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Abstract: Non-intrusive load monitoring (NILM) is an effective method to optimize energy
consumption patterns. Since the concept of NILM was proposed, extensive research has focused on
energy disaggregation or load identification. The traditional method is to disaggregate mixed signals,
and then identify the independent load. This paper proposes a multi-label classification method
using Random Forest (RF) as a learning algorithm for non-intrusive load identification. Multi-label
classification can be used to determine which categories data belong to. This classification can help
to identify the operation states of independent loads from mixed signals without disaggregation.
The experiments are conducted in real environment and public data set respectively. Several
basic electrical features are selected as the classification feature to build the classification model.
These features are also compared to select the most suitable features for classification by feature
importance parameters. The classification accuracy and F-score of the proposed method can reach
0.97 and 0.98, respectively.

Keywords: non-intrusive load monitoring; multi-label classification; random forest

1. Introduction

Load monitoring technology is of great significance to the demand side management (DSM) [1].
It can transfer the collected user’s power consumption information to the grid to improve the efficiency
of power grid utilization, and it can help users to adjust their electricity consumption habits [2].

Load monitoring technology contains two categories: “intrusive” and “non-intrusive”. Usually,
the intrusive load monitoring needs to place sensors in the users’ internal electric load. In the installation
and maintenance process of the sensors, a power cut is needed. Although the data obtained by this
technology is reliable, it is not easy for users to accept it. In contrast, non-intrusive load monitoring
(NILM) can monitor the whole internal load of the user by placing a monitoring device at the entrance
of the user’s power supply, which has little impact on the user. Therefore, this has great potential
for development.

Machine learning is an effective method for data processing. It can be used in classification and
prediction. Various models are used to predict energy consumption [3]. Model predictive control with
machine learning algorithm was used [4]. Madhur provided a model-based control with regression
trees algorithm for demand response [5]. In this paper, machine learning was used in NILM, and with
the development of Al technology, the cost of AI chip becomes lower. It is possible to use machine
learning to process real-time data by placing Al chips in monitoring devices. Therefore, the machine
learning method becomes a practical and efficient way to deal with NILM. Load identification is
the most important step in NILM, which directly reflects user’s load usage information. Thus, after
Hart proposed the concept of NILM [6], a large number of machine learning methods were used
for load identification [7]. These machine learning methods can be divided into supervised learning
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and unsupervised learning. Unsupervised learning does not require labeled data to build models.
Hidden Markov Model (HMM) is a typical method of unsupervised learning. Based on a Bayesian
treatment of HMM, Parson [8] proposed a hierarchical approach which models multiple appliances of
the same type. However, this method requires a lot of data and time to build the model, which is also
the common fault of unsupervised learning. In contrast, supervised learning only requires correct
input and output data to build a model for new data [9]. Thus, more supervised learning is used
in NILM like Support Vector Machines (SVM), k-Nearest Neighbor (k-NN), and clustering methods
such as k-means. The k-NN method was applied [10-15]. The k-NN method was used to identify five
common electrical appliances [10]. Chahine proposed a new feature extraction scheme to build a data
set, and then used it to train k-NN [11]. Rahimi used the real power and reactive power as features in
k-NN for describing the load-signatures of individual devices, which achieved great accuracy [13].
Figueiredo developed an algorithm [14] which extracted features from active powers, reactive powers
and power factor as train data for k-NN. The neural networks were used [16-20]. Chang used wavelet
coefficients as features in neural networks [16,17]. Semwal selected the major eight harmonics of
load-signatures as features [18]. The Multilayer Perceptron-Artificial Neural Network (MLP-ANN)
classifier achieved high accuracy. Srinivasan used current harmonics as a training feature and utilized
particle swarm optimization method to train the weights of neural network [19]. Several neural
network algorithms were compared [19]. Ruzzelli profiled electrical appliances in house to generate a
database of unique appliance signatures [20]. These signatures were used to train an artificial neural
network. SVM was also a common method. Du presented an intelligent method that combines SVM
and supervised Self-Organizing Map [21]. Jiang and Hoogsteen also used SVM as a method of load
identification [22,23].

In response to the single label classification problem, the above methods have high accuracy.
However, the collected data in NILM are usually determined by multiple load operation states. Load
identification for mixed signals without energy disaggregation is still a problem. For this problem, this
paper proposed a load identification system. The focus and contributions of this paper included the
following: (1) the characteristics of NILM and multi-label classification were studied, and a multi-label
classification model suitable for non-intrusive load identification was established. The model used
RF as classification algorithm; (2) the best combination of basic electrical features was selected as the
classification feature. In order to verify the practicability of the proposed method, experiments were
conducted in a real environment. Following this, experiments were conducted on public data set to
verify that the proposed method was still valid for a larger data set. At the same time, the proposed
method was compared with the existing method on the public data set. As the proposed method
does not require energy disaggregation and adopts RF algorithm, the proposed method is superior
to the traditional load identification method in terms of time and accuracy. Due to the limitation of
acquisition devices and public data set, the proposed method can only be applied to consumers in
power grid. For the prosumers mentioned in several recent works [24-26], this will be studied in the
next work.

This paper introduces basic algorithms and implementation in Section 2. In Section 3,
the experimental flow of the proposed method is introduced. The experimental results are shown in
Section 4. The discussion and conclusion are summarized in Section 5.

2. Implementation and Principles

2.1. Principle of Data Set Building

NILM collects user’s total power consumption information at the power entrance. The collected
current signals at the power entrance are formed by superposition of each independent loads, denoted
as I(t). It can be expressed as Equation (1) from the superposition theorem.
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N
I(8) = Y I(t) + (1) ()
k=1
where, I (t) (k=1,2, ..., N) is the current signal waveform of each independent working load. ¢(t)
represents noise. The character of I(t) is determined by three elements of the independent load signal
Ii(t) including amplitude, frequency and phase. In this paper, all independent current load signals are
periodic because of the periodic (50 Hz) supply power voltage.

What is more, in the actual measurement process, we found that a working load has a fixed
waveform of each cycle at the same place, whenever the load is measured. They have the same
performance under the same voltage because of the constant load internal circuit [27]. Thus, the total
current waveform formed by superposition of the same load at any time is fixed. This is the basis of
data set construction in this paper. All features extracted from mixed signal can be used as training
data set because they are fixed when the same loads are working together.

2.2. Principle of Random Forest

RF is an ensemble classification model composed of different decision trees. It is developed by
bagging and random variable selection. The construction principle of trees in RF is the same as the
decision tree which is based on recursive partitioning. In recursive partitioning, the exact position of the
cut-point and the selection of the splitting variable strongly depend on the distribution of observations
in the learning sample [28]. Therefore, decision tree is an unstable classification model, because the
selection of the first cut-point or the first splitting variable will be affected by small changes in the
learning data. Subsequently, the structure of the decision tree will also be changed. RF overcomes
this shortcoming by combining a set of trees. The combination of highly diverse trees overcomes the
instability of a single decision tree, because a single decision tree will be affected, but the average of
multiple trees will provide the correct results [28,29]. On the contrary, when there are too many similar
trees in the forest, the accuracy of classification will decrease, because in theory, similar trees will be
affected equally.

Accordingly, increasing the diversity of trees can improve the classification accuracy of the model.
RF achieves this goal by training data set randomization and input variable set randomization. Figure 1
illustrates the model development procedure of RE. RF generates multiple new training data subsets
by random extraction and substitution. The size of the training subsets is the same as that of the initial
training data set, and repetitive training subsets are generated by extraction and substitution.
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Figure 1. The process of producing Random Forest (RF) results.

The new training subsets have, on average, 63.2% of the initial training data, with the rest as
duplicates [30]. Since all the training subsets are randomly generated, the development of trees in RF is



Processes 2019, 7, 337 4 of 14

expected to be independent and different from each other. Once all the trees in the RF are established,
the results of the classification will be voted on by all the trees. It can balance the impact of training data
and make RF stable. The classification results from RF will also be more accurate than other methods.

3. Experiment Design

3.1. Experimental Condition

Two data sets were applied to verify the proposed method. Firstly, we applied the proposed
method in a real environment to verify the practicability of the method. As for the actual operation,
the number and state of load in the collected mixed data are unknown, so it is necessary to build the
training data set by building load-signature database. The method of building load-signature database
will be briefly introduced in Section 3.2. This specific work has been carried out by my colleagues in
another article. Then, we applied the proposed method to public data set BLUED [31] to verify the
generalization of the model. Furthermore, the method proposed in this paper was compared with the
traditional methods [9,32] on the BLUED to show the progress of the method proposed in this paper.

The data set was built for NILM problem. The BLUED consists of voltage and current measurements
for a single-family residence in the United States, sampled at 12 kHz on phase A and B for a whole
week [31]. Every state transition of each appliance in the home during this time was labeled and
time-stamped. There were a total of 2482 events (904 on phase A and 1578 on phase B). We chose
the public data set BLUED because it better reflects the actual electricity consumption of ordinary
households. Since it contains the state transition of most electrical appliances, we chose the fourth day
data as training data. We took the collection data in the 18:48:26-18:50:25 period of the fifth day as test
data. According to the above, the label of the training data set can be obtained directly.

3.2. Building of Load-Signature Database

In practical operation, it is impossible to directly obtain the operation states of independent load
from mixed signals. Moreover, limitations are inevitable if prior data is used as training data. Different
brands will cause a significant difference in the waveforms for the same type of load. Thus, this paper
adopted a method that builds a load-signature database for the independent user.

This method established the corresponding signal template for each load in different users’ families.
All the signal templates in a family make up a load-signature database for this family. Moreover,
this method can update the database according to the newly added appliances in the family. The details
of this method have been completed by my colleagues in another paper. This paper gives a brief
introduction to this method.

This method is based on high frequency data acquisition because high-frequency data can retain
relatively complete load waveforms and signatures. After load decomposition is completed, load types
are identified according to their inherent statistical signatures. At last, the load-signature database is
built. The whole procedure of NILM by this method is shown in Figure 2. The process of building
load-signature database is shown in Figure 3.

3.3. Building of Data Set

As a typical supervised learning method, multi-label classification requires data set to build the
model. In this paper, data set was divided into two categories including training data set and test
data set. The training data set was used to build model while the test set was used to evaluate the
performance of the model for new data. The training data set consists of two parts: a set of sample data
and a set of associated labels. For the test set, it contains only sample data. After the classification is
built, it will be inputted. The output result will be analyzed to evaluate the performance of the model.

For NILM, the sample data is the basic electrical features extracted from mixed signal. In this
paper, several basic electrical features were used to build models. They were represented by vector f.
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f = {IRMSIICI IMAX/ P/ Q/ PF/FW/HAR37‘d} (2)

where Irys is the root mean square of current signal, I is the crest factor of current signal, Ip14x is the
maximum value of current signal, P is the real power, Q is reactive power, PF is power factor, FW is
the fundamental wave and HARg,, is the 3,; harmonics.
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Real time acquisition | I v
Real time identification |
[(=]Load2
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Load-signature Database : I
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Figure 2. Overall process of proposed method.
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Figure 3. The process of building load-signature database.

For f, Irms, Ic, Imax can be obtained from current signal directly; P, Q, PF can be obtained by
calculation with current and voltage signal; FW, HAR3,; can be obtained from FFT.
In mixed data, the running loads are labeled ‘1’, and the other loads are labeled ‘0"
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3.4. Feature Importance

The feature importance of RF uses data permutation to measure the influence of each feature
on the final classification result of the model. The importance of features is obtained by calculating
the reduction of classification accuracy caused by random permutation of features. The more the
classification accuracy decreases, the more important the features are, and vice versa. The rationale is
that the original association between a feature and the output could be broken by randomly permuting
its values, and accordingly, the classification accuracy would decrease if the original feature is replaced
by the permuted one [28].

Feature importance can be used to select the most important feature in RF. This will help users
acquire the most important features on the results and understand the relationship between input and
output. It is important for high-dimensional data set. In this paper, the feature importance is used to
obtain the most influential feature of RF models.

3.5. Model Development

3.5.1. Multi-Label Classification Model

Multi-label classification is considered as a method of mapping from one sample to multiple
labels. These multiple labels belong to same label set, in which the labels are inconsistent. The goal
of multi-label classification is to build a classification model for unseen samples. It is divided into
two categories: algorithm adaptation and problem transformation [29]. The algorithm adaptation
method is to adapt and extend the existing single-label classification methods to meet the requirements
of multi-label classification. The problem transformation is a method of transforming a multi-label
classification problem into many single-label classification problems and solving the single-label
classification problem with existing single-label classification algorithms. The method proposed in this
paper is to use RF algorithm as classification algorithm in problem transformation method.

3.5.2. Important Parameters of Model

The establishment of RF requires three parameters. They are: the minimum number of terminal
nodes for each tree (nodesize), the number of trees in the forest (ntree), and the number of randomly
selected variables to grow the tree (mtry), respectively [30].

Nodesize controls the size of each tree in the RF. In other words, this parameter determines the
stop time of the splitting process. A large nodesize will reduce the layer numbers of the tree and save
computing time, but it will reduce the classification accuracy. In contrast, small nodesize increases the
accuracy of RF classification, but it takes more time. Based on previous studies, this paper set nodesize
as 5 [33].

Ntree represents the number of decision trees in RE. A large ntree represents the large scale of trees
in RF, which will improve the classification accuracy of RE, but results in an increase in computing time,
and vice versa. In order to find a suitable ntree to balance accuracy and computation time, the authors
have undertaken many experiments, and the results are shown in the Figure 4. As can be seen from
Figure 4, when ntree is greater than 250, the accuracy is not significantly improved. Thus, the ntree was
set as 250 in this paper.

Mtry parameter determines the size of randomly selected features; it impacts both the classification
performance of the individual trees in the forest and the correlation between them, which jointly
determine the classification accuracy of RF [34]. The trees in an effective RF have high classification
accuracy with low correlation with each other. Generally, more features are selected, the classification
performance of a single tree will be better, but it will cause the increase of correlation between each
tree. Thus, in essence, the select of mtry is the balance between classification accuracy and correlation.
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Figure 4. The classification accuracy of different number of trees in the forest (ntree) parameters.

In this paper, a method is applied called k -fold cross-validation to obtain the appropriate mtry.
Figure 5 shows the comparison results with different mtry. The curve shows the trend of the PI of RF
trained with different mtry settings. As shown in the curve, when n is 3, the minimum PI is obtained,
so the mtry of this paper was set as 3.
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Figure 5. Results for RF trained with different number of randomly selected variables to grow the tree
(mtry) selections.

3.5.3. Evaluation of Model

There are many methods to evaluate multi-label classification algorithm, such as accuracy,
Hamming distance loss, F-score and so on. This paper chose F-score and accuracy as the evaluation
criteria of the algorithm, which will be introduced in the following.

This accuracy is used to evaluate the overall level of classification algorithm, representing the
correct proportion of prediction results. It can be expressed by Equation (3):

TP+ TN
AcC= TP +TN +FP 4+ FN ®)
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where, TP and TN are the number of true positive and true negative while FP and FN are the number
of false positive and false negative, respectively.

Before introducing F-score, several concepts need to be introduced. The first concept is Precision
which represents the proportion of the true positive in all positive after identification calculated by
Equation (4). And then, the Recall represents the proportion of positive samples that is correctly
identified, which is calculated by Equation (5):

TP

P= TP + FP @)
TP

R= TP +FN ©®)

F-score is a measurement of P and R equilibrium. For multi-label classification, F-score has two forms.
In this paper, label-based method was selected as it considers each output label. It is calculated by
Equation (6):

2

L P-R:
YR ©)
=1 Pj+R;

where, L is the number of labels in data set, P; and R; are the Precision and Recall for j" label respectively.

F-score =

ol el

4. Experimental Result

To verify the practicability of the proposed method, a data acquisition device is used to obtain
actual data. Moreover, the construction of multi-label classification model will follow the processing
flow proposed in this paper with obtained actual data. The data acquisition device is shown in Figure 6.
The device consists of voltage, current transformers and data acquisition card. The voltage and current
transformers reduce the intensity of signals acquisitioned. The EM-9636B was used as data acquisition
card. Data acquisition card is responsible for collecting high-frequency data and transferring the
collected data to the computer for subsequent processing.

Power
entrance
Current
transformer
—0O— ﬁhso .
Data
Acquisition

220\3 LoV I:] 1.6KQ e

> Wifi
Voltage transmission
transformer

Figure 6. The data acquisition device.
4.1. Building Load-Signature Database for Laboratory

In this paper, data was obtained from laboratory and a load-signature database for laboratory was
constructed according to the method in Section 3.2. In the database, there are five loads including: two
computers of different brands, a printer, a kettle and a microwave oven. The Figure 7a—e shows the
built load-signature database of the laboratory. The error between those loads’ signal templates and
actual signal waveforms is also shown in Figure 7.
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Figure 7. The signal in load-signature database and actual waveform; (a) and (b) are the computers of
different brand; (c) is the kettle; (d) is the printer; (e) is the microwave oven.

In the Figure 7 the blue waveform represents the signal obtained by data acquisition device when
the load is working alone, while the signal templates obtained by proposed method in Section 3.2
denoted by red waveform. The waveform template and the corresponding actual waveform have very
high similarity. Thus, the obtained template waveform can be used to replace the actual waveform.

4.2. Building of Data Set

In Figure 8, the difference between developed waveform and actual waveform is shown. The blue
waveform denotes the actual waveform when the same loads are working together; represented by red
waveform, the developed waveform is obtained by superposition of signal templates of above loads to
simulate reality. The low-power load and noise are the main reasons for the difference.

b ' 'emm=actual waveform e
——developed waveform 12
= 20+ Error
] 19
o !
5 0 =
o— =]
e i
g
<-20+ 13
40 AA N l"‘»,')', rd‘.,y‘\‘l g ¥\ " ’e\w‘l o Vav, VO - o YW VN 0
0 200 400 600 800 1000
Sampling point

Figure 8. The difference between developed waveform and actual waveform.

Table 1 shows the structure of training data set including two parts: features extracted from mixed
signal and corresponding labels. The mixed signal obtained by superposition of the signal templates
in the load-signature database. The labels of superimposed loads are “1”; the other loads’ labels are
“0”. The features extracted from mixed signal will be used to identify the operating state of the load.
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Table 1. Part of built data set.

Irms Ic Imax P Q PF FW  HARj;,4q Printer Cpl Cp2 Kettle Microwave
1036 059 1770 4995 131.71 126.38 14.11 3.55 1 1 1 1 1
1029 059 1736 4820 236 126.80  14.00 3.52 0 1 1 1
1023 060 17.02 4927 91.13 128.11 13.92 3.46 1 1 0 1 1
7.03 055 1273 3206 303.86 81.26 9.12 3.57 1 1 1 0 1
4.86 0.65 757 2365 5267 284.28 6.83 0.76 1 1 1 1 0

4.3. Feature Importance Comparison

Figure 9 shows each feature’s importance for building model. The Ipjax and Hars,q have the biggest
impact on results, reaching 20%, and the reactive power has little impact on results. The contributions
of Irms, and fundamental wave are both over 15%. The importance of crest factor, the real power,
and the power factor is 6%, 10%, 9%, respectively. Q will not be considered in the next process of
building the model.

mm IRms

99, 18% mm IC
1 % / mm IMax
10% P
20% ==2Q
mm PF
CFW
= HAR3rd

20%
cn  16%
Figure 9. The importance of different features.
4.4. Classification Algorithm Comparison

Two famous algorithms of algorithm adaptation method were chosen as contrast including:
Multi-Label kNN (ML-kNN) and Back-Propagation Multi-Label Learning (BP-MLL). Three common
problem transformation methods were applied in this paper (binary relevance method, classifier chain
method and label power-set method).

Figure 10 shows the identify accuracy of each multi-label classification algorithm. The (a) is
the accuracy of binary relevance method with each classification algorithm, and the (b) and (c) are
classifier chain method and label power-set method, respectively. In the (c), the ML-kNN and BPMLL
of algorithm adaptation methods are compared too. As can be seen from the Figure 10, no matter
which classification algorithm is used, the accuracy of RF algorithm is the highest.

Training time _ 1 1.0 1.0
o I . L e ———
”_,._&—J/’A—< "_’_A’—“—’_"—‘
FeSRE
5| —+—MLP 0.8 0.8 0:8
gl —a-svc f
5 ~y— Gauss 0.6 0.6 b6
:t‘ —4—KNN 0.4 0.4 0.4
—— MLKNN - i 2 - - . »
—e—BPMLL y Y . . y . : . . . 0.2 ‘ . ,
0.2 20 40 60 80 1000'2 20 40 60 80 1000 20 40 60 80 100

(a) binary relevance method  (b) classifier chain method (c) label power-set method
Figure 10. The identify accuracy of each multi-label classification algorithm.

Figure 11 shows the F-Score of each multi-label classification algorithm. The RF algorithm still
has the best performance, at almost 0.98.
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Figure 11. The F-Score of each multi-label classification algorithm.
4.5. The Performance of RF for Test Data Set

Table 2 shows the building and identification time of multi-label classification model with RF
algorithm in binary relevance method for actual data. The k-NN that performances better in other
algorithms is tested as comparison. Table 2 indicates that RF also has advantages over k-NN in
identification time, and the processing time has met the requirement of less than 2 s.

Table 2. The comparison of data processing time.

Classification Algorithm Building Time(s) Identification Time(s)
RF 12 0.35
k-NN 2.5 0.78

Figure 12 shows the performance of built multi-label classification model based on RF algorithm
in binary relevance method for the test data set obtained from the laboratory. It indicates that the built
model still has good performance in actual data. In Figure 12, the green curve represents the accuracy
when the classification model is built by the training data set, while the accuracy of built model for test
data set is denoted by red waveform. Although the accuracy of classification declined in the test of
actual data, it still reached 92%. This proves that the identification method proposed in this paper is
still effective in actual environment.
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—e
099 L Test curve

0.96 |-

Accuracy
g
O
@»
]

0.90 |-
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2 4 6 8 10 12
Training Times (x100)

Figure 12. The accuracy curve of built model.
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4.6. Comparison with Other Methods

In this section, the traditional methods [9,32] were compared with our method on public data
set BLUED. The method proposed by Tabatabaei [9] also uses the multi-label classification algorithm,
the current and wavelet transform coefficients are used as training data. In the experiment of
Tabatabaei’s work [9], ML-kNN algorithm achieves the best result. In the Bundit’'s work [32], I, PF,
Q, P are used as training data, and RAndom k-labELsets (RAKEL) achieves the best performance.
Comparison is reflected in three aspects: accuracy, identification time and F-score for lamps. Table 3
shows the comparison result.

Table 3. The comparison of data processing time.

Proposed Method Proposed Method Proposed

Method Method by Tabatabaei [9] by Bundit [32]
Accuracy 0.98 0.78 0.92
Identification time 0.35 1.5 1
F-score for the lamps 0.96 0.79 0.75

From the comparison, it can be found that the proposed multi-label classification model based
on RF has better performance than the traditional methods. Specially, although the overall accuracy
of the method proposed by Bundit [32] is high, it does not have good performance in accuracy and
F-score of low power electrical appliances (such as lamps). That is, the method proposed by Bundit [32]
cannot accurately identify low-power electrical appliances, but the method proposed in this paper still
performs well on low-power electrical appliances. Moreover, the proposed method takes less time,
and therefore, it has higher efficiency.

5. Conclusions

Multi-label classification and non-intrusive load identification are naturally appropriate. There are
two contributions in this paper, listed as followed: (1) the characteristics of NILM and multi-label
classification are studied, and a multi-label classification model suitable for non-intrusive load
identification is established. The model uses RF as classification algorithm; (2) feature importance is
used as a criterion to select the most suitable features.

In this paper, RF algorithm is selected as the basic classification algorithm. In algorithm
comparison, the RF algorithm outperforms other classification algorithms both in accuracy and F-score.
The identification accuracy of RF is close to 0.97 and F-score is almost 0.98. For the actual data, the
accuracy of binary relevance method with RF algorithm is close to 0.92. Moreover, in the process
of model building and testing, the RF algorithm takes less time, which improves the identification
efficiency. In comparison with existing methods, the experiment was conducted on public data set
BLUED. The proposed method has better performance in accuracy, identification time and F-score for
lamps than the other traditional methods [9,32]. The method proposed in this paper is superior to other
methods especially in identifying low-power electrical appliances. Thus, multi-label classification
method based on RF algorithm is efficient for NILM.

In order to further improve the accuracy of load identification, users’ habits and other features
will be introduced into the classification model.
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