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Abstract: The iterative process of simulation optimization is a time-consuming task, as it involves
executing the main simulation program in order to evaluate the optimal constraints and objective
functions repeatedly according to the values of tuner parameters. Parameter optimization for a
model of a multi-domain physical system based on Modelica is a typical simulation optimization
problem. Traditionally, each simulation during each iterative step needs resolve all the variables in
all the mass differential-algebraic equations (DAE) generated from the simulation model through
constructing and traversing the solving dependency graph of the model. In order to improve the
efficiency of the simulation optimization process, a new method named partial simulation resolving
algorithm based on the set of input parameters and output variables for complex simulation model
was proposed. By using this algorithm, a minimum solving graph (MSG) of the simulation model
was built according to the set of parameters, constraints, and objective functions of the optimization
model. The simulation during the optimization iterative process needs only to resolve the variables
on the MSG, and therefore this method could decrease the simulation time greatly during every
iterative step of the optimization process. As an example, the parameter optimization on economy of
fuel for a heavy truck was realized to demonstrate the efficiency of this solving strategy. This method
has been implemented in MWorks—a Modelica-based simulation platform.

Keywords: simulation optimization; Modelica; multi-domain simulation; partial resolving; minimum
solving graph; differential-algebraic equations

1. Introduction

1.1. Modeling and Simulation Technology for Multi-Domain Physical System Based on Modelica

Modeling languages for multi-domain physical systems have been developed since the 1970s [1].
In 1996, the uniform modeling language Modelica came into being, which inherits several excellent
properties of previous modeling languages: object-orientation, non-casual modeling, multi-domain
modeling capability, declarative modeling, and continuous-discrete hybrid modeling. Modelica is bent
on serving as a standard language so that different domain models can be expressed and exchanged
under a unified platform. Some powerful open libraries are now available from websites [2]. A great
deal of basic models from multi-domains, including mechanical, electrical, hydraulic, thermodynamic,
and control system are defined in these libraries. Based on these libraries, it is easy to build users’ own
models and to expand them through customizing models for reuse.

There are several applicable modeling and simulation tools based on Modelica, such as Dymola [3,4],
Math Modelica [5,6], and Open Modelica [7,8]. Up until now, these are the three most influential and
powerful software systems based on Modelica. In view of the development trend of Modelica, our group
started with basic research on its theories and applications from 2002. After deeply studying the syntax
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structure and system architecture of Modelica, we made further research on the solving strategy for
large scale continuous-discrete hybrid differential-algebraic equations (DAE) [9], and exerted ourselves
to implement a hybrid modeling platform based on Modelica for multi-domain physical systems [10,11].
Now, our work has come into being as a prototype software system—MWorks [12]—which provides
six main modules: integrated modeler, compiler, analyzer, solver, optimizer, and postprocessor.

1.2. Simulation Solving for a Modelica Model

Modelica uses differential algebraic equations (DAE) to describe physical phenomena and behaviors
of heterogeneous physical systems, and the topologies of physical systems are depicted by components
and the connections among components. Therefore, the task of modeling and simulation based on
Modelica is to construct and solve DAE [13]. The following three tasks are mainly used to solve a
DAE system: symbolic simplifying, equation debugging, and numeric solving. Symbolic simplifying
includes eliminating the equivalent equations [14], BLT (block lower triangular) partitioning [15], and
reducing DAE index [16,17]. Modelica equation debugging [18] can determine whether a DAE equation
system is a well-constrained system, an over-constrained, or an under-constrained system. Only a
well-constrained system can be solved by using numeric solutions. After BLT-partitioning of the
equation system, a series of sorted blocks are generated, including linear algebraic equations, non-linear
algebraic equations, ordinary differential equations, DAEs, and hybrid DAEs, which could be resolved
by calling DASSL (a differential algebraic system solver), Sundials, or other numeric solvers.

Decomposition of DAE systems can decrease the size of equations which should be solved
simultaneously. Besides BLT partitioning, Secchi et al. [19] promoted the so-called waveform relaxation
(WR) method, an operator-splitting approach to the solution of such DAE systems, which partitions
the problem into several lower order subsystems. In addition, a novel partitioning algorithm [20]
for the optimistic distributed simulation of hierarchical modular discrete event system specification
(DEVS) models has been proposed.

Parallel processing is a potential and significant method to improve simulation efficiency.
Combined the abstraction power of Modelica with support for shared memory bulk-synchronous parallel
programming, flexible and simple NestStepModelica is proposed by Kessler et al. [21]. Lundvall and
Fritzson [22] reported preliminary results of automatically generating parallel code from equation-based
models together at two different levels. A unifying framework for specifying DEVS parallel and
distributed simulation architectures [23] results in algorithms with a highly parallelizable concurrent
fraction and low sequential overhead, which are especially suitable for coarse- and medium-grain
MIMD (Multiple Instruction Stream Multiple Data Stream) distributed-memory machines.

1.3. Parameter Optimization for a Modelica Model

Parameter optimization for a Modelica model is a typical dynamic simulation optimization. It is
highly time-consuming because simulations should be done to evaluate the value of constraints and
objective functions during each iteration process.

For dynamic optimization, a control vector parameterization simulation solver is researched by
Ko et al. [24]. Feehery and Bartona [25] described a new method with path constraints for solving
dynamic optimization problems on the state variables. Huang et al. [26] presented a decomposition
strategy, which combines the advantages of the control parameterization and has a simultaneous
approach for solving dynamic optimization problem with path constraints. A decomposition strategy
is developed by Logsdon and Biegler [27] to exploit the block matrix form of the discretized differential
equations. It resulted from using collocation on finite elements and performed the optimization in the
control space.

1.4. Method and Structure of This Work

Like Dymola and MathModelica, MWorks can realize parameter optimization of a Modelica model
by using the optimizer module. As we know, the iterative process of simulation optimization is
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a computationally expensive task, as it requires executing the main simulation model and then
evaluating the optimal constraints and objective functions repeatedly according to the values of tuner
parameters. Parameter optimization for multi-domain physical systems under the simulation platform
based on Modelica is a typical simulation optimization problem. Each simulation executed during
the iterative process needs to resolve all the variables in the mass differential algebraic equations
traditionally. In order to improve the efficiency of the simulation optimization process, we promoted
a new method named the “partial resolving algorithm” for complex simulation models in MWorks.
By using this algorithm, a minimum solving graph (MSG) of the simulation model according to the set
of parameters, constraints, and objective functions of the optimization model was built. Therefore,
simulation executing needs only resolve the variables in the MSG, and this method could decrease
the simulation time greatly during each optimization iterative step. This paper will describe the new
feature of MWorks to perform parameter optimization for Modelica simulation models, and generate
in-depth research on the partial resolving algorithm and MSG generation during the optimization
process for complex multi-domain physical models.

This paper is organized as follows: Section 2 introduces modeling and simulation processes for
a Modelica model with a shunt-wound circuit example. Section 3 illustrates the design optimization
process for a multi-domain system based on Modelica. Section 4 presents the concepts and corresponding
algorithms of partial resolving strategy and then presents the minimum simulation solving algorithm
according to the MSG. An application sample of our approach is demonstrated in Section 5.

2. Modeling and Simulation for a Modelica Model under MWorks

2.1. Modeling Example

MWorks modeler provides four views for modeling: FullText, Icon, Diagram, and HTML (Hyper
Text Markup Language). FullText view is a text edit view to show and modify the mo text directly. Icon
view is a drawing view to show and modify the graphical icon of the current model. Diagram view is
another drawing view to show and modify the components and connections of the current model.
HTML view is a view to show the HTML format content of the current model. As an example supported
by the Modelica standard library, a parallel connected circuit model was built through drag-drop
modeling under MWorks graphical modeling interface (Diagram view), as shown in Figure 1a. Its
Modelica text can be updated automatically in the text modeling interface (FullText view), as shown in
Figure 1b.Processes 2019, 7, x FOR PEER REVIEW 4 of 19 
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Topology of a physical system such as the circuit model described above is depicted by components
(instances of class) and connections between connectors of the components. Generally, equations are
described by assigned expression, equivalent expression, or modifications. Equations can also be
specified by Modelica connections. For example, a connection between two connectors R1. p (one node
of resistor R1) and C. p (one node of capacitor C) implies two equations, namely R1. p. v = C. p. v and
R1.i + C. p. i = 0. The former equation indicates that the voltages on the connected nodes are the same,
and the latter corresponds to Kirchhoff’s current law stating that the currents sum to zero at a node.
The sum-to-zero equations are generated when the prefix flow is used. Similar laws apply to flow rates
in a piping network and to forces and torques in mechanical systems [1].

In addition, it should be also noted that the keyword parameter in Modelica specifies a variable
remaining constant during a simulation run, but can change values between runs. This makes it simple
for users to modify the behavior of a model by setting different values to parameters, and the design
optimization for a Modelica model is realized through tuning parameters to achieve minimum objective
functions and to meet constraints.

2.2. Equations Generating and Sorting

Under the MWorks platform, the compiler translates the Modelica model into a flat DAE system
firstly through semantic analysis; then the analyzer processes the DAE system into a series of sorted
blocks [9], which can be solved in turn. As for the circuit model in Figure 1, the sorted 17 blocks are
generated as follows:

〈B1〉 G.p.v = 0;
〈B2〉 C.n.v = G.p.v;
〈B3〉 L.n.v = C.n.v;
〈B4〉 VS.n.v = C.n.v;
〈B5〉 VS.signalSource.outPort.signal = VS.signalSource.p_height;
〈B6〉 VS.signalSource.y = VS.signalSource.outPort.signal;
〈B7〉 VS.v = VS.signalSource.outPort.signal;
〈B8〉 VS.v = VS.p.v-VS.n.v;
〈B9〉 R1.p.v = VS.p.v;
〈B10〉 R2.p.v = R1.p.v;
〈B11〉 R1.v = R1.p.v-R1.n.v; 0 = R1.p.i + R1.n.i; R1.i = R1.p.i;

R1.R * R1.i = R1.v; C.p.i + R1.n.i = 0; R1.n.v = C.p.v;
0 = C.p.i + C.n.i; C.i = C.p.i; C.i = C.C *der(C.v);
C.v = C.p.v-C.n.v;

〈B12〉 R2.v = R2.p.v-R2.n.v; 0 = R2.p.i + R2.n.i; R2.i = R2.p.i;
R2.R*R2.i = R2.v; L.v = L.p.v-L.n.v; 0 = L.p.i + L.n.i;
L.i = L.p.i; L.L*der(L.i) = L.v; L.p.i + R2.n.i = 0;
R2.n.v = L.p.v;

〈B13〉 R1.p.i + R2.p.i + VS.p.i = 0;
〈B14〉 VS.i = VS.p.i;
〈B15〉 0 = VS.p.i + VS.n.i;
〈B16〉 C.n.i + G.p.i+L.n.i + VS.n.i = 0;
〈B17〉 i0 = VS.p.i;

Among the equations above, variables in italics represent parameters which are set before
simulation; variables in bold mean that they will be solved in the block.

In addition, the specific meaning of each block from [B1] to [B17] can be clearly explained by
Table 1.
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Table 1. The meaning of B1–B17.

Block Number Meaning

B1 Grounding voltage block
B2 Capacitance voltage block
B3 Inductance voltage block
B4 Voltage source voltage block
B5 Voltage source output signal block
B6 Voltage source objective signal block
B7 The relation block on Voltage source voltage and Voltage source output signal
B8 Voltage source voltage relation block
B9 Voltage block on Resistance 1 (R1)
B10 Voltage block on Resistance 2 (R2)
B11 The relation block on R1, Capacitance, Voltage, and Current
B12 The relation block on R2, inductance, Voltage, and Current
B13 The Current relation block on Resistance 1, Resistance 2, Voltage source
B14 The Current block of Voltage source
B15 The Current relation block of Voltage source
B16 The Current relation block on Capacitance, Inductance, Grounding port, and Voltage source
B17 Trunk current block

2.3. Simulation

After generating the sorted equations, MWorks solver module makes the series of sorted blocks
into a C code and executable program (.dll in MWorks), and then DASSL or Sundials solver is called to
resolve all blocks in turn at each discretized time sequence. Finally, the results will be saved into a mat
format file.

In general, full simulation is done when solving, i.e., all the variables in all the equations are
resolved when simulating. The postprocessor can read the mat file and then draw the desired
variable-time curves, and all these variables form a tree according to the hierarchical components.
Figure 2 shows variable tree and the curves of three variables of the model in Figure 1—the total
current i0 and the two branch currents, R1.i and R2.i.
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3. Parameter Optimization Process for a Modelica Model

3.1. Criteria of State Variables

Because optimization for a Modelica model is a kind of simulation optimization, the state variables
in the objective functions or constraints have different values during the simulation time. Thus,
we should set up the criteria of state variables when building the optimization model. Maximum
value, minimum value, final value, initial value, integrated value and average value, are several
common choices.

Aside from this, there are other three types of criteria [28]: over-shoot, settling-time, and rise-time.
As shown in Figure 3a, the parameter final_Value is the desired reference value of the input signal y.
The over-shoot is defined as max (0, y—Final_value), i.e., the largest value of y over the Final_value.
Settling-time (Figure 3b) is the first time where the input signal y remains within a range of delta
forever. Also, rise-time (Figure 3c) computes the rise time of the input signal. Generally, it is the time
between the input signal being equal to 0.1 * Final_value and 0.9 * Final_value.

In addition, the difference (Figure 3d) between the ideal curve and the simulation response curve
of a variable should be considered under the condition of parameter estimation. The ideal curve can
be given with pairs of value-time series. The difference value can be calculated through interpolation.
To make the difference of two curves minimize is to minimize the sum of all the squares of differences
between ideal values and response values at the discrete time sequences.
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3.2. Optimization Modeling for a Modelica Model with Multi-Cases

By using a suitable search algorithm to minimize some objective functions and satisfy some
constraints, the Optimization based on Modelica is can find a set of optimal parameters of a Modelica
model. The Modelica model is called a “main simulation model”, which should be a Modelica class or
model in which the number of variables is equal to the number of equations.

As we know, an optimization model has three aspects: design variables (or tuners), constraints,
and objective functions. As for the simulation optimization for a Modelica model, generally tuners are
the parameters of the main simulation model or parameters of its components of sub-components.
A tuner has three main data members: default value, minimum, and maximum value. The default
values of tuners are the initial values when optimizing; maximum and minimum values of tuners are
boundary constraints of the optimization model.

In order to avoid evaluating values of expressions of user-defined design functions (constraints
and objective functions), we can define them as some output variables in the model text. Then, values
of design functions can be evaluated through these output variables, which can be resolved when
simulating. Because the design functions often include state variables, the corresponding output
variables should be set with different criteria, as mentioned in Section 3.1.

If we optimize a model that has a different typical work status or structures, the multi-case
optimization model can be used [28]. Cases describe different operating conditions that are
distinguished by different values of a set of parameters, namely, case parameters. Generally, case
parameters are discrete parameters and are kept at a fixed value in a case. One case has one set of case
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parameters. Multi-case optimization modeling means that when optimizing a model, all the objective
functions and constraints of all the cases must be considered. Thus, the multi-objects optimization and
multi-constraints optimization are two core parts in multi-case optimization.

Multi-objects of multi-cases can be aggregated into one object according to the weight of each
object of each case. The sum of the absolute of each weighted object is a common aggregation method.
Then, the multi-case optimization model can be described as follows:

f ind X
min

∑∣∣∣ fi j/di j
∣∣∣ i j ∈ F

s.t. ci j ≤ di j i j ∈ I
ci j = di j i j ∈ E
xi

min ≤ xi
≤ xi

max xi
∈ X

(1)

where X denotes tuners; F, I, and E denote the set of objective functions, inequality constraints, and
equality constraints in cases, respectively, i.e., fij denotes the ith object in the jth case. In order to
achieve the same scale of different objective functions, a fixed demand value (dij, i j ∈ F) is needed
for each object in each case. A demand value has the same unit as its corresponding object, which
denotes the designer’s preferences. Moreover,

∑∣∣∣ fi j/di j
∣∣∣ is the overall object function of multi-objects

of multi-cases.
As for the circuit model of Figure 1, we consider the following optimization problem:

find: {C.C, L.L}

min: Difference (i0, Ij ), j = 1,2,3; dj = 1;

s.t. settling-time (i0) < Tj, j = 1,2,3

over-shoot(i0) ≤ Aj, j = 1,2,3

cases: {R1.R, R2.R} = {20, 100; 50, 50; 100, 20}

{T1, T2, T3} = {2, 3, 4}

{A1, A2, A3} = {0, 0, 0}

where C.C is the value of the capacitor C; L.L is the value of the inductance L; and i0 is the overall
current of the circuit. There are three cases in the model with different case parameters R1.R and R2.R.
I1, I2, I3 are three ideal current curves corresponding to the three cases, respectively, and they are given
with a series of value-time pairs.

3.3. Parameter Optimization Process

As mentioned in the previous sections, a physical system described by Modelica can be defined as a
parameterized simulation model. Therefore, design optimization can be employed to tune parameters
such that the system behavior is improved. After setting up an optimization model for a Modelica
simulation model, a search algorithm (such as SQP-sequential quadratic programming, Hookjeeves,
GA-genetic algorithm, etc.) is used to constantly adjust design variables, execute the simulation
program and evaluate the design functions in order to minimize the objective functions and meet the
constraints. The process of design optimization based on Modelica model is illustrated in Figure 4.

As shown in Figure 4, the optimization model including design variables, case parameters,
objective functions, and constraints is built from the Modelica simulation model. Before iteration of
optimization, a full simulation program is generated. During each iteration, the simulation program
is then called after tuning the values of design variables. If the model has multi cases, a simulation
program would be called several times (equaling to the number of cases) with different sets of values to
the case parameters during one iteration step. Assume the number of cases is nCases, and the number
of the optimization iterations is nIters, then the simulation will run nCases * nIters times during the
whole optimizing process. After simulation, criteria of the state variables in the objective functions
or constraints will be evaluated according to the simulation results. A more specific process may be
referred to in [9].
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4. Partial Resolving Algorithm for a Modelica Model

As we know, many repetitive simulations must be executed during optimizing, especially for a
multi-case optimization model. Thus, if the simulation program could be shortened, a great deal of
time could be saved. Under MWorks, we adopt a method named “minimum simulation” in which full
resolving is substituted with partial resolving.

The random geometric graphs [29] have been well-studied and applied to alternative mechanisms
wrapped in real-world complex networks. In addition, the idea on the sorted blocks is interesting. It
can potentially be used to structure insightful hierarchical structures. Shang [30] studied a model for
inhomogeneous long-range percolation on the hierarchical lattice ΩN of order N with an ultrametric d.
The random geometric graphs and the idea on the sorted blocks are helpful for researchers to further
understand the partial resolving algorithm.

Note that this method can only be used under the condition that the equation system of the
simulation model does not change when tuning the parameters. If the structure of the equation system
changes, all the variables, the solving dependency graph, and the MSG could also change.

4.1. Solving Dependency Graph

Definition 1. Coupling block, a set of tightly coupling simultaneous equations that can be solved independently.
A coupling block has five domains:

B = {s_sEqu, s_sPar, s_sVar, s_pParents, s_pChildren},

s_sEqu represents the set of equations; s_sPar represents the set of parameters; s_sVar represents the set of output
variables which will be resolved through this block; s_pParents represents the set of pointers of parent blocks
which should be resolved before; and s_pChildren represents the set of pointers of children blocks which depends
on this block.

Pre-blocks of a block B is the blocks that are B’s parents or their parents, recursively.
Post-blocks of a block B is the blocks that are B’s children of their children, recursively.
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Definition 2. Solving a dependency graph is a graph which is defined as follows:

SDG = (B,
¯
E).

Vertices B in the solving dependency graph (SDG) is a set of coupling blocks and the edge(B1, B2) ∈
¯
Eindicates

the data dependence between vertices B1 and B2. That is, there exists at least one variable v in B2 whose value is
computed in B1. This type of variable (such as v) is called as computation variables in B1 and is also known as
reference variables in B2, i.e., B1 is B2

′s parent.

Considering the circuit model in Figure 1, we can easily build SDG of the 17 sorted blocks of
the equation system when performing topological sorting of the equation system into BLT form—all
the nodes in one strongly connected component construct a block. As Figure 5a shows, a solving
dependency graph is a directed graph without loops.

Once the SDG of an equation system is built, we can easily obtain the computing sequences
through erasing the parent blocks [9], as shown in Figure 5b. Blocks in the same rectangle can be
resolved in a random order.
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4.2. Minimum Solving Graph

Once the optimization model is built, we can construct its minimum solving graph based on the
SDG. This method is based on the idea that if all the variables are resolved at first, we just need to resolve
the blocks which are related to the optimization model. During the optimization iteration process,
the simulation objective is to evaluate the values of objective functions and constraints according to
the tuners and case parameters. Thus, the minimum solving graph is the sub-graph of SDG from the
blocks of the tuners and case parameters to the blocks of constraints and objective functions.

The following are the three steps required to construct the minimum solving graph: getting the
sub-graph coving post-blocks of parameters (including tuners and case parameters) in which all the
blocks are affected by these parameters; getting the sub-graph coving pre-blocks of constraints or
objective functions in which all these blocks affect blocks of objective functions or constraints; getting
the intersection of the two sub-graphs. This intersection sub-graph is the very minimum solving graph.
Given GP is the post-blocks of parameter par1, par2, par3, . . . ; GO is the pre-blocks of objects obj1, obj2,
obj3; and GC is the pre-blocks of constraints con1, con2, con3, . . . ; then the minimum solving process is
shown in Figure 6.
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The specific algorithm implemented can be stated as follows:

MSG = GP ∩ (GO ∪ GC)

The following Algorithm 1 illustrates the procedure of getting post-blocks of parameters:

Algorithm 1. GetParPostBlocks

Input: s_strPar – a set of parameters
SDG – solving dependency graph

Output: s_pBlks – set of post-blocks selected
for each block b in SDG do begin

if intersection of b.s_Par and s_strPar is null or b is in s_pBlks then continue;
clear set s;
s = GetSuccesor (b, SDG, s_pBlks); //get successors of b in SDG
Add s to s_pBlks; //select s

end for;

In order to improve the efficiency of the algorithm, the GetSuccessor function (Algorithm 2) is
passed with the set of blocks s_pBlks which have been selected:

Algorithm 2. GetSuccesor

Input: b – the block
SDG – solving dependency graph
s_pBlks – set of blocks which has been selected

Output: s_pSucBlks – set of blocks selected
clear set s;
s = b.s_children;
for each block b1 in s do begin

if b1 is in s_pBlks then continue;
clear set s1;
GetSuccesor ( b, SDG, s_pBlks); //call itself recursively
Add b1 to s_ pSucBlks;

end for;

Similarly, the following Algorithm 3 illustrates the procedure of getting pre-blocks of variables:
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Algorithm 3. GetVarPreBlocks
Input: s_strVar – a set of Variables

SDG – solving dependency graph
Output: s_pBlks – set of blocks selected
for each block b in SDG do begin

if intersection of b.s_Var and s_strVar is null or b is in s_pBlks then continue;
clear set s;
s = GetProccesor(b, SDG, s_pBlks); //Get Processors of b in SDG
Add s to s_pBlks; //select s

end for;

Like the function GetSuccessor, Getsuccessor function (Algorithm 4) is also passed with the set
of blocks s_pBlks:

Algorithm 4. GetProccesor

Input: b – the block
SDG – solving dependency graph
s_pBlks – set of blocks which has been determined

Output: s_pProBlks – set of blocks
clear set s;
s = b.s_parents;
for each block b1 in s do begin

if b1 is in s_pBlks then continue;
clear set s1;
GetProccesor ( b, SDG, s_pBlks); //call itself recursively
Add b1 to s_ pProBlks;

end for;

The following Algorithm 5 illustrates the procedure of getting an intersection of two sets of blocks:

Algorithm 5. GetMSGBlocks //getting set of blocks in a MSG

Input: s_pParBlks—set of post- blocks of parameters
s_pVarBlks—set of pre-blocks of output variables appearing in the objective functions or constraints functions

Output: s_pMSGBlks—set of blocks in a MSG
for each block b in s_pParBlks do begin

if b is in s_pParBlks then
add b to s_pMSGBlks;

end for

Algorithm 5 only gets the set of blocks in a MSG, the next algorithm, Algorithm 6, gets the series
of sorted blocks:

Algorithm 6. GetSortedBlocks

Input: s_pMSGBlks – set of blocks in a MSG
Output: v_ pMSGBlks – vector of sets of blocks which are sorted
while s_pMSGBlks in not null do begin

for each block b in s_pMSGBlks do begin
clear set s;
if intersection of b.s_pParents and s_pMSGBlks is null then

add b to s;
end for;
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Up until now, all the algorithms to build a partial simulation program based on an MSG have
been narrated. The main procedure of generating a series of blocks of an MSG is illustrated as the
following algorithm, Algorithm 7:

Algorithm 7: GenerateMSGSortedBlocks

//generating minimum solving series of blocks in MSG
InputSDG, s_pars, s_Vars
Outputv_setMSGBlks
Step1: s_pBlk1 = GetParPostBlocks (SDG, s_pars);
Step2: s_pBlk2 = GetVarPreBlocks (SDG, s_Vars);
Step3: s_pMSGBlks = GetMSGBlocks (s_pBlk1, s_pBlk2);
Step4: v_pMSGBlks = GetSortedBlocks (s_pMSGBlks);

Using the algorithm above, we can build the minimum solving graph of the circuit model of
example 1 as Figure 7 shows. Figure 7a–d illustrates Algorithms 1–4, respectively. The results of the
sorted blocks are {B11 | B12, B13, B17}.
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4.3. Optimization Iteration Process Based on Minimum Simulation

The minimum simulation program now can be built from the series of blocks of the MSG. When
generating a minimum simulation code, the full simulation results resident in memory must be used
to resolve the variables whose values changed in the MSG. All the values of unvaried variables
are obtained at first through dynamics data exchange. In order to ensure all the values of all these
variables at discrete time sequences have been saved, simulation steps must be matched between
the partial resolving and full simulation. Thus, we adopt a constant steps (or the same varied steps)
strategy in both the full simulation and minimum simulation code by setting the output interval to
“interval length”.

Based on the minimum simulation program, the process of parameter optimization has been
improved, as Figure 8 shows. From the simulation model and the optimization model, the MSG is built
at first. Then, full simulation is called only once to generate the full results in a mat file. According to
the MSG and the full results, the minimum simulation program is finally built. Then, a simulation
before evaluating the values of constraints and objective functions only needs to execute the minimum
simulation program.
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As mentioned above, the MSG is built not only by design parameters but also case parameters.
As for the multi-case optimization model, another method of partial resolving is to build several
different full simulation programs (the number of which equals the number of cases) according to
different sets of values of the case parameters firstly, then constructing the minimum solving graph
based only on the tuners (excluding case parameters), and lastly building several minimum simulation
programs (number of which also equals to the number of cases). Thus, when evaluating the values of
design functions of multi-cases, the multi minimum simulation programs will be called, respectively.
The more efficient this method is, the greater the number of pre-blocks of case parameters and of
optimization iterations is.

As for the optimization problem of the circuit example, we can get the optimal result, {C.C, L.L}
= {0.033F, 0.0004H}, with the curves of the i0 ideal current and simulation response being shown in
Figure 9. Using partial resolving during the optimization process can save time at about 10% when
contrasted with full simulation. Actually, the different optimization models have different MSG. If we
only select C.C as the tuners, then the MSG has only three blocks: B11, B13, and B17. Accordingly, the
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consuming time of the optimization could be reduced by 45%. However, if we select the parameter
VS.signalSource.p_height as tuners, its MSG then covers nearly all the blocks, except four blocks: B1,
B2, B3, and B4. This means time of partial resolving is close to that of the full simulation.Processes 2019, 7, x FOR PEER REVIEW 15 of 19 
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5. Application

In order to save energy effectively, the economy of fuel is now given more and more consideration
when designing vehicles, especially heavy trucks. Collaborating with Chinese Heavy Truck Corp.,
our group has built a Modelica library—InteDrive—to facilitate modeling and simulating for a
heavy truck model. InteDrive includes the following sub-libraries: driveCycle, Driver (including
BrakeControl, ThrottleControl, ShiftStrategy), engine, clutch, gearbox, brake, tire, vehicle, airbag, and
fuel consumption. Based on the InterDrive library, a sample model of heavy truck—veh_smcar—has
been built under MWorks, as Figure 10a shows.
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Figure 10. veh_smcar (a sample of a heavy truck) model and simulation in 1500 s.

Under the MWorks platform, some main simulation curves can be obtained by setting
the parameters: GearBox1.gearRatio_1 = 3, GearBox1.gearRatio_2 = 3, GearBox1.gearRatio_3 = 2,
GearBox1.gearRatio_4 = 1, and GearBox1.gearRatio_5 = 1, and adopting the predefined shift strategy of
the component Driver:

parameter Real upshift[:] = {25, 50, 70, 100} "upshift table,(km/h)";

parameter Real downshift[:] = {20, 40, 60, 90} "downshift table,(km/h)";

Modelica.Blocks.Interfaces.InPort vehicle_speed;

Modelica.Blocks.Interfaces.OutPort requested_gear_number;

Integer current_gear(start = 1);

Integer speeds = size(upshift,1) + 1;

Real next_upshift;

Real next_downshift;

initial~algorithm

current_gear = 1;

next_upshift = if current_gear < speeds then upshift[current_gear] else Modelica.Constants.inf;

next_downshift = if current_gear > 1 then downshift[current_gear - 1] else -Modelica.Constants.inf;
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algorithm

when vehicle_speed.signal[1] > next_upshift then

current_gear : = current_gear+1;

next_upshift : = if current_gear<speeds then upshift[current_gear] else Modelica.Constants.inf;

next_downshift : = if current_gear>1 then downshift[current_gear-1] else -Modelica.Constants.inf;

end when;

when vehicle_speed.signal [1] < next_downshift then

current_gear : = current_gear-1;

next_upshift : = if current_gear<speeds then upshift[current_gear] else Modelica.Constants.inf;

next_downshift : = if current_gear>1 then downshift[current_gear-1] else -Modelica.Constants.inf;

end when;

After simulation, the curves of vehicle speed, distance, and fuel consumption in 1500s are shown
in Figure 10b–d, respectively. Total fuel consumption of veh_smcar in 1500 s was 8.1 L.

Next, we set up the optimization model:

find {gearRatio_1, gearRatio_2, gearRatio_3, gearRatio_4, gearRatio_5}

min: fuelComsumption1.fuel

s.t. max (vehicle1.speed) < Vj, j = 1,2,3

cases: three common shift strategies with different sets of table values of upshift and downshift.

{upshift1, upshift2, upshift3} = {{25, 50, 70, 100}, {30, 55, 80, 110}, {20, 45, 65, 95}}

{downshift1, downshift2, downshift3} = {{20, 40, 60, 90}, {25, 50, 70, 100}, {15, 40, 60, 90}}

{V1, V2, V3} = {90 km/h, 100 km/h, 110 km/h}

After optimizing, the optimal values of tuners are as follows: GearBox1.gearRatio_1 =

3.57, GearBox1.gearRatio_2 = 2.01, GearBox1.gearRatio_3 = 1.33, GearBox1.gearRatio_4 = 1.00, and
GearBox1.gearRatio_5 = 0.75. The total fuel consumption was about 6.8 L. The fuel simulation curve in
1500 s is shown in Figure 11.
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By using the SQP algorithm, there are 12 iterations during the optimizing process. If simulation
time is set up from 0 to 1500 s, the consuming time for full simulation is about 9.8 s under MWorks. After
generating a minimum solving graph according to the optimization model, each partial simulation
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time is about 5.6 s. Therefore, more than one third of time taken can be saved during the optimization
process. As Figure 9a shows, only the variables in the dashed rectangle should be resolved when
executing the partial simulation.

As for the veh_smcar model, if we select parameters in the component Engine (like fc_inertia) as
tuners, its MSG will decrease greatly, while if we select parameters in the component driveCycle, such
as the matrix table, then its MSG covers all the solving blocks.

6. Conclusions

Parameter optimization for a Modelica model needs to execute simulation repeatedly in order to
evaluate design functions, and the efficiency of the process of design optimization depends on the
efficiency of repetitious simulation to a great extent. Although there are many studies focusing on
solving strategies of simulation, few of them pay attention to the efficiency of repetitious simulation
after parameter tuning. Because only the equation blocks from design parameters to design functions
of an optimization model need to be resolved during iterations, a minimum solving graph and partial
resolving strategy based on a simulation model and optimization model is presented in this paper.
By using this method, the more efficient it could be, the smaller the size of the MSG. Also, it would be
useful for a model experiment with parameter tuning or parameter estimation.

For next study of this work, we are trying to generate several full simulation codes, corresponding
MSGs and minimum simulation programs before optimizing. When executing partial simulation, the
main optimization program calls one suitable minimum simulation program according to the values of
parameters. Furthermore, a multiscale filtering algorithm and concept of network robustness [31] in
the multiscale coordination control problem will be introduced to effectively guide us to enhance the
efficiency and performance of the partial simulation resolving algorithm to a certain extent.
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