absolute degree of grey incidence, is a degree of integral proximity between
two curves represented by two data sequences and is estimated by considering the integral perspective
on the proximity (closeness) between the two curves. Unlike Deng’s GRG, absolute GRG is independent
of the order of the sequences thus it is more likely to yield a measure of association (or correlation) [4,6].
If the absolute GRG can reveal both the degree of integral proximity and the direction of integral
proximity, then it would be referred as bidirectional absolute GRG and would be estimated following
the steps mentioned by Javed and Liu [31].

3.6. Definition-VI: Second Synthetic Grey Relational Grade

Second synthetic GRG [6], or the second synthetic degree of grey incidence, is a degree of inclusive
proximity between two curves represented by two data sequences and is estimated by considering
both partial and integral perspectives of the proximity (closeness) between the two curves.

3.7. Definition-VII: Zero-Starting Point Image

Let Xi = (xi(1), xi(2), . . . , xi(n)) be the data sequence of a system’s behavior and D1 the sequence
operator which satisfies XiD1 = (xi(1)d1, xi(2)d1, . . . , xi(n)d1) and xi(k)d1 = xi(k)d1 − xi(1); k = 1, 2, . . . ,
n. Then D1 is referred to as a zero-starting point operator and XiD1 is the zero-starting point image of
Xi. XiD1 is often written as XiD1 = Xi

0 = (xi
0(1), xi

0(2), . . . , xi
0(n)) [3] (p. 77), [22].
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3.8. Definition-VIII: |si|, |sj|, and |si − sj|

Following Liu et al. [3], as reported in [22], assume that Xi and Xj are 1-time-interval sequences of
the same length, and the following are zero-starting point images of Xi and Xj:

Xi
0 = (xi

0(1), xi
0(2), . . . , xi

0(n)) (6)

Xj
0 = (xj

0(1), xj
0(2), . . . , xj

0(n)). (7)

Then,

|si| =

∣∣∣∣∣∣∣
n−1∑
k=2

x0
i (k) +

1
2

x0
i (n)

∣∣∣∣∣∣∣ (8)

|s j| =

∣∣∣∣∣∣∣
n−1∑
k=2

x0
j (k) +

1
2

x0
j (n)

∣∣∣∣∣∣∣ (9)

|si − s j| =

∣∣∣∣∣∑n−1
k=2(x

0
i (k) − x0

j (k)) +
1
2
(x0

i (n) − x0
j (n))

∣∣∣∣∣. (10)

3.9. Definition-IX: Initialing Operator

Let Xi = (xi(1), xi(2), . . . , xi(n)) be the data sequence representing the behavior of a parameter Xi,
and D2 as sequence operator such that XiD2 = (xi(1)d2, xi(2)d2, . . . , xi(n)d2), where:

xi(k)d2 =
xi(k)
xi(1)

; xi(1) , 0; k = 1, 2, 3, . . . , n (11)

Here, D2 is referred to as the Initialing Operator and XiD2 is its image, called the initial image of
Xi [3] (p.70).

3.10. Definition-X: Averaging Operator

Let Xi = (xi(1), xi(2), . . . , xi(n)) be the data sequence representing the behavior of a parameter Xi,
and D3 as sequence operator such that XiD3= (xi(1)d3, xi(2)d3, . . . , xi(n)d3), where:

xi(k)d3 =
xi(k)

Xi
; Xi=

1
n

n∑
k=1

xi(k); k = 1, 2, 3, . . . , n (12)

here, D3 is referred to as the averaging operator and XiD3 is its image, called the average image of
Xi [3] (p.70).

3.11. Definition-XI: Minimizing Operator

For a grey data sequence Xi = (xi(1), xi(2), . . . , xi(n)), D4 is said to be the minimizing operator if

XiD4 = (xi(1)d4, xi(2)d4, . . . , xi(n)d4) (13)

where,

xi(k)d4 =
xi(k)

maxxi(k)
(14)

for all values of k = 1, 2, . . . , n [68].

3.12. Definition-XII: Grey Incidence Direction

The direction of grey incidence [31] implies the nature of the relationship (positive/negative)
between the data sequences. Grey incidence direction is represented by +/− sign in the bidirectional
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absolute grey relational grade (ε ±). The positive sign implies directly proportional relation and the
negative sign implies inversely proportional relation.

3.13. Definition-XIII: Javed’s Grey Incidence Scale

The Javed’s Grey Incidence (JGI) [31] scale is a distribution of the range of the bidirectional
absolute grey relational grades (ε ±) into five levels depending on the strength of association between
the sequences. The scale tells the extent of the strength of the grey incidence relationship between the
sequences. The JGI scale is shown in Table 1.

Table 1. The Javed’s grey incidence (JGI) scale [31].

|ε ±| (0.50, 0.60) (0.60, 0.70) [0.70, 0.80) [0.80, 0.90) [0.90, 1.0]

Categories Level 1 Level 2 Level 3 Level 4 Level 5

Interpretation Weak
relation *

Moderately strong
relation *

Appropriately
strong relation *

Sufficiently
strong relation *

Extremely
strong relation *

* Irrespective of the strength of the relationship, each relation can be positive, negative or uncertain.

3.14. Definition-XIV: Javed’s Confidence Level Scale

The Javed’s confidence level (JCL) [31] scale is the scale that guides a researcher in manifesting
the extent of trust in the results produced from the BAGRA model. If ∆ is the difference, named as
the ε-Difference, between εi j and εi j̆ then the JCL scale will be defined as shown in Table 2. When the
confidence level (JCL) is low, then the model should be applied to new data sequences.

Table 2. The Javed’s confidence level (JCL) scale [31].

|∆| [0, 0.05] (0.05, 0.10) [0.10, 0.50]

Level of Confidence in Grey Direction Low Medium High
Level of Uncertainty in Grey Direction High Medium Low

where,
|∆| = ∆n = |εn,n − εn,n̆|

0 < ∆n ≤ εmin; n = 1, 2, 3, . . . i

εmin < ε ≤ εmax; εmin = 1/2; εmax = 1.

The JCL scale tells the extent of confidence (or certainty) in the reliability of the grey direction
among the data sequences representing the grey system parameters. According to the JCL scale,
“confidence in the results increases with the increase in |∆|”. Further, in a nutshell, ε gives the strength of
proximity, ε ± gives strength of proximity (along with positive or negative direction), ∆ gives direction
(positive, negative or uncertain), and |∆| yields the level of uncertainty in the direction of proximity.

4. Methods

4.1. Data Collection

Four factors were involved in the study; thermal conductivity (TC) and three petrophysical
parameters (rock density, inferred porosity (so-called Helium-porosity) and permeability). Experimental
data concerning these factors were collected from a recent study by Zerrouki et al. [24]. Their data was
associated with the Hamra Quartzites reservoir in Hassi Messaoud oil field of Algeria. The study of
Zerrouki et al. [24] contains 28 samples or rock grains; 15 cemented and 13 uncemented grain sets. For
this classification, they deployed plane polarized light microscopy analysis.
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4.2. Data Analysis Methods

To determine the partial proximity among the factors, Deng’s GRA model (as introduced by Liu,
Yang and Forrest, 2016) was executed. To determine the integral proximity among the factors, the
bidirectional absolute GRA model was applied following the steps mentioned in Javed and Liu [54]. To
get an overall picture, i.e., to determine the inclusive proximity, the second synthetic GRA model was
applied following the steps mentioned in Javed and Liu [22] and Javed et al. [25]. In the present study,
Deng’s GRG and Absolute GRG values were calculated using grey systems modeling software (by
NUAA) where the data, after being normalized through the minimizing operator (definition-XI), were
used. Further, bidirectional absolute GRG and second synthetic GRG values were calculated through
Microsoft Excel. In the succeeding sections, the algorithms associated with the methods are discussed.

4.2.1. Deng’s GRA Method

The computing procedures to calculate Deng’s grey relational grade (GRG) for two data sequences
X0 and X1 are shown in Javed et al. [4,22] and have been reproduced below:

(a) Calculating the initial image (or average image) of X0 and Xi, i = 1, 2, . . . , m, where

Xi’ = Xi/xi(1) = (xi’(1), xi’(2), . . . , xi’(n)); i = 0, 1, 2, . . . , m.

(b) Computing the difference sequences of X0’ and Xi’, i = 1, 2, . . . , m, as

∆i(k) = |x0’(k) − xi’(k)|, ∆ = (∆i(1), ∆i(2), . . . , ∆i(n)), i = 1, 2, . . . , m.

(c) Finding the maximum and minimum differences

M = maxi maxk ∆i(k)

m = mini mink ∆i(k).

(d) Calculating grey relational coefficients by

γ0i(k) =
m + ξM

∆i(k) + ξM
; ξ ∈ (0, 1); k = 1, 2, 3, . . . , n; i = 1, 2, 3, . . . , m.

where ξ is the distinguishing coefficient and in the literature its value is usually assumed to be 0.5.
(e) Computing the grey relational grade (Deng’s degree of grey incidence) by

γ0i =
1
n

∑
n
k=1(γ0i(k)); i = 1, 2, . . . , m.

In the abovementioned formula, 1/n can be replaced by the weights wk, as shown in the formula
below, if the effect of each factor on the system is not same, where Σwk = 1.

γ0i =
∑

n
k=1(γ0i(k)·wk); i = 1, 2, . . . , m.

In short, 1/n implies the weights of criteria are equally distributed and wk implies weights are
unequally distributed, which is a usual case in real life problems. Both forms of GRA models are
comparable and an important discussion on them can be found in Javed et al. [26]. In the case discussed
in the current study, the first form of Deng’s GRA model can be conveniently applied as all independent
variables are equally weighted.
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4.2.2. Bidirectional Absolute GRA Method

Let us say Xi and Xj are two data sequences representing an uncertain system. Then the algorithm
to calculate the bidirectional absolute GRG is listed below.

(a) Prepare the data sequences and their mirror sequences (see definitions I and II)
(b) Normalize the data sequences, using the minimizing operator (see definition-XI), to bring the

range of data values in each sequence within 0 and 1.
(c) Calculate the zero-starting point images of the data sequences (see definition-VII).
(d) Calculate |si|, |sj| and |sj – si| (see definition-VIII).
(e) Calculate Absolute GRG (ε) by [3]

εi j =
1 + |si|+ |s j|

1 + |si|+ |s j|+ |s j − si|
.

(f) Calculate the bidirectional absolute GRG (ε ±), given by [6,54]

ε± =

 +max
(
εi j, εi ǰ

)
;

−max
(
εi j, εi ǰ

)
;

∆ = εi j − εi ǰ > 0
∆ = εi j − εi ǰ < 0

.

Here “−” represents an inverse direction of grey relation (i.e., an inverse relationship) and “+”
represents the direct relationship, and the measure with which either of these signs is attached
represents the strengths of the grey relation (i.e., degree of integral proximity). To interpret the results,
the JGI scale (definition-XIII) and JCL scale (definition-XIV) may be needed. Details of these scales and
the bidirectional absolute GRG can be found in References [6,31].

4.2.3. Second Synthetic GRA Method

The second synthetic GRA model is a way to determine SSGRG and the steps involved are
listed below.

(a) Calculate Deng’s GRG.
(b) Calculate the bidirectional absolute GRG (or absolute GRG).
(c) Calculate the second synthetic GRG given by [6,22,25]:

ρij = θ |εij|+ (1− θ) γij; θ ∈ [0, 1]

where ρ represents the second synthetic GRG, ε represents the absolute GRG and γ represents the
GRG between the grey data sequences Xi and Xj [25]. Considering θ = 0.5 is suggested when the
decision maker wants a comprehensive ranking that equally incorporates the advantages of both
γ and εwithout favoring one over the other. If favoring is necessary, then the value of θ can be
varied. If one intends to favor γ then θ can be reduced and if one desires to favor ε then θ can
be increased [22]. In the current study θ = 0.5 was considered. Further, the absolute GRG was
replaced by the bidirectional absolute GRG (without signs) in the SSGRA’s formula. Javed [6]
also suggested that when the relationships within a system are uncertain, then the absolute GRG
can be replaced by the bidirectional absolute GRG.

5. Results

5.1. Determining the Overall Relationships Through Second Synthetic Grey Relational Analysis

In this section, the second synthetic grey relational analysis was executed to evaluate the relations
between thermal conductivity and the three parameters for both samples; cemented and uncemented.
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The results were also compared with the correlational measures reported by Zerrouki et al. [24]. Table 3
summarizes the analyses.

Table 3. Relationships between TC and three parameters.

γ ε ± ρ Rank R Rank r Rank

TC (W/mK)
Cemented Density (g/cm3) 0.9623 (0.7069) 0.8346 2 0.18 2 −0.26 2
(N = 15) Porosity (%) 0.9200 (0.8385) 0.8793 1 0.44 1 −0.43 1

Permeability (md) 0.7699 0.7435 0.7567 3 0.1 3 0.11 3

TC (W/mK)
Uncemented Density (g/cm3) 0.9995 (0.6558) 0.8277 2 0.51 2 −0.50 2

(N = 13) Porosity (%) 0.9985 (0.9037) 0.9511 1 0.73 1 −0.73 1
Permeability (md) 0.9358 0.7105 0.8232 3 <0.1 3 0.30 3

NOTE: The values within round parentheses indicate inverse relationships, and the values without parentheses
indicate direct relationships. Signs are not needed for SSGRG calculation. R = Correlation coefficient reported by
Zerrouki et al. [24]. r = Pearson’s correlation coefficient. TC = Thermal Conductivity.

Since it is unclear how did Zerrouki et al. [24] calculated R whom they referred to as the “correlation
coefficient”, the Pearson’s correlation coefficient was calculated to compare the results with that of
SSGRA model. Zerrouki’s [24] results and Pearson’s r showed a weak to moderate correlation between
thermal conductivity (TC) and density (R = 0.18 to 0.51; r = 0.26 to 0.50) for cemented and uncemented
samples, respectively. Both correlational measures showed a weak correlation between TC and
permeability (R ≤ 0.1; r ≤ 0.3) for both cemented and uncemented samples. However, both correlational
measures showed a weak to strong correlation between TC and porosity (R = 0.44 to 0.73; r = 0.43 to
0.73) for cemented and uncemented samples, respectively.

The sequence for their analysis, in terms of the correlation of the three parameters to thermal
conductivity, can be expressed as

For cemented samples: Porosity > Density > Permeability
For uncemented samples: Porosity > Density > Permeability.

According to the second synthetic grey relational analysis, a significant association was found
between thermal conductivity and density (0.8277 to 0.8346) for uncemented and cemented samples.
The significant association was found between thermal conductivity and permeability (0.7567 to 0.8232)
for cemented and uncemented samples. Significant association, but relatively stronger, was also found
between thermal conductivity and porosity (0.8793 to 0.9511) for cemented and uncemented samples.
The sequence obtained through the grey relational analysis, in terms of the association (inclusive
proximity) of the three parameters to thermal conductivity, can be expressed as

For cemented samples: Porosity > Density > Permeability
For uncemented samples: Porosity > Density > Permeability.

One can see that the sequences/trends obtained through two different approaches are very
comparable. However, the key point of distinction was the relative strengths. When Zerrouki et al. [24]
reported a very weak to a strong relationship, the grey relational analysis revealed a strong to very
strong relationship. On the other hand, some studies (e.g., [69]) indicated that the thermal conductivity
of rock is “closely associated” with porosity and density. Further, as mentioned in the literature review,
the negative relationship between TC and, porosity and density is also not unknown in literature. Thus
the results obtained by SSGRA are feasible in light of the literature as well. Here it should be noted that
since both computations resulted from two very different data analyses measures thus the two scales
for describing the strength of correlations between the parameters are not one-to-one comparable
e.g., for positive relations, the range of Pearson’s correlation coefficient’s scale is [0,1] where values
less than 0.5 indicate weak correlation nevertheless for the similar relationship, the scale of Absolute
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GRA is (0.5, 1] and that of Deng’s GRA model is [0,1]. This makes the scale of SSGRA model ranges
from (0, 1]. Thus, the scales of GRA models and that of statistical correlational coefficients are not
comparable however their interpretations can be compared as both scales can guide the decision maker
in determining whether the relationship is weak, strong or very strong.

Zerrouki et al. [24] argued that “TC is generally influenced by the porosity and density. The
permeability has not any effect on the thermal conductivity.” The results obtained in the current
study support their first argument however it is difficult to say that permeability has no effect on
TC as permeability’s effect on TC is likely to be minimum, relative to others, but not zero. Since
Zerrouki et al. [24] themselves considered their investigation a “preliminary study” therefore expecting
more insightful and advanced discussions on the associations between TC and the petrophysical
parameters is not beyond question.

5.2. Determining the Direction of Relationships through Bidirectional Absolute Grey Relational
Analysis (BAGRA)

Identifying the extent of the relationships between variables is not the last step in the relationships
evaluations. More profound insights can be drawn from the nature of relationships between different
factors. For instance, how one variable behaves with the increase or decrease in the other variable
is an interesting topic in natural and social sciences alike. This question also sought the attention of
Zerrouki et al. [24]. In the current study, one of the latest developments in grey systems research has
been utilized to determine the relationship between thermal conductivity and the three parameters.
The bidirectional absolute grey relational analysis (BAGRA) model, also called the Javed’s bidirectional
absolute degree grey incidence analysis (JBADGIA) model, was developed by Javed [6]. In the current
study the BAGRA model as available in Javed and Liu [54] was used for the analysis of the grey
direction among the parameters. One of the key advantages of this model is that it can work well
for both linear and nonlinear data sequences. The results of the analysis are presented in Table 4. In
Table 4, the symbol ∆ represents the ε-Difference (see definition-XIV) and the confidence level was
obtained through the JCL scale (see definition-XIV). None of the bidirectional absolute grey relational
grades (BAGRGs) reported weak relation. All values were between appropriately strong to extremely
strong (see definition-XIII).

Table 4. Nature of relationships between the factors through the Bidirectional Absolute Grey Relational
Analysis (BAGRA) model.

ε ± ∆ Confidence Level r

(Cemented samples)
TC (W/mK) 1 0.3438 High

Density (g/cm3) −0.7069 −0.0126 Low −0.26
Porosity (%) −0.8385 −0.1099 High −0.43

Permeability (md) 0.7435 0.1728 High 0.11
(Uncemented samples)

TC (W/mK) 1 0.1248 High
Density (g/cm3) −0.6558 −0.0572 Medium −0.50

Porosity (%) −0.9037 −0.2109 High −0.73
Permeability (md) 0.7105 0.1019 High 0.30

NOTE: TC (thermal conductivity) was considered as responsive/dependent variable, and other three parameters
were considered as predictors.

The bidirectional absolute GRA (BAGRA) model based results show that porosity (with high
confidence) and density (with low to medium confidence) of Hamra Quartzites (Algeria) are likely to
increase with a decrease in thermal conductivity (and vice versa) as they have an inverse relationship.
Pearson’s r also revealed similar relationships. However, as Zerrouki et al. [24] noted, the quartzite’s
porosity, which increases with decreasing thermal conductivity, is one of the main factors to control the
thermal conductivity of Hamra quartzites. What about the density’s control of thermal conductivity?
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What about permeability-TC relationships if uncertainties (associated with data or the system) are not
beyond question? In short, Zerrouki et al.’s study successfully provided areas for further investigations
for inquisitive minds. Especially, the relation of thermal conductivity to density and permeability
was strange, if one keeps the literature in mind. The revaluation of the system through an entirely
different approach, SSGRA, again revealed the same nature of relationships as were reported by
Zeroukki et al. [24]. Considering the fact that SSGRA allows more comprehensive analysis of the
system while incorporating the uncertainties it can be argued that as far as the experimental data,
collected by Reference [24], is concerned the relation of TC with that of other three variables is correctly
predicted by both approaches however in light of literature some relations may look odd. Here two
points need discussion: (a) Firstly, here comprehensive implies the estimation of inclusive proximity
(or, inclusive closeness), which determines the association between two parameters from both partial
and integral perspectives. Thus, the closeness between two parameters determined through SSGRA
model is technically more comprehensive than the closeness determine by the Pearson’s correlational
coefficient and if one accounts the concerns like sample size and probability distributions, which are
serious issues in the probability theory-based statistical analyses but not in the grey system heory-based
data analyses, one may argue that the information obtained through SSGRA model are more insightful,
as it accounts both direct and indirect relationships. For example, in the current case, when Zerrouki
and colleagues did not consider any relationship as strong, for the reasons better known to them, and
even though the apparently strong relations were taken as moderate in their study, the second synthetic
grey relational analysis in the current study clearly demonstrated that none of the relationships are
weak and some relations are in fact strong or very strong. Since the grey system theory is well
known for its ability to handle uncertain systems containing insufficient data thus the current study
argue that the difference between the two analyses is likely because of the difference of ability of
each methodology to handle uncertainty; (b) secondly, why certain results don’t go smooth with
that of the literature? To sum up the discussion from the geothermic perspective and in light of our
understanding developed through the review of the literature, it is stated that the dependence of
thermal conductivity upon porosity has been reported countless times for clastic sedimentary rocks
and quartz. In addition, equally known is the dependence of thermal conductivity on bulk density,
which is coupled on the porosity (reduced bulk density resulting from an increasing amount of pore
fluid). In general, permeability, however, has no direct influence on the bulk thermal conductivity. It is
only indirectly related to thermal conductivity as permeability and porosity are related to each other,
hence increasing porosity should yield a decreased thermal conductivity and increased permeability.
Here it is worth mentioning that the relationships reported in the current study are merely reporting
physical dependencies of the sample under study (i.e., Hamra Quartzites reservoir, Hassi Messaoud
field of Algeria). The measured conductivity and density are a result of the sample’s porosity. Not
the other way around. In the given sample, with increasing porosity, a fraction of small density was
increased with lowering conductivity (water in the pore space). However, further studies of the same
quartz, as were studied by Zeroukki et al. [24], are needed to enrich our understanding of the Hamra
Quartzites reservoir.

Now a question arises, how the application of GRA provides any substantial advantages compared
to correlation or regression analysis? The statistical techniques like correlational and regression analyses
are driven by the law of large numbers and concerns like probability distribution. “Probability theory
and statistics deal with the data nexus or relation of the systems encompassing large samples embodied
in statistic history laws, regression models or probability relations, and subject to laws, such as the
law of large samples” (Ng and Deng as quoted in [4]). Thus the independence of the grey system
theory and its models from the large sample size and concern of probability distribution [3,6] and
the theory’s known superiority for handling uncertain systems containing uncertain information are
primary reasons, which puts GST and its models like GRA in a very promising position in terms of
intelligent evaluation of a system and its parameters when the decision makers are not certain about
the sufficiency and completeness of data at hand. Further, GRA models like the second synthetic GRA
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model that consider multiple perspectives while evaluating a system and its parameters have a definite
advantage over conventional statistical approaches, usually represent one particular perspective. Here
it should be emphasized that by no mean the current study nullifies the significance of statistical
methods however just as within statistical paradigm there are different perspectives (e.g., parametric
statistics, nonparametric statistics) so does the intelligent approaches like grey system theory, fuzzy
theory, rough set theory etc. have their own perspectives on data, data uncertainty and data handling.
Through the current study, an alternative perspective on the evaluation of parameters, which are
geothermic in the current study but can be different in future studies, is presented.

6. Conclusions and Recommendations

Grey relational analysis (GRA) is an important segment of the grey system theory (GST) that not
only facilitates the decision makers in multi-objective optimizations but also helps in comparative
evaluation of relationships between different factors. Deng’s GRA model is the flagship model of GST
and is in use for more than three decades. Initially, its application was though limited to engineering
disciplines; however, since the recent past, it has been increasingly applied in social sciences as
well [6,19]. However, like any other model or theory, it is also not free from flaws. In 1991 when Liu
Sifeng proposed generalized GRA model, it was a kind of breakthrough in GST research. The absolute
GRA model was one of the generalized GRA models [39]. However, Deng’s GRA model estimated the
closeness/proximity between data curves based on corresponding points and the absolute GRA model
estimated closeness/proximity using integral perspective, a more comprehensive perspective. However,
both models had their own strengths and their integration was likely to yield a more robust measure
of proximity. This was done by Javed [6] when the second synthetic GRA model was introduced.
The model yielded a grey relational grade based on overall perspective. It produced a degree of
inclusive proximity/closeness, which incorporated the advantages of both partial proximity (Deng’s
grey relational grade) and integral proximity (absolute grey relational grade). Later, the model saw its
successful applications in different studies [22,25,42,43].

The current study is a pioneer in finding its application in geothermics and earth sciences. The
current study demonstrated the trend/order obtained through the second synthetic GRA model could
be compared with that obtained through statistical correlational measures. However, this comparability
is coincidental or generalizable is difficult to establish at this level. Future studies are expected to
settle this issue. Further, even though permeability turned out to be the least significant factor in
both analyses however the overall strengthen (relative to other parameters) was stronger in SSGRA
when compared the analysis through Pearson’s r. These are some areas of further research so better
explanations can be sought.

At the conclusion, the current study intends to make few comments on SSGRA model, as first
made by Javed [6], to facilitate the readers. 1) Each GRA model has its own strengths and limitations,
but if they are built of the principles of grey system theory each one of them is likely to work for
small samples and inadequate information. 2) Deng’s GRA model and absolute GRA models are
mutually exclusive and independent so do the rankings of variables obtained through them, however,
the second synthetic GRA model is indeed dependent on both of these models. These dependencies
are controlled by θ, the coefficient of relative weights. Therefore, the reliability of the results obtained
from the SSGRA models depends on the reliability of the results from the two constituent models.
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48. Šperl, J.; Trčková, J. Permeability and porosity of rocks and their relationship based on laboratory testing.
Acta Geodyn Geomater 2008, 5, 41–47.

49. Shen, X.; Li, L.; Cui, W.; Feng, Y. Improvement of fractal model for porosity and permeability in porous
materials. Int. J. Heat Mass Transf. 2018, 121, 1307–1315. [CrossRef]

50. Somerton, W.H. Some Thermal Characteristics of Porous Rocks; Society of Petroleum Engineers: Kuala Lumpur,
Malaysia, 1958.

51. Brigaud, F.; Vasseur, G. Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks.
Geophys. J. Int. 1989, 98, 525–542. [CrossRef]

52. Clauser, C.; Huenges, E. Thermal conductivity of rock and minerals. In Rock Physics and Phase Relation-a
Handbook of Physical Constants; Ahrens, T.J., Ed.; AGU Reference Shelf: Hoboken, NJ, USA, 1995; Volume 3,
pp. 105–126.

53. Midttomme, K.; Roaldset, E. The effect of grain size on thermal conductivity of quartz sands and silts.
Pet. Geosci. 1998, 4, 165–172. [CrossRef]

54. Barry-Macaulay, D.; Bouazza, A.; Singh, R.M.; Wang, B.; Ranjith, P.G. Thermal conductivity of soils and rocks
from the Melbourne (Australia) region. Eng. Geol. 2013, 164, 131–138. [CrossRef]

55. Duchkov, A.D.; Sokolova, L.S.; Rodyakin, S.V.; Chernysh, P.S. Thermal conductivity of the sedimentary-cover
rocks of the West Siberian Plate in relation to their humidity and porosity. Russ. Geol. Geophys. 2014, 55,
784–792. [CrossRef]

56. Schön, J. (Ed.) Physical Properties of Rocks: Fundamentals and Principles of Petrophysics; Elsevier: Amsterdam,
The Netherlands, 2015.

57. Asadi, I.; Shafigh, P.; Hassan, Z.F.B.A.; Mahyuddin, N.B. Thermal conductivity of concrete—A review. J. Build.
Eng. 2018, 20, 81–93. [CrossRef]

58. Haffen, S.; Géraud, Y.; Rosener, M.; Diraison, M. Thermal conductivity and porosity maps for different
materials: A combined case study of granite and sandstone. Geothermics 2017, 66, 143–150. [CrossRef]

59. Ouali, S. Thermal conductivity in relation to porosity and geological stratigraphy. Geotherm. Train. Rep. Cent.
Dev. Renew. Energ. Alger. 2009, 4, 23–29.

60. Duchkov, A.D.; Ayunov, D.E.; Rodyakin, S.V.; Yan, P.A. The study of the relationship between thermal
conductivity and porosity, permeability, humidity of sedimentary rocks of the West Siberian Plate. Геoресурсы
2018, 20.

61. Nagy, B.; Nehme, S.G.; Szagri, D. Thermal properties and modeling of fiber reinforced concretes. Energy
Procedia 2015, 78, 2742–2747. [CrossRef]
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