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Abstract: A data-driven strategy for the online estimation of important kinetic parameters was
assessed for the copolymerization of ethylene with 1,9-decadiene using a metallocene catalyst at
different diene concentrations and reaction temperatures. An initial global sensitivity analysis selected
the significant kinetic parameters of the system. The retrospective cost model refinement (RCMR)
algorithm was adapted and implemented to estimate the significant kinetic parameters of the model
in real time. After verifying stability and robustness, experimental data validated the algorithm
performance. Results demonstrate the estimated kinetic parameters converge close to theoretical
values without requiring prior knowledge of the polymerization model and the original kinetic values.

Keywords: data-driven parameter estimation; retrospective cost model refinement algorithm; global
sensitivity analysis; polyolefin synthesis

1. Introduction

Polyolefins, mainly polypropylene and polyethylene, are the most common plastics worldwide.
The annual growth rate projected for such materials is estimated to be around 3–5% in the next
decade [1], which makes polyolefins a continuously growing and attractive product. Metallocene
catalysts such as Dow Chemical’s constrained-geometry catalyst (CGC), produce polyolefins with
narrow molecular weight distributions (MWD), while allowing the easy addition of α-olefins, dienes,
and macromonomers into the growing chains [2]. The incorporation of macromonomers generates
copolymers with long-chain branches (LCB), which, besides enhancing physical and mechanical
properties, improves the processability of the final plastic materials [3–5]. The reaction pathways
that lead to the formation of LCBs in ethylene/α-olefins/diene copolymers are complex. Various
experimental investigations have studied their polymerization kinetics [6–8], while others have focused
on the development of mechanistic models to explain their microstructures and to predict properties of
interest [9–12].

Brandão et al. (2017) [13] proposed a mechanistic model for the semi-batch copolymerization
of ethylene and 1,9-decadiene with a metallocene catalyst, which was validated using experimental
measurements including the ethylene flow rate (FM), the number-average molecular weight (Mn),
and the weight-average molecular weight (Mw). The model assumed that LCBs were formed by
incorporating macromonomers through pendant unsaturations resulting from the copolymerization of
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1,9-decadiene. In addition, two methodologies to calculate the polyolefin MWD including the adaptive
orthogonal collocation method and Monte-Carlo simulation, were compared [14]. Both methodologies
could describe the MWD of polymers made under different experimental conditions, such as reaction
temperature and catalyst concentration. For verification, the computed distributions were contrasted
with experimental measurements obtained from a high-temperature gel permeation chromatography
(GPC) [15].

Even though fundamental models and experimental measurements provide important information
to understand the dynamic evolution of a system, neither of them is exact. In real operations,
experimental uncertainties may affect previous validations and prevent the model to predict relevant
properties accurately. Nonlinear state or parameter estimation strategies, on the other hand, are elegant
ways to combine both the experimental data and complex mathematical models [16], which may
improve the description of the polymerization system under study. Online estimation techniques
are powerful computational tools that can generate immediate knowledge of a particular system of
interest, enhance the control actions, and monitor continuously relevant properties [17].

Recent applications of nonlinear estimation methods in polymerization have focused on the
reconstruction of the state vector [17–22] rather than on the estimation of polymerization kinetic
parameters. Some of the main aims when using state estimators include noise reduction for control
purposes, and the prediction of relevant polymer properties such as the MWD, Mn and Mw. Typically,
the kinetic parameters of a polymerization model must be estimated before the model can be
utilized. The maximum likelihood or the least squares approach are common criteria that aim to
match a semi-empirical or fundamental model with the available experimental data. In this context,
common strategies include the use of computational packages such as gEST, available in the platform
gPROMS [23,24], or metaheuristic/machine-learning algorithms, such as particle swarm optimization or
the differential evolution algorithm [13,25,26]. These methods, however, achieve a general description
of the model, without considering process disturbances, impurities, experimental errors, and side
reactions that may occur during the polymerization.

Few authors have studied algorithms for the online estimation of kinetic parameters in polymerization
processes. An initial study in this topic was introduced by Sirohi and Choi (1996) [27]. They implemented
an extended Kalman (EKF) filter to estimate kinetic parameters and heat transfer coefficients using
a computational experiment. Li et al. (2004) [28] employed an EKF for the simultaneous estimation
of states and parameters in a continuous reactor for the ethylene-propylene-diene polymerization.
Chen et al. (2005) [29] investigated a particle filter strategy in batch polymerization for joint state and
parameter estimation. Finally, Sheibat-Othman et al. (2008) [30] compared different online parameter
estimation strategies, including the minimization-based approach, EKF, high gain, and adaptive
observer. The results were evaluated qualitatively for the solution homopolymerization of acrylic acid
using measurements from infrared spectroscopy. However, all of these methods required an adjoint
model, or relied on the explicit knowledge of the parameter dependences, which implied that the
mathematical model had to be computable and known by the estimation algorithm (e.g., the EKF
requires the Jacobian of the states dynamics). In addition, initial information on the parameters was
required; otherwise, the algorithm failed to converge [31].

In this contribution, a data-driven online parameter estimation strategy was assessed for
the copolymerization of ethylene with 1,9-decadiene using a metallocene catalyst in a semi-batch
reactor. The initial phase corresponded to the selection of the significant kinetic parameters of the
polymerization model. A global sensitivity analysis that used an improved version of the Sobol method
permitted the identification of the most important kinetic parameters of the system [32]. Subsequently,
the retrospective cost model refinement (RCMR) algorithm [33–35], a data-driven method that does
not require knowledge of the nonlinear model and the initial values of the estimated parameters,
was adapted and implemented for the online estimation of the significant kinetic parameters. Different
channels allowed the reconstruction of each parameter of interest towards its real value. Finally,
the RCMR algorithm was tested and validated with experimental data to verify its applicability.
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2. Process Modelling

Fundamental models in polymerization are advantageous tools that contribute to product
development and process troubleshooting. The mathematical model described in this work
was proposed by Brandão et al. (2017) [13,14]. The reaction mechanism adopted for the
copolymerization of ethylene with 1,9-decadiene used the catalyst dimethylsilyl (N-tert-butylamido)
(tetramethylcyclopentadienyl) titanium dichloride (CGC)/MAO. The reaction mechanism is described
as follows:

Catalyst activation

C
ka
→ C∗ (1)

Initiation

C∗ + M
kp11
→ P∗1 (+m) (2)

Propagation (ethylene)

P∗q + M
kp11
→ P∗q+1 (+m) (3)

Propagation (diene)

P∗q + D
kp12
→ P∗q+1(+d) (4)

Transfer to monomer and β-hydride elimination

P∗q
kt
→ L=

q + C∗ (5)

Living chain deactivation

P∗q + P∗r
kdP
→ Lq + Lr + 2 DC (6)

Macromonomer reincorporation

P∗q + L=
r

kbK
→ P∗q+r(+2 lcb) (7)

where C is the catalyst precursor, C∗ is an active catalyst site, M is the ethylene, D is the diene, DC is a
dead catalyst site, m and d are the total number of ethylene and diene units inserted into the growing
polymer chains, P∗q is a living polymer chain of size q, L=

q is a dead polymer chain of size q containing a
terminal unsaturation, and Lq is a dead polymer chain of size q without a terminal unsaturation.

Under assumptions such as constant ethylene concentration, excess co-catalyst concentration,
well-mixed reactor, initiation rate equal to propagation rate for ethylene (kp11), and propagation
controlled by the chemical nature of the monomer species, the set of differential equations that describe
the system are shown in Equations (8)–(21).

dC
dt

= −ka

( C
V

)
V (8)

dC∗

dt
= ka

( C
V

)
V − kp11

(C∗

V

)(M
V

)
V + kt

(µ0

V

)
V (9)

dDC
dt

= kdP

(µ0

V

)2
V (10)

dD
dt

= −kp12

(µ0

V

)(D
V

)
V (11)
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d(m)

dt
= kp11

[(C∗

V

)
+

(µ0

V

)](M
V

)
V (12)

d(d)
dt

= kp12

(µ0

V

)(D
V

)
V (13)

d(lcb)
dt

= 2kbϕ
(µ0

V

)(
λ1

V

)
V (14)

dµ0

dt
= −kt

(µ0

V

)
V − kdP

(µ0

V

)2
V + kp11

(C∗

V

)(M
V

)
V (15)

dµ1
dt = −kt
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V − kdP
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[(
C∗
V
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+
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V

)](
M
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)(
D
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V

+kbϕ
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V

)(
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V

)
V

(16)

dµ2
dt = −kt
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[(
C∗
V
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+
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V
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+ 2

(µ1
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)](
M
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V

)
+ 2
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)](
D
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V
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V

)(
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V
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dλ0

dt
= kt

(µ0

V

)
V + kdP

(µ0

V

)2
V − kbϕ

(µ0

V

)(
λ1

V

)
V (18)

dλ1

dt
= kt

(µ1

V

)
V + kdP

(µ0

V

)(µ1

V

)
V − kbϕ

(µ0

V

)(
λ2

V

)
V (19)

dλ2

dt
= kt

(µ2

V

)
V + kdP

(µ0

V

)(µ2

V

)
V − kbϕ

(µ0

V

)(
λ3

V

)
V (20)

dV
dt

=

(
dλ1

dt
+

dµ1

dt

)
MM
ρPE

(21)

where,

ϕ =
d

d + m
(22)

λ3 =
λ2

λ0λ1

(
2λ2λ0 − λ1

2
)

(23)

MM = ϕMMD + (1−ϕ)MMM (24)

When the polymerization mechanism leads to moment closure problems, the qth-moment balance
equation requires the definition of the (q + 1)th moments. Otherwise, the balance equation cannot be
solved. Hulburt and Katz (1964) [36] developed a closure method that can be written in the form of
algebraic expressions, using a distribution approximation procedure. The closure expression for λ3

was then obtained as approximate algebraic equation in the form of Equation (23).
The concentration of ethylene was kept constant during the polymerization, dM

dt = 0. Thus,
the inlet flow rate of ethylene (FM), which represents the continuous demand of ethylene during
the polymerization, was approximated to the expected demand of monomer during the reaction,
as denoted in Equation (25).

FM ≈ kp11

(C∗

V

)(M
V

)
V + kp11

(µ0

V

)(M
V

)
V (25)

The average properties of the resultant polymers were computed as written in Equations (26)–(28).

Mn =
λ1 + µ1

λ0 + µ0
MM (26)
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Mw =
λ2 + µ2

λ1 + µ1
MM (27)

PDI =
Mw

Mn
=
λ2 + µ2

λ0 + µ0
(28)

The fundamental model relied on both the reparametrized and the classical Arrhenius law to
compute the rate constants as listed in Table 1.

Table 1. Kinetic rate constants for the copolymerization of ethylene and 1,9-decadiene.

Rate Constant Arrhenius Equation

Catalyst activation ka = exp
[
k1 + k2

(
T−Tr

T

)]
Propagation kp11 = k0pexp

(
−

Eap
RT

)
, k0p = 10k7

Monomer transfer & β-hydride elimination kt = exp
[
k3 + k4

(
T−Tr

T

)]
Living chain deactivation kdP = exp

[
k5 + k6

(
T−Tr

T

)]
T: Temperature inside the reactor, Tr : reference temperature set to 130 ◦C.

The molar concentration and total amount of monomer, listed in Table 2, were obtained using
the Peng-Robinson equation to calculate fugacity, and UNIQUAC model to determine the activity
coefficients in the liquid phase.

Table 2. Ethylene concentration and total moles of ethylene in toluene at different temperatures.

T, [C◦] [C2H4], [mol L−1] [M], [mol]

120 0.49472 0.07420
130 0.43732 0.06560
140 0.38141 0.05721

The parameters k1−7 had their values determined stochastically by using particle swarm
optimization (PSO) [37] in the homopolymerization experiments. After this procedure, the identifiability
analysis indicated that only four parameters (k3, k5, k6 and k7) could be estimated simultaneously.
The remaining parameters (k1, k2 and k4), although important for model computations, could not
be estimated independently with the available data; therefore, their values were kept constant and
equal to the values provided by the PSO. Then, the four selected parameters were estimated using
the computational package ESTIMA [25]. The experimental data used to estimate the parameters
included the average properties Mn and Mw, and the ethylene feed rates (FM), which was the only
continuous measurement. The copolymerization kinetic parameters kp12 and kb were estimated by
ESTIMA considering the experimental data of Mn and Mw only.

Table 3 lists the parameters of the system, including the kinetic parameters in the reparametrized
Arrhenius equations, pre-exponential constants, activation energies, as well as other relevant
thermodynamic properties and constants. It is important to remind the reader that the kinetic
parameters (k1−7) are needed to describe the actual rate constants. Table 4 provides the initial conditions
considered in the current investigation. The interested reader is encouraged to consult the original
publication for more details [13]. A complete explanation of the variables and kinetic parameters is
included in the Nomenclature.
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Table 3. Parameters of the copolymerization of ethylene with 1,9-decadiene using dimethylsilyl
(N-tert-butylamido) (tetramethylcyclopentadienyl) titanium dichloride (CGC)/MAO.

Parameter Value Units Original Rate Constants 1

k1 −2.92 - ka = α(k1, k2)k2 25.00 -
k3 2.58 ± 0.08 - kt = α(k3, k4)k4 17.2 -
k5 10.91 ± 0.95 - kdP = α(k5, k6)k6 30.12 ± 2.10 -
k7 7.56 ± 0.07 - kp11 = α(k7)

kp12 2039.8 ± 54.7 L mol−1s−1 -
kb 908.7 ± 69.0 L mol−1s−1 -

Eap 20520.0 J mol−1 -
MMM 28.05 g mol−1 -
MMD 138.254 g mol−1 -
ρPE 940 g L−1 -
R 8.31451 J mol−1 K−1 -

1 kι = α
(
kβ, kγ

)
represents kι as a function of kβ and kγ.

Table 4. Initial conditions for simulations and experiments.

Variable Homopolymerization
Copolymerization

Units
A B

C(0) 0.767× 10−6
×V(0) 0.271× 10−6

×V(0) 0.271× 10−6
×V(0) mol

C∗(0) 0 0 0 mol
DC(0) 0 0 0 mol
D(0) 0 0.3÷MMD 0.4÷MMD mol
(M)(0) 0 0 0 mol
(d)(0) 0 0 0 mol
(lcb)(0) 0 0 0 mol
µ0(0) 0 0 0 mol
µ1(0) 0 0 0 mol
µ2(0) 0 0 0 mol
λ0(0) 10−14 10−14 10−14 mol
λ1(0) 10−14 10−14 10−14 mol
λ2(0) 10−14 10−14 10−14 mol
V(0) 0.15 0.15 0.15 L

3. Experimental Equipment and Setup

3.1. Materials

The materials utilized in the experimental runs were methylaluminoxane (MAO, 10 wt. % in toluene),
anhydrous ethyl alcohol (≥99.5%), toluene anhydrous (99.8%), 1,9-Decadiene (98%), triisobutylaluminum
(TIBA) (25 wt. % in toluene), n-butyllithium solution (2.5 M in hexane), sodium (≥99%, stored in
mineral oil), which were provided by Sigma-Aldrich (USA). Moreover, dimethylsily (n-tert-butylamido)
(tetramethylcyclopentadienyl) titanium dichloride (CGC) (85.0–99.8%) was acquired from Boulder Scientific
Company (USA), and nitrogen (>99.998%) and ethylene were provided by Praxair Technology (USA).

3.2. Process Description

Prior polymerization, six cycles of nitrogen venting and vacuuming at 125 ◦C were applied in the
reactor to remove oxygen. Then, the reactor received 150 mL of toluene and 0.5 g of TIBA (impurity
scavenger), and the temperature was increased to 120 ◦C and kept constant for 20 min.

For homopolymerization, after the reactor purging, 150 mL of toluene was charged at ambient
temperature. A solution of MAO was added into the reactor through a cannula under nitrogen
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pressure. The reactor was then heated until reaching the reaction temperature (120, 130 or 140 ◦C). Then,
ethylene was injected into the reactor until the solvent was saturated. After stabilizing the temperature,
the catalyst solution was added into the reactor under nitrogen pressure. During polymerization,
the reactor temperature remained constant, with variations of ±0.15 ◦C from the set point. Ethylene
was supplied on demand, maintaining a constant reactor pressure (120 psig). When the final reaction
time was achieved, the ethylene supply valve was closed, and the reactor contents were immediately
transported into a 1 L beaker with 100–250 mL of ethanol. Afterwards, the polymer was kept overnight
under constant stirring, then filtered and dried in an oven. The copolymerization procedure was
analogous to the homopolymerization procedure. The unique difference is that after adding MAO,
the co-monomer solution was injected into the reactor following the same procedure used to feed MAO.

The average properties and the molecular weight distributions of the polymer samples were
measured using a Polymer Char High-Temperature Gel Permeation Chromatographer (GPC) calibrated
with polystyrene narrow standards and using a universal calibration curve in accordance with the
methodology described by Soares and McKenna (2013) [15].

4. Data-Driven Estimation of Significant Kinetic Parameters

4.1. Parameter Selection: Global Sensitivity Analysis

A global sensitivity analysis shows how significant inputs are with respect to one or various
outputs. A robust and widely used variance-based sensitivity analysis is the Sobol method [38].
This method proposes the expansion of a function G = g

(
z1, . . . , zj, . . . , zJ

)
into terms of increasing

dimensions with mutually independent input parameters such that all summands are mutually
orthogonal, as explained in Equation (29).

G = g0 +

J∑
j=1

g j
(
z j
)
+

∑
1≤j<b≤J

g jb
(
z j, zb

)
+ · · ·+ g1,2,··· ,J

(
z1, . . . , zJ

)
(29)

where the index j denotes a parameter of interest, b another parameter, and J is the total number of
evaluated parameters. Each term in Equation (29) has quadratic integrability over the domain of
existence, where g0 is a constant, g j = g j

(
z j
)
, g jb = g jb

(
z j, zb

)
, and so forth. Equation (30) shows the

decomposition of the variance of G.

V(G) =

J∑
j=1

V j +
∑

1≤j<b≤J

V jb + . . .+ V1,...,j,...,J (30)

where V j, V jb, V1,··· ,j,··· ,J are the individual variances of functions g j, g jb, g1,··· ,j,··· ,J.
Sensitivity indices help understand the variance decomposition from Equation (30). First-order

sensitivity indices (Ŝ j) permit the selection and classification of the most sensitive parameters,
depending on the individual importance of their contribution in changing the variance of the function
of interest. The main effect of varying parameter z j on the output value G is measured by Ŝ j, as
presented in Equation (31). In addition, the total sensitivity index (ŜTj) incorporates the sum of all
the effects that involve the parameter z j. The total sensitivity index for parameter z j is computed as
indicated in Equation (32).

Ŝ j =
V̂ j

V̂
(31)

ŜTj = 1−
V̂− j

V̂
(32)

where V̂− j is the sum of all variance terms that exclude z j.
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Ŝ j and ŜTj can be compared to evaluate whether a model is additive or not. For non-additive
models, Ŝ j < ŜTj; for additive models, Ŝ j = ŜTj. Additive models are those in which no interactions
between evaluated parameters occur [39].

The Sobol standard method may be improved by introducing sampling and resampling
matrices [40,41], and even better performance is achieved when the results of the evaluated functions
are averaged, creating extra data points [32]. In this study, we used an improved version of Sobol’s
method, as implemented by Salas et al. (2017) [42], including a third sampling matrix to avoid
unfeasible scenarios. The method follows the steps below:

(1) Define an objective function, and the dimension (D) for a sample of input parameters. For each
parameter, define an uncertainty index. In this case, we adopted 4% of change with respect to the
mean value.

(2) Build three random matrices M1, M2 and M3—Equations (33a)–(33c), respectively—of dimension
D× J based on the defined uncertainty: M1 is the sampling matrix, M2 is the resampling matrix,
and M3 is the backup matrix.

M1 =


z11 · · · z1 j · · · z1J

...
...

...
zD1 · · · zDj · · · zDJ

 (33a)

M2 =


z′11 · · · z′1 j · · · z′1J

...
...

...
z′D1 · · · z′Dj · · · z′DJ

 (33b)

M3 =


z′′11 · · · z′′1 j · · · z′′1J

...
...

...
z′′D1 · · · z′′Dj · · · z′′DJ

 (33c)

(3) Evaluate the row vectors of matrices M1 and M2. If the output is unfeasible, meaning that
the combination of inputs in a vector caused the simulation to break or other related problems,
use the next available feasible row of the matrix M3, and update the matrices to M1′ and M2′,
which denote the improved sampling and resampling matrices, respectively. Then, calculate the
total average (ĝ0) of both evaluations as described in Equation (34).

gS = g(M1′), gR = g(M2′)

ĝ0 =
1

2D

D∑
d=1

(
gS + gR

)
(34)

where gS represents the output vector of M1′ and gR is the output vector of M2′.
(4) Generate a matrix Nq formed by all columns of matrix M2′, except the column of the zq parameter,

which is pulled from M1′, as explained in Equation (35a). Subsequently, generate another matrix
NTj formed with all columns of M1′ and with the column of the z′j parameter, pulled from M2′ as
denoted in Equation (35b).

Nj =


z′11 · · · z1 j · · · z′1J

...
...

...
z′D1 · · · zDj · · · z′DJ

 (35a)
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NTj =


z11 · · · z′1 j · · · z1J

...
...

...
zD1 · · · z′Dj · · · zDJ

 (35b)

(5) Evaluate the row vectors of matrices Nj and NTj. If an evaluated function is unfeasible, the output
is replaced by ĝ0. The outputs are obtained in column vectors.

g′j = g
(
Nj

)
, g′Rj = g

(
NTj

)
where g′j is the output vector of matrix Nj, and g′Rj is the output vector of matrix NTj.

(6) A sample generates the following estimates, which are calculated based on scalar products of the
vectors from above.

γq
2 =

1
2D

D∑
d=1

(
gS·gR + g′j·g

′

Rj
)

(36)

V̂ =
1

2D

D∑
d=1

(
gS

2 + gR
2
)
− ĝ0

2 (37)

V̂q =
1

2D

D∑
d=1

(
gS·g

′

Rj + gR·g
′

j

)
− γ j

2 (38)

V̂−q =
1

2D

D∑
d=1

(
gS·g

′

j + gR·g
′

Rj
)
− γ j

2 (39)

where γ j
2 is the squared mean value of the outputs for each parameter z j. The selection of

sensitive parameters relies on the first and total sensitivity indices. Equation (40) introduces the
objective function, defined in this case as:

G =
i∑

i=1

yi − hi(z)

σ2
yi

(40)

where yi is the measurement at each time interval i, hi(z) is the calculated measurement, and σ2
yi

is the variance of the experimental fluctuations.

4.2. Data-Driven Parameter Estimation

4.2.1. Estimation Problem

The polymerization model described in Equations (8)–(21) can be written in compact discrete-time
form as portrayed in Equation (41). {

xi+1 = f (xi, ui, z) + vi
yi = h(xi, ui, z) + wi

(41)

where x ε Rlx is the state vector, u ε Rlu is the vector of inputs, z ε Rlµ is the unknown parameter
vector, y ε Rly is the vector of measurements, and v ε Rlx and w ε Rly are the model and measurement
errors, respectively.

For estimation purposes, the compact model is considered to be as shown in Equation (42).{
x̂i+1 = f (x̂i, ui, ẑ) + vi
ŷi = h(x̂i, ui, ẑ) + wi

(42)
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where x̂ is the estimated state vector, ŷ is the vector of estimated measurements, and ẑ is the output of
the parameter estimator. The parameter estimator is updated by minimizing a cost function based on
the performance variable (e).

Considering an ARMA model with a built-in integrator, ẑ is given by:

ẑi =

nc∑
l=1

Pliẑi−1 +

nc∑
l=1

Qliei−l + Rigi (43)

where,
gi = gi−1 + ei−1 (44a)

ei = ŷi − yi (44b)

and Pi ε Rlz×lz , Qi, R ε Rlz×ly are the coefficient matrices that are updated recursively by the algorithm.
The integrator is combined with the estimator to guarantee that the performance variable approaches
to zero as the iterations approach to infinity. Rewriting Equation (43), the following is obtained:

ẑi = Φiθi (45)

where,
Φi = Ilz ⊗φi

T ε Rlz×lθ , (46a)

φi =
[
ẑi−1

T . . . ẑi−nc
T ei−1

T . . . ei−nc
T gi

T
]T

(46b)

θi = vec
[
P1i . . .Pnc i Q1i . . .Qnc i Ri

]
ε Rlθ (46c)

lθ = lz2nc + lzly(nc + 1) (46d)

and Φ is the regressor matrix, θ contains the estimator coefficients computed by the RCMR algorithm.
The operator “

⊗
” is the Kronecker product, and vec represents the column-stacking operator.

It is assumed that z is identifiable, which is guaranteed from the global sensitivity analysis (in the
absence of an observability/detectability analysis), and that the input signal uk is persistently exciting.

4.2.2. Retrospective Cost Model Refinement (RCMR) Algorithm

The retrospective performance variable is defined as follows:

êi = ei −G f (q)
(
Φi

^
θ− ẑi

)
(47)

where q is the forward-shift operator, and
^
θ has the parameter estimation coefficients to be optimized.

G f (q) =
n f∑

n=1

Nn

qn (48)

For all n, Nn ε Rly×lz . G f is a finite impulse response filter of order n f . Equation (47) is then
rewritten as follows:

êi = ei + NΦbi
^
θ−NZbi (49)

where,
N =

[
N1 . . .Nn f

]
ε Rly×lzn f ,
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Φbi =


φi−1

...
φi−n f

 ε Rlzn f×lθ ,

Zbi =


ẑi−1

...
ẑi−n f

 ε Rlzn f .

The retrospective cost function, defined by Goel and Bernstein (2018) [34,35], is minimized by
making use of recursive least squares. Let P0 = Rθ

−1 and θi = 0.
The algorithm that updates the estimator coefficients is as follows:

θi = θi−1 − PiΦbi−1
TNTRei−1(NΦbi−1θi−1 + ei−1 −NZbi−1) (50)

Pi = λ−1Pi−1 − λ
−1Pi−1Φbi−1

TNTΓi
−1NΦbi−1Pi−1 (51)

Γi = λRei−1
−1 + NΦbi−1Pi−1Φbi−1

TNT (52)

where Re and Rθ are positive-definite matrices, and λ ≤ 1 is the forgetting factor.

4.3. Framework Implementation

The assembly of the implemented strategies is summarized in Figure 1. Initially, the global
sensitivity analysis provides information on the most important parameters of the polymerization
system. Once these parameters are identified, the proposed framework tries to estimate their
values asynchronously, updating/estimating the parameters whenever measurements are available.
Monitoring and signal processing are other challenges of the proposed methodology. The estimated
properties are expected to be close to the experimental and theoretical values, and noise reduction of
the measurements is anticipated to occur.
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Figure 2 portrays the architecture of the data-driven estimation strategy. The experimental unit
generates measurements y, which are assumed to be driven by the inputs u. The data-driven adaptive
estimator consists of the nonlinear estimation model, which is also driven by the inputs u, and the
RCMR algorithm. Although the nonlinear estimation model is required to generate the estimated
measurements ŷ, it does not provide knowledge for the parameter updates. The estimated parameter
ẑ is updated by the estimator, which seeks the minimization of the error signal e.
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5. Results

FM is the only measurement obtained continuously. Thus, the global sensitivity analysis and the
data-driven estimation are performed using FM as the input signal. The other available measurements
(Mw, Mn) are employed as a reference for comparing the accuracy of the estimated properties.

The system was simulated in MATLAB R2015a, running on a PC Intel Core™ i7-4790K CPU @
4.00 GHz with 16.0 Gb of installed RAM. The ODEs of the system were solved using ode23s [43],
based on a modified Rosenbrock formula of order 2. The sampling time of FM was every 1 s, and
the RCMR algorithm together with the nonlinear model run in approximately 0.0035 s, which makes
feasible the online deployment of the proposed strategy. Computational methods can be used for
online applications if they are faster than the real process by a factor of 100 [44].

5.1. Global Sensitivity Analysis

From the global sensitivity analysis of the seven kinetic parameters (k1−7), the fifth and seventh
show the highest overall sensitivity, as portrayed in Figure 3. This result is consistent because k7 is
the exponent in the pre-exponential propagation rate constant (k0p = 10k7 ) of the Arrhenius equation.
The propagation rate constant determines the monomer consumption rate; thus, it strongly influences
the value of FM (ethylene flow rate to the reactor), seeking to maintain the ethylene concentration
in the reactor constant during the polymerization. The rate constant for the living chain (catalyst)
deactivation (kdP) is a function of k5 (as defined in Table 1). Since kdP influences the moment equations,
it is expected that this parameter is influential as well. These results are in agreement with the work of
Brandão et al. (2017) [13], because k5 and k7 belong to the parameter set classified as significant when
an identifiability analysis was applied over the seven parameters. Figure 3a illustrates the first-order,
and Figure 3b the total sensitivity indices when using 100 samples.
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5.2. Homopolymerization

Homopolymerization experiments at different reaction temperatures were used to test the RCMR
algorithm on its kinetic parameter estimation capabilities. The RCMR algorithm was implemented
considering: P0 = Rθ

−1, θ0 = 0, and nc = 0.
Initially, only k7, and consequently kp11

, were estimated, using the initial guess k7 = 0. To improve
the convergence of the algorithm it was assumed that lz = 2, meaning that two parameters were
estimated rather than one. For the non-estimated parameter, a constant value of ẑ = 11.3 provided a
satisfactory response and tradeoff. With these considerations, the architecture selected was: n f = 2 so
that lθ = 2, λ = 0.999, and

G f (q) =

[
1 0

]
q

+

[
0 1

]
q2 (53)

For estimating a single parameter, the algorithm considered Rθ = 0.01Ilθ , and Re = 0.1.
Figure 4 shows the estimates for k7 and kp11

at different polymerization temperatures. The estimated
parameters converge, in all cases, close to theoretical values without requiring prior knowledge of the
initial value or range of the parameter.
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Figure 4. Estimation of a single significant parameter. Comparison between theoretical (dashed line),
and estimated kinetic parameters (continuous line) at 120 ◦C (blue), 130 ◦C (green) 140 ◦C (orange):
(a) Dynamic estimation of k7; (b) Dynamic estimation of kp11.

Furthermore, the most significant kinetic parameters of the system, k5 and k7, and consequently
kdP and kp11

, were estimated simultaneously. The same architecture implemented for single parameter
estimation was used in the simultaneous estimation, with the distinction that the parameters were
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estimated in separate channels using the same error signal. The non-estimated parameters were
different: ẑk5 = 23.5, and ẑk7 = 15.0, and everything else remained the same.

Figure 5 shows the results of the estimated k5, kdP, k7, and kp11
at different polymerization

temperatures. In all cases, the estimated parameters (k5, k7) approached their theoretical values,
converging from an initial value of 0 in both cases. A noisy response was observed, as in Figure 4,
which can be attributed to the presence of impurities that could not be removed during the
experiments, or to the occurrence of side reactions not included in the fundamental model. In addition,
as the polymerization temperature increased, the estimated parameters became more sensitive to
noise, which provided the insight that temperature is proportional to the noise/uncertainty of the
experimental data.
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Figure 5. Estimation of two significant parameters. Comparison between theoretical (dashed line),
and estimated kinetic parameters (continuous line) at 120 ◦C (blue), 130 ◦C (green) 140 ◦C (orange):
(a) Dynamic estimation of k5; (b) Dynamic estimation of kdP; (c) Dynamic estimation of k7, (d) Dynamic
estimation of kp11.

Figure 6 illustrates how the RCMR can both estimate FM and reduce the measurement’s noise.
The reader should note that it takes some time for the estimated FM to achieve its expected value.
Goel and Bernstein (2018) [13] explained that the unknown parameter moves towards different
subspaces until it tends to the subspace spanned by N1

T. In addition, there is a delay time difference
between the estimated F̂M with a single and two parameters, which is mostly related to the tuning.
Finally, as stated before, the F̂M at the highest temperature (140 ◦C) shows an oscillatory response.
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Figure 6. Comparison of the monomer flow rate (FM) between the experimental values (circles),
fundamental model (dashed line), estimated with a single parameter (continuous red line), and
estimated with two parameters (continuous green line) at: (a) 120 ◦C, (b) 130 ◦C, (c) 140 ◦C.

Figure 7 compares the results computed by the nonlinear model, the measured results, and the
estimated average properties at different polymerization temperatures. The results at 120 ◦C of both
Mw and Mn are very close to their theoretical and experimental values, but as the temperature increases,
the uncertainty also increases. The estimation of two parameters simultaneously appears to provoke
less reliable results when compared to the estimated properties with a single parameter, especially at
higher temperatures.
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Figure 7. Comparison of the final average properties at different temperatures for experimental
values (circles), fundamental model (squares–dashed line), estimated with a single parameter
(triangles–continuous line), and estimated with two parameters (diamonds–continuous line):
(a) weight-average molecular weight (Mw); (b) number-average molecular weight (Mn).

5.3. Copolymerization

Following the criterion used for the homopolymerization experiments, the copolymerizations
used the same RCMR architecture for the estimation of significant kinetic parameters and important
polymer properties. Indeed, the criterion extends to the application of the same channels for estimating
one and two significant kinetic parameters and their resulting properties.

The copolymerization experiments considered only one temperature. Initially, k7 and consequently
kp11

were estimated for the copolymerizations described in Table 4a,b. Figure 8 illustrates the results
of the estimated k7 and kp11

at 120 ◦C and different initial diene concentrations. The unknown
parameter converges towards the theoretical value without requiring prior knowledge at both initial
diene concentrations.
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Figure 8. Estimation of a single significant parameter. Comparison between theoretical (dashed line),
and estimated kinetic parameters (continuous line) at different initial diene concentrations for the
copolymerization experiment A (purple), and copolymerization experiment B (gold); (a) Dynamic
estimation of k7; (b) Dynamic estimation of kp11.
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Moreover, the parameters k5 and k7, and, consequently, kdP and kp11
, were estimated simultaneously,

using the same architecture and tuning used in the homopolymerizations. Figure 9 shows the results
of the estimated k5, kdP, k7, and kp11

at different initial diene concentrations at 120 ◦C. In all cases,
the unknown parameters k5 and k7 approach the theoretical values, starting from an initial guess of 0.
An interesting observation in these experiments is the slight decreasing trend (negative slope) of the
parameters, made clearer in the dynamic evolution of kdP and kp11

. The reason for this behavior might
be related to LCBs formation during the copolymerization. The presence of LCBs in the living chains
might cause a steric hindrance to the incorporation of ethylene molecules, which disfavors deactivation
and propagation reactions. However, this hypothesis must be proved by additional experiments and
further simulations.
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could be argued that it should be influenced by the increase in the complexity of modelling, but 

Figure 9. Estimation of two significant parameters. Comparison between theoretical (dashed line),
and estimated kinetic parameters (continuous line) at different initial diene concentrations for the
copolymerization experiment A (purple), and copolymerization experiment B (gold): (a) Dynamic
estimation of k7; (b) Dynamic estimation of kp11; (c) Dynamic estimation of k5; (d) Dynamic estimation
of kdP.

Figure 10 demonstrates how the RCMR can estimate FM effectively and reduce the measurement’s
noise. As before, it takes some time for the estimated FM to achieve values close to experimental and
theoretical values. There are no visible differences observed when the initial concentration of diene
varies, which makes it possible to conclude that temperature is more influential on the reaction behavior.
In contrast to the homopolymerization results (Figure 6), the estimated FM in the copolymerization
experiments shows a higher delay time of convergence. It could be argued that it should be influenced
by the increase in the complexity of modelling, but because the RCMR algorithm is a purely data-driven



Processes 2019, 7, 309 18 of 23

strategy, which does not require information on the nonlinear model, the reasons must be totally
related to the nature of the experiment.
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Figure 10. Comparison of the monomer flow rate (FM) during copolymerization between the
experimental values (circles), fundamental model (dashed line), estimated with a single parameter
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diene concentrations: (a) copolymerization experiment A, (b) copolymerization experiment B.

Finally, Figure 11 compares the results computed by the fundamental model, the measured results,
and the estimated average properties of the copolymerization experiments at different initial diene
concentrations. Data on the average properties was obtained during the polymerization experiments.
The results show that the RCMR algorithm, besides computing the unknown parameters, can estimate
Mn satisfactorily using the error signal obtained as the difference between the estimated and measured
FM. This signal allows the estimator to gain enough information on the system to estimate Mn.
Of course, the estimation additionally relies on the correctness of the model and the non-estimated
parameters as well, but the obtained results are comparable with theoretical and experimental values.
On the other hand, Mw achieves a similar dynamic when compared to the fundamental model, but the
estimates fail to attain perfect values close to the experimental measurements.
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Figure 11. Comparison of average polymer properties at different initial diene concentrations
between experimental values (circles), fundamental model (dashed line), estimated with a single
parameter (red continuous line), and estimated with two parameters (green continuous line).
(a) Weight-average molecular weight (Mw) for copolymerization A; (b) number-average molecular
weight (Mn) for copolymerization A; (c) weight-average molecular weight (Mw) for copolymerization
B; (d) number-average molecular weight (Mn) for copolymerization B.

6. Conclusions

In this contribution, a data-driven strategy for the online estimation of important kinetic parameters
was assessed and implemented for the copolymerization of ethylene with 1,9-decadiene using
dimethylsilyl (N-tert-butylamido) (tetramethylcyclopentadienyl) titanium dichloride (CGC)/MAO as
catalyst. A global sensitivity analysis was performed initially to all polymerization kinetic parameters.
The first and total sensitivity indices made it possible to choose the significant parameters of the
model. Thereafter, the RCMR algorithm, a strategy never implemented in polymerization applications,
permitted the estimation of the significant kinetic parameters, which were assumed to be unknown.
After verifying consistency, the proposed strategy was tested in the copolymerization of ethylene with
1,9-decadiene at different diene concentrations. Overall, results were satisfactory, showing not only
adequacy in signal processing, but also in parameter and property estimation.

The usage of data-driven algorithms such as the RCMR represents a paradigm that could permit
easier estimation of parameters of nonlinear systems, such as those observed in polymer synthesis.
Disturbances in the experimental data (e.g., impurities, experimental errors, and less frequent side
reactions) that might not be captured by the fundamental model could be overcome by applying
this strategy.



Processes 2019, 7, 309 20 of 23

The proposed strategy also holds the advantage that it is capable of being adapted to the conditions
of the experiment, and it can estimate the important kinetic parameters of the system while the reaction
is running. This could be beneficial for processes where the major kinetic parameters are unknown for
all the different types of catalysts, or the composition of the catalysts might be slightly different from
each other, resulting in important differences. In the particular case of the RCMR algorithm, it has
the additional advantage of estimating the parameters from an initial value of zero without requiring
knowledge of the model.

Future work in this field will include the evaluation of the proposed framework and estimation
algorithm in other chemical processes and polymerization systems.
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Nomenclature

Notation
C catalyst precursor, [mol]
C∗ active catalyst site, [mol]
D 1,9-decadiene, [mol]
DC dead catalyst site, [mol]
d total amount of 1,9-decadiene inserted into the growing polymer chains
Eap activation energy for ethylene propagation reaction rate, [J·mol−1]
FM ethylene feed flow rate, [mol·s−1]
K total number of pendant unsaturation’s present in the dead chains
ka catalyst activation constant, [s−1]
kb macromonomer reincorporation rate constant, [L·mol−1

·s−1]
kdP living chain deactivation rate constant, [L·mol−1

·s−1]
kp11 propagation rate constant for ethylene, [L·mol−1

·s−1]
kp12 propagation rate constant for 1,9-decadiene, [L·mol−1

·s−1]
kt termination rate constant, [s−1]
k0p pre-exponential factor for ethylene propagation reaction rate, [L·mol−1

·s−1]
lcb long chain branching
L=i dead polymer chain that contains a terminal unsaturation and has chain size i, [mol]
Li dead polymer chain with chain size i and without a terminal unsaturation, [mol]
M ethylene, [mol]
m total amount of ethylene inserted into the growing polymer chains
MM average molar mass of the repeating unit, [g·mol−1]
MMD molar mass of 1,9-decadiene, [g·mol−1]
MMM molar mass of ethylene, [g·mol−1]
Mn number average molecular weight, [g·mol−1]
Mw weight average molecular weight, [g·mol−1]
PDI polydispersity index
P∗i living polymer chain with chain size i, [mol]
R ideal gas constant, [J·mol−1

·K−1]
T reaction temperature, [K or ◦C]
Tr reference temperature, [K or ◦C]
V reaction mixture volume, [L]
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Greek letters
λk kth moment for the dead chain
µk kth moment for the living chain
ρPE Polyethylene density, [g·L−1]
ϕ Average frequency of pendant double bonds in the polymer chains
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